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Abstract

We propose a novel stochastic method to generate Brownian paths conditioned to
start at an initial point and end at a given final point during a fixed time ¢y under
a given potential U(z). These paths are sampled with a probability given by the
overdamped Langevin dynamics. We show that these paths can be exactly generated
by a local Stochastic Partial Differential Equation (SPDE). This equation cannot be
solved in general but we present several approximations that are valid either in the
low temperature regime or in the presence of barrier crossing. We show that this
method warrants the generation of statistically independent transition paths. It is
computationally very efficient. We illustrate the method first on two simple potentials,
the two dimensional Mueller potential as well as on the Mexican hat potential, and
then on the multi-dimensional problem of conformational transitions in proteins using
the "Mixed Elastic Network Model” as a benchmark.

Keywords. Langevin dynamics, Stochastic partial differential equations, Transition paths, Con-
formational transitions.



1 Introduction

Biochemical and biological machines are controlled by their dynamical properties. Indeed,
it is the ability of molecules to change conformations that leads to their activity [1]. If one
could predict the sequence of events leading from one conformational state to another one,
a whole new world would be open to structure-inspired drug design techniques, that could
focus not only on end-states but also on intermediates to control or block the reaction [2,3].
Observing experimentally or predicting functional conformational changes is however a very
difficult problem. At the core of this problem is the fact that a transition between two con-
formations of a molecule is a rare event compared to the time scale of the internal dynamics
of the molecule. This event is a consequence of random perturbations in the structure of the
molecule, drawing its energy from the surrounding heat bath; it is rare whenever the energy
barrier that needs to be crossed is high compared to the ambient thermal energy kgT'.
The transition state theory (TST) offers a framework for studying such rare events [4, 5].
The main idea of the TST is that the transition state is a saddle point of the energy surface
for the molecule of interest. In many cases, the most probable transition path is then simply
the minimum energy path (MEP) along that energy surface. The TST however is limited to
situations in which the potential energy surface is rather smooth; it also assumes that every
crossing of the energy barrier through the transition state gives rise to a successful reaction.
As such, the transition path is often calculated by walking down from the TST to each of
the two end states using steepest gradient methods [6]. For systems with a rugged potential
energy landscape, or when entropic effects matter, the saddle points do not necessarily play
the role of transition states [7].
To alleviate the shortcomings of the TST, Vanden Eijnden and colleagues proposed an al-
ternate view of transitions, the Transition Path Theory (TPT) [7-9]. In principle, TST
eliminates the need for sampling the transition path ensemble and provides a framework
for finding the shortest, or most probable transition path between two conformations of a
molecule. At zero temperature the TPT is deemed exact. As such, it has served as a touch-
stone for the development of many path finding algorithms. Some of those were developed
for finding the Minimum Energy Path (MEP) on the energy surface for a molecule, such
as morphing techniques [10, 11], gradient descent methods [12-15], the nudged elastic band
method [16-18] and the string method [19-24].
Other algorithms are concerned with either finding the Minimum Free Energy Path (MFEP)
on the free energy surface for the molecule, [25-28] while others search for paths that mini-
mize a functional, such as Onsager-Machlup functional that is known to reproduce the most
probable path for a Langevin equation with constant diffusion coefficient [29], as imple-
mented in the Minimum Action Path (MAP) methods [30-36].
In some other methods the Langevin equation is modified to include a bridge between the
two end states and enforces the trajectory to join them [37—40]. Also, a new method called
”Milestoning” due to Elber and coll. performs very well [41,42].
This list is not a comprehensive coverage of all existing techniques for finding transition
paths, as this is a very active area of research with new techniques proposed every year [43].
Due to the inherent fluctuations underlying the transition phenomenon there are many
ways however in which a transition can take place. The methods described above usually
generate one path along this transition, the most ”probable” one, where probable refers to



minimum energy, free energy, or an action.

Path sampling methods expand upon this view by using this path as a seed to generate a
Monte Carlo random walk in the path space of the transition trajectories, and thus generate
an ensemble of all possible transition paths [44,45]. All the relevant kinetic and thermody-
namic information related to the transition can then be extracted from the ensemble, such as
the reaction mechanism, the transition states, and the rate constants. The main drawback
of these methods however is that they are very time consuming and therefore limited to
small systems. In addition, they generate highly correlated trajectories because the space of
sampled trajectories depends strongly on the initial path.

In parallel to path sampling methods, much effort has recently been dedicated to the devel-
opment and analysis of Markov State Models (MSMs) [46-48]. MSMs aim at coarse-graining
the dynamics of the molecular system via mapping it onto a continuous-time Markov jump
process, that is, a process whose evolution involves jumps between discretized states repre-
senting typical conformations of the original system. Much of the recent work focuses on
generating those conformations and the dynamics between them, usually using molecular
dynamics simulations. To this day, MSMs remain a computationally intensive method and
generate a large number of MD trajectories that are complex to analyze even if recent work
by [49] now offers free software to automatically analyze them in a more user-friendly way.

In this paper we are concerned with the problem of path sampling. Following prelimi-
nary work by one of us [39], we propose a novel method for generating rapidly completely
independent paths using a Stochastic Partial Differential Equation (SPDE). This equation
cannot be solved in general. In the original presentation of this equation, dubbed ” Langevin
Bridges”, one of us proposed a simplification based on the symmetric form of the Trotter
approximation. This simplification was shown to work well when studying transitions for
small systems over short times [39]. It was later found however not to be valid for other
conditions; in particular it was not applicable to study transitions between conformations of
large molecular systems. In this paper we propose new approximations for solving the SPDE
that are valid for different regimes for the dynamics of the system considered, and illustrate
their applications on such large bio-molecular systems.

We are especially interested in generating multiple transition paths for conformational
transitions in coarse-grained models of proteins. Coarse-graining involves mainly taking one
bead per residue, centered on the C-alpha coordinate of each residue. One way to generate a
two-well energy landscape is to use a superposition of two coarse-grained elastic potentials,
as defined originally by Tirion [50], each one centered on the end points of the trajectory.
This usually gives rise to a "cusp” in energy at the transition state, leading to unrealistic
values of the activation energy [12,32,51], unless ones mixes the two elastic potential with a
mixing Temperature, T, [13,52]. Previously, we implemented the optimisation of Onsager-
Machlup action of a superposition of ENM models, which transform a first-order stochastic
equation into a second order deterministic partial derivative equation, leading to a unique
trajectory. Here we use the Conditioned Langevin Dynamics (CLD) Equation to generate
many plausible trajectories, using the so-called "modulated Mixed ENM” [22,26, 53|, that
includes both a energy penalty to avoid steric clashes during the simulation and also non-
uniform elastic constants for the pairs of atoms linked by an harmonic potential. Here we
use this model to benchmark the CLD method.

The paper is organized as follows. In the next section, we derive the SPDE and describe
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the different approximations we have implemented to solve this equation. In the following
section, we show applications to two well-studied 2D problems. We next proceed to use the
same method with biological macromolecules (proteins in different known conformations),
using a simplified energy function, with many more degrees of freedom than in the examples
shown in the previous section. Finally, we conclude the paper with a discussion on the
extension of the method to study transition pathways for other bio-molecular systems, such
as the folding of proteins, and with some caveats on the current limitations of the method.

2 Theory

2.1 Derivation of the bridge equation

We assume that the system is driven by a force F'(x,t) and is subject to stochastic dynamics
in the form of an overdamped Langevin equation.

For the sake of simplicity, we illustrate the method on a one-dimensional system, the
generalization to higher dimensions or larger number of degrees of freedom being straight-
forward. We follow closely the presentation given in Ref. [39].

The overdamped Langevin equation reads

— = —F(x(t),t

n(t) (1)

where z(t) is the position of the particle at time ¢, driven by the force F(x,t), «y is the friction
coefficient, related to the diffusion coefficient D through the Einstein relation D = kgT/~,
where kg is the Boltzmann constant and 7" the temperature of the heat bath. In addition,
n(t) is a Gaussian white noise with moments given by

{n(t)) =0 (2)
(n()n(t')) = 6(t 1) (3)

The probability distribution P(z,t) for the particle to be at point z at time ¢ satisfies a
Fokker-Planck equation [54,55],

oP o (0P

where 3 = 1/kgT is the inverse temperature. This equation is to be supplemented by the
initial condition P(z,0) = 0(z — x¢), where the particle is assumed to be at x, at time ¢ = 0.
To emphasize this initial condition, we will often use the notation P(x,t) = P(z,t|xg,0).

We now study the probability over all paths starting at xy at time 0 and conditioned to
end at a given point x at time ¢, to find the particle at point x at time ¢ € [0,¢;]. This
probability can be written as

- —P(:Uf,tf|xo,O)Q(Lt)P@’t)



where we use the notation
P(x,t) = P(z,t|xo,0)

Q(z,t) = P(xy,ts|z,1)

Indeed, the probability for a path starting from (zy, 0) and ending at (x, ;) to go through
x at time t is the product of the probability P(z,t|xo,0) to start at (xo,0) and to end at
(x,t) by the probability P(xy,t¢|x,t) to start at (z,¢) and to end at (xy,y).
The equation satisfied by P is the Fokker-Planck equation mentioned above (4), whereas
that for ) is the so-called reverse or adjoint Fokker-Planck equation [54,55] given by
0Q 0*Q oQ
ot b 0x? DBE ox (5)
It can be easily checked that the conditional probability P(x,t) satisfies a new Fokker-

Planck equation
op 0 (0P 0lnQ

Comparing this equation with the initial Fokker-Planck (4) and Langevin (1) equations,
one sees that it can be obtained from a Langevin equation with an additional potential force

dr 1 oln@Q [2kpT

This equation has been previously obtained using the Doob transform [56,57] in the
probability literature and provides a simple recipe to construct a generalized bridge. It
generates Brownian paths, starting at (zo,0) conditioned to end at (xy,%;), with unbiased
statistics. It is the additional term 2D% in the Langevin equation that guarantees that
the trajectories starting at (zo,0) and ending at (zf,ts) are statistically unbiased. This
equation can be easily generalized to any number of degrees of freedom.

In the following, we will specialize to the case where the force F' is derived from a potential
U(z). The bridge equation becomes

de 10U JdlnQ 2kgT
%——V&EﬂLQD e +1/ Y n(t) (7)

In that case, the Fokker-Planck equation corresponding to this modified Langevin equa-
tion [58] can be recast into an imaginary time Schrodinger equation [39], and the probability
distribution function P can be written as

Q(z,t) = P(ay, tylz, t) = e PUEU@I2 (g o= HEr=1) | 2) (8)

where we used standard bra-ket Dirac notation for a matrix element M;; =< i|M|j >, H is
a "quantum Hamiltonian” defined by [54]

_ 82 62
H=—D—+ D=V (x) (9)
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and the potential V' by

O 0x?

We denote by M the matrix element of the Euclidian Schrodinger evolution operator

2 2
V= (8U> - QkBTa—U (10)

M(z,t) = (xgle”70|z) (11)

Using eq.(8) for @), one can write equation (7) as

dx o ]CBT (9 l2k’BT

We see on the above form that when ¢ — ¢;, the matrix element M (x,t) converges to
d(xy — ), and it is this singular attractive potential which drives all the paths to x; at time

ts.

2.2 Transition paths

The bridge equations (7) or (12) can be solved exactly in a certain number of cases [59].

However in general, for systems with many degrees of freedom, the functions Q(z,t) or

M (zx,t) cannot be computed exactly and one has to resort to some approximations. In the

following, we will be mostly interested in problems of energy or entropy barrier crossing,

which are of utmost importance in many chemical, biochemical, or biological reactions.
The matrix element M (z,t) can be written as a Feynman path integral

M(x,t) = /(::)f D exp <_ /ttf dr <£ (j—f)z + vam«u»)) (13)

The free case is defined as

Mo(z,t) = Polxy, tylz,t)

z(tp)=zy ty 1 /dr\?
pu— D —_— — JE—
/a:(t)::r v ( /t o (4D (dT)
2

1 1/2 _EZ{ﬂ) o
— tf—t
(4er<tf—t>) ‘ 14

where P, is the probability distribution for a free particle.
Equation (13) can be rewritten as

Mz, 1) = Mo(x, t){exp (- DfQ /ttf dTV(x(T)))>O

where the expression (...)o denotes the expectation value with the Brownian measure Fj.
The convexity of the exponential function implies the Jensen inequality [60], which states
that for any operator A and any probability measure, one has

7



(emt) = e (15)

Equality occurs when the probability is a d—function; it is thus a good approximation
when the operator A has small fluctuations. Taking A(t) to be

Aty = 27 /t LAV (a() (16)
we have
Mz, ) ~ Mo(x, 1) exp (— Df /t ' dT<V(x(T))>O) (17)
Using the expression
+00
(V(x(1)))o = m / dzPy(xg,trlz, )V (2)Po(z, 7|2, 1),

after some calculations, we obtain

+0o0
B 91 + 92 1/2 91 + 92 [Ef@g + 1'91 2
(Viw(r)o = (47TD9192> / e Y T G V()

—00

where

letf—T, 02:7'—75
After a change of variable, this expression becomes

“+oo

dz 22 2D8192
= — —— X
v = [ 5o o ( 2)v< y 91+022>
where
. xf02 + SL'(91
0+ 0y

and the constrained Langevin equation (12) becomes

dv_ wxy—x
d — tp—t
+oo
(DB)* [ tr—1 dz 22\ 0 2D(ty —7)(T — t)
O [N () [ e (3 g (o )
T e (18)
gl



T—t __ 02
tf—t T 014620

or, after the change of variable u =

dx Tp—T
dt tp—t

+oo

2kpgT
v

n(t)
where
X =zpu+2(1—-u) (20)

Interestingly, integration by part with respect to z yields an equivalent form which does
not require the cumbersome evaluation of 0V/0X.

dx Tfp—T
dt tp—t

D0 ) [ aut - [ o (-5) v (x4 20—ttt )

(19)

_ @)3/2 52m/01 dU\/?ZO(Q:;/Q exp (—%2) 2V (X + \/2D(tf — tu(l — u)z)

2%k 5T
fy

+ n(t)

Another change of variable u = v? allows to get rid of the singularity at u = 0.
The integration over the Gaussian variable z can be performed by numerical sampling

[(foﬁ o (-5) Fe) = 5 > re) 22)

where the Ng variables z; are Gaussian variables (with zero average and unit variance).

However, as we have seen, the approximation (17) is valid if the exponent A does not
fluctuate too much over the trajectories relevant to the transition. There are two cases when
this approximation can be further simplified and where the z-integral can be avoided:

1. Low temperature

In that case, since D = kgT'/~, diffusion is small, thus V' can be approximated as
(%9)2. In addition, the term /2D(t; — t)u(l —u)z in (19) is small compared to X
and can be neglected. Equation (18) can be simplified to

=t B0 [ - g (v 0) + P20 @)

(21)



2. Barrier crossing

According to Kramers theory, the total transition time 7 (waiting + crossing) scales
like the exponential of the barrier height A E* while it has been shown that the crossing
time (Transition Path Time) 7. scales like the logarithm of the barrier AE* [61-63].
We have thus 7, << 7g.

As discussed before, the barrier crossing time is very short compared to the Kramers
time. Therefore the transition trajectories are very weakly diffusive, and are thus
almost ballistic. Consequently, we have /2Dty < |x; — x| and again we can neglect
the z term in V. Equation (18) becomes

dr_ o2 o) (tf—t)/o du<1—u)ag§() + 2kan(zs) (24)

All the equations described above are easily generalized to any number of particles in
any dimension, interacting with any many-body potentials. They are integro-differential
stochastic Markov equations, as the variable X depends only on the stochastic variable z(t).
One can generate many independent trajectories by integrating these equations with differ-
ent noise histories n(t).

To test the validity of the main approximation (17), one should compute the variance

(AA)? = (A?)—(A)? of the random variable A(t) in eq.(16) over all the trajectories generated.

Computing the correction to the Jensen inequality, it is easily seen that the approximation
is reliable provided

o (840

2|(A(0))]

where we use the value of A(t) at ¢ = 0 to define the quality criterion R, because we have
observed that this is where it is most indicative of the quality of the trajectory.

<<1 (25)

2.3 Simulation Time

For barrier crossing, what simulation time ¢y should be used? This problem has been ap-
proached before for one-dimensional systems [64] but for systems with many degrees-of-
freedom there is no theoretical answer to this question. Obviously, for any initial and final
state x; and x ¢, there is a set of Langevin trajectories which make the transition in any given
time t;. If the time ¢ is very short compared to the typical time scales of large motions of
the system, there is a small number of such trajectories, since they require a very specific
noise history. As a result, the approximations presented above are reliable and the factor R
is much smaller than 1. However, this is not a very interesting regime, as trajectories are
driven by the boundary conditions. If we are interested in simulating transition paths, the
time t; should obviously be larger than the typical TPT 7.. Indeed, if ¢; is smaller than 7,
paths are driven by the final state. On the other hand, if ¢; is too large, then we will also
simulate part of the waiting time in the wells, where fluctuations are large (except maybe at
low temperature). Therefore, in order to simulate transition paths as accurately as possible,
one should use a simulation time ¢; larger than the typical TPT 7., but not much larger. In
the following we use the notation 5 = Ny.,dt.
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3 Results

We now illustrate these concepts on three examples: the Mueller potential, the so-called
Mexican hat potential, and then on Elastic Network Models (ENM) of proteins whose end
conformations are known.

3.1 The Mueller potential

The Mueller potential is a standard benchmark potential to check the validity of methods
for generating transition paths. It is a two dimensional potential given by

Ulz,y) =Y Avexp (ai(z — 29) + bi(z — 2)(y — o) + cily — 1))?) (26)

=1

with
A = (-200,-100,—-170,15) a=(-1,-1,-6.5,0.7) b=(0,0,11,0.6) (27)

This potential has 3 local minima denoted by A,B,C, separated by two barriers (Fig.1). The
effective potential V(x,y) can be calculated analytically, as well as its gradient. Equations
(18), (23) and (24) can easily be solved numerically. We display only the trajectories gen-
erated by (24). The simulation time ¢ is chosen so that we observe a small waiting time
around the initial as well as the final point, namely ¢t; = 0.15. We use 50 points for the
integration over u. We display a sample of 500 trajectories obtained from eq. (24) with
ty =0.15, dt =107*, D =1 at temperature T'= 5. We can compute the average trajectory
as well as its variance. These trajectories are displayed on Fig. 1, where we plot the AB,
BC and AC trajectories.

To assess the quality of the approximations, we check the criterion (25). For the tra-
jectories AB, we obtain R ~ 5.31072, R ~ 0.68 for BC and R ~ 1.13 for AC. Therefore,
the approximation is quite reliable for the AB trajectories, but less for the others. In fact,
it is instructive to study the accuracy of the method when varying ¢;. For that matter, in
Fig. 2, we plot the factor R as a function of ¢, for the AB transition. We see that for
both small and large t¢, the factor R is small, with a maximum at ¢y ~ 0.05. For small
ts, the trajectories fluctuate around the straight line trajectory joining A to B through high
barriers (see Fig. 1A). For large ty, the trajectories fluctuate around the potential energy
valley joining A to B. As t; increases from small values, the ensemble of trajectories include
trajectories going through the high barrier and through the valley, and at ¢y ~ 0.05, there
is a strong mixing of both types of trajectories, giving rise to a large value of R. When ¢
increases further, the trajectories going through the barrier disappear from the ensemble,
and only valley trajectories remain, yielding a decrease of R.

3.2 The Mexican hat potential
The potential of the Mexican hat is given by

Ule,y) = 3@+ 47~ 1) (28)
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and has therefore a circle of minima for #2+y? = 1 with U = 0 and a maximum at (0, 0) with
energy U = 1/4. Again we solve equation (24), using 50 points for the u integral. Given the
small barrier of this potential AU = 1/4, we go to low temperature. On Fig.3A, we plot 100
trajectories, generated at temperature 7' = 0.1, starting at (—1,0) and all ending at (1,0).
The total time is t; = 7 and the time step is dt = 10~*. The quality criterion (25) gives
R = 0.345. The trajectories divide into three dominant groups, those that take a northern
route (30), those that take a southern route (40) along the circle of minima, and those that
go directly through the energy barrier (30). The distribution into those three groups was
decided based on the mean value Y, for the y coordinates along the trajectories. If we take
a longer duration, the fraction of trajectories that go through the central barrier decreases.
For example, for t; = 10, there are only 9 of those trajectories, as seen on Fig. 3B. The
quality criterion is then R = 0.266.

3.3 The Mixed ENM Energy Model for Proteins

We now use the CLD method to explore conformational transitions in proteins using the “Mixed
ENM” energy model.

3.3.1 The Energy Model

The energy function is the combination of the mixed elastic model and a collision term

Utot - UMia:—ENM + Ucallision (29)
where
1
Uia—pnm = ———log(e mU4 4 ¢7PmUn) (30)

where Uy is the ENM Energy centered on conformation A (initial) and Ug the ENM Energy
centered on conformation B (final), as defined originally by Tirion [50], and (3, is the inverse
of the mixing Temperature T,,, [13].

A
Un =Y kiCijldij — di}) (31)
]
B
UB - Z ka’U(dw - dij)2 + AU (32)

tj
where Cj; is a contact matrix that is set to 1 if d;; < R, and 0 otherwise and k;; is its
associated elastic constant. If a pair (i,j) is present in both forms, we take the same elastic
constant k;; for both (see below). AU is the energy difference between the two states and
d{} and d;j” their interatomic distances at rest in conformations A and B, respectively.
The collision energy term, taken as the repulsive part of a Van der Waals potential, reads

g
Ucollision - EZ(?>12 = Z Uij (33)
ij irj
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with 0 = 2.5 Angstroms and € = 1.0 kcal/Mole.
One new feature of the Ugyyr model is that the elastic constants k;; are modulated by the
difference in the resting d;; distances of the two states.

. €k
ki = min(————=—, kpmaz) (34)
-y

In Appendix A we explain this choice of the k;; that essentially conserves the height of the
energy barriers for pairs of atoms separated by different distances.

Here we take, as recommended [53], ¢, = 0.5 kcal/Mole and k.4, = 0.2 kecal /Mol /Angstrom?.
The mixed ENM itself is characterized by R. = 11.5 Angstroms and AU = 0.

The generalisation of V' to multi-dimensional problems is straightforward. For instance,

Vanu = Y Y (ViaUsvm)® = 2ksT Y Aillpxu (35)

i=1,N a=1,3 i=1,N

and

‘/collision = Z Z (Vz‘,ozljcollision)2 - 2kBT Z A'L'chollision (36)

i=1,N a=1,3 i=1,N

If Uipe = Ugpnar + Ucottision, then there is a cross-term in the Vi, term:
V;fot - VENM + ‘/Ycollision +2 Z Vz‘,aUENMVz’,aUcollision - VENM + ‘/collision + 2‘/07*055 (37)
7,00

All the algebra and derivatives needed to implement this Energy in this method are described
in an Appendix in [65]. We also implemented the following Mixing potential, with very
similar results.

UA+UB—\/(UA—UB)2—|—4€2
2

(38)

UMia:—ENM =

3.3.2 PDB coordinates and parameters

For Adenylate Kinase we used CA-coordinates from files IAKE.pdb and 4AKE.pdb (213 CA
atoms) for the initial and final states of the simulation, respectively. The RMSD between
the two forms is 7.2 Angstroms.

For the mixed-ENM we used the weighting scheme described in Eq. 30, R. = 11.54, and a
mixing Temperature 7}, = 15007, where T is taken as either T'=5 or T = 10.

For the Langevin dynamics we took in all cases dt = 0.001 and v = 1. Hence dt/y = 1E —3.
We stress that the approximation used in the new method makes it valid mainly at low
temperature.
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3.3.3 Comparison of the different variants of the method

In Figure 4 we compare the results obtained for Adenylate Kinase with different versions of
the program that use either

i) V (Eq. 21), with Ng = 100 points for the Gaussian integral, or

ii) VV (Eq. 19) with either Ng = 1 (i.e. z = 0) or Ng = 100 integration points for the
Gaussian integral.

In both cases we used Ny = 50 points for the evaluation of the 1-D integral in u, using
Simpson rule. We see that the results are almost super-imposable with both Ng = 1 or
Ng = 100 if one uses VV, confirming the validity of Eq. 23, or using V' as in Eq. 21.

We also show the result of an older method (without any 1-D integral) described earlier by
one of us [39] and based on a simpler approximation:

7 i —& 1
dt  tp—t 292

(tr — )VV(Z) +ij(t) (39)

where the ”driving force” (second term in the r.h.s) results from a more drastic approximation
and we see that the energy barrier is higher than in the method presented here.

3.3.4 Scanning the length of the simulation

We next simulate transitions for different lengths of the total transition time. We used
Ngep = 500, 1000, 2500, 5000, 7500, 10000. We see different activation energies but the sys-
tem reaches a plateau about Ny, = 5000. Clearly we see in Figure 5 that for Ny, = 7500
and Ny, = 10000 the system spends more time in the two basins before beginning the
transition, as predicted, but without changing the height of the Energy barrier.

3.3.5 Evaluation of the trajectory

We have calculated the criterion R mentioned above for 100 Adenylate Kinase trajectories
of different ¢, lengths (N, = 1000, 2500, 5000, 7500, 10000), at 7' = 5,7,,, = 15007". In all
cases we find R = 0.00456 + 0.00002. This justifies the approximation made to obtain the
equations described in the section ”Methods”.

To further understand the nature of the conformation transition simulated in our trajec-
tories, we monitored RM SD; and RM S D,y during the course if the simulation, where these
quantities refer to the RMSD of the current model with the first form and the second form,
respectively. If one calls RM.SD;_5 the total RMSD between the two extreme forms one can
define an order parameter RC' [13]:

RC(t) = %(1 4 BMSD ];(ES_D]?]{ 5D 2“)) (40)

We found that the increase of the order parameter RC from 0 to 1 is linear as a function of
time, indicating that the trajectories are essentially ballistic.

However, we can see that the trajectories are different from purely linear ones in that i) they
are self-avoiding and ii) their Q1-vs-Q2 plots are not linear, as shown in Figure 6A (Q1 is the
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Name | Length (aa) | PDB codes | RMSD (A) | CPU (s)
Ntr 124 1DC7 1DC8 | 4.5 127
AK 213 1AKE 4AKE | 7.2 175
RBP | 272 1URP 2DRI | 6.2 265
LeuT | 492 3TT1 3TT3 | 3.6 484
5-NT | 526 10ID 1HPU | 9.3 519

Table 1: CPU time needed to calculate the CLD trajectory for proteins of various lengths

percentage of native contacts in the initial form and Q2 the percentage of native contacts in
the final form; contacts are counted for d;; < R.). In Figure 6B we show the same trajectory,
but with different realisations of the noise history.

3.3.6 Efficiency of the algorithm

We have tested the program on a number of test cases for proteins of different lengths:
Ribonuclease IIT (RNase), Cat™ ATPase (ATPase), Ribose Binding Protein (RBP) and 5’
Nucleotidase were studied in [11]; Nitrogen Regulatory protein C (Ntr) was studied in [53],
while Adenylate Kinase (AK), Leucine Transporter (LeuT) and also Cat™ ATPase were
studied in [51].

In Table I, we report the CPU time needed to complete the calculations in the following
conditions Ny = 50, Ng = 1, N, = 5000, T' = 5 and 7, = 15007, the PDB codes of
the initial and final conformations, as well as the cRMSD between them, calculated on the
C-alpha coordinates. The program was compiled with gfortran and executed on a single
CPU of a Linux workstation (Intel Xeon CPU E5-1650v3 at 3.50GHz).

We see than we can generate hundreds of trajectories on a single CPU overnight. We note
that recompiling the program using the Intel Fortran compiler further reduces the computing
time, by at least a factor of 2.

3.3.7 Comparison with experiments and with other methods

In the test cases studied in [11], there is a known intermediate structure. In Figure 7 we show
the RMSD of this structure with all the intermediate conformations along the Conditioned
Langevin Dynamics Path, for 5’-nucleotidase (5’-NT) and for Ribose Binding Protein (RBP).
The PDB codes for 5-NT are 10ID, 10I8 and 1HPU for the initial, putative intermediate
and final conformations, respectively. For RBP they are 1TURP, 1BA2 and 2DRI.

One clearly sees (red and green) that intermediate conformations along the generated tran-
sition path get reasonably close to the proposed experimental intermediate. The blue line
shows the average of the CA-CA consecutive distances for all intermediate conformations,
which remain close to 3.8 A, indicating that the models are not distorted in the trajectory
that is generated. We note that the new method (RelaxPath) of one of us [65], that refines
the trajectory obtained by MinActionPath [32] using a potential similar to the one described
here (including the V,yision term) lead to very similar results, as illustrated in Figure 8.
The trajectories generated by MinActionPath, RelaxPath, and CLD are found to be very
similar for AK, RBP, and 5’-NT with some minor differences. First, we notice that the CLD
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and RelaxPath trajectories are the most similar ones, on all three test cases. The trajectories
generated with MinActionPath are very similar to the RelaxPath and CLD trajectories near
their end points, but start showing differences near the transition states. This is especially
true for 5’-N'T. These differences are likely due to the differences in the potentials considered
by the three methods. MinActionPath only considers a superposition of the elastic potentials
but does not "mix” them, while in both RelaxPath and CLD a collision term is added. We
have observed that the absence of this collision term can lead to distortion of the structures
along the MinActionPath trajectories [65].

3.3.8 Current limitations of the method

In the case of ATPase (994 residues, PDB codes 1SU4 and 1T5S) and RNase (437 residues,
PDB codes 1YY0 and 1YYW), also tested in [11], we could not find a window of the param-
eters T, T,,ts to generate trajectories. We suspect that this is due to a very large RMSD
between the two forms (16.1A and 13.4A, respectively). In general, we have observed that
tuning these parameters is very system-dependent. Indeed, we found that it is not always
possible to clearly apprehend the energy landscape generated by the "Mixed ENM” model,
which depends crucially on ki, ko, T',T;,,. In most cases, it is a rather smooth landscape and
the transition can be found readily with the Conditioned Langevin Dynamics Equation. In
some cases, however, we could not find the right combination of the parameters of the model
to make the energy landscape smooth enough.

In this respect it may be worth mentioning the large differences in T,, that were applied
in the two cases studied in [13], which also points to some necessary tuning of the model
parameters with this kind of ”Mixed-ENM” models.

Another limitation is that the energy is purely geometric, apart from the van der Waals re-
pulsion term. However, there are other energy terms, such as the Go-like Energy Model [66],
that could be added to the current version of the program. This should be especially useful
for studying the folding transition, not just conformational transitions.

Finally, our current implementation mainly use coarse-grained models and this might
appear as a severe limitation of the method. However, we have developed methods that
allow to reconstruct quickly all atoms from a CA-trace representation of a protein (P. Koehl,
unpublished). An immediate application of the method would then be to generate quickly
initial trajectories to be refined by more sophisticated methods such as the (all atoms) string
method, that does need as an input an initial guess of the trajectory.

4 Conclusion and Perspective

In summary, we show here a novel method to generate ab initio transition path trajectories
using a formalism called Conditioned Langevin dynamics. The most crucial parameter of
the theory is the total length of the simulation, which must be carefully chosen so as to allow
short waiting times around both the initial and final states. We define a quality criterion R
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that can be calculated a posteriori to see if the approximation made to solve the underlying
PDE is justified or not. This criterion is necessary but not sufficient. We have tested the
method on simple one- or two-dimensional potentials, as well as in more biologically rele-
vant situations, such as conformational transitions in proteins, with simple coarse-grained
potentials.

Compared to our earlier work [32] we have succeeded in improving the generation of
trajectories between two known forms of the same macromolecule in two ways: i) first
we impose self-avoidance during the trajectory and ii) we generate hundreds of plausible
trajectories in a matter of hours on a single CPU desktop workstation.

Proteins usually continuously visit one of several states (e.g. native or denatured, open or

closed, apo or holo in the allosteric picture), by making stochastic transitions between them.
The picture which emerges is that the system is staying for a long time in one of the minima
and then making stochastically rapid transitions to the other minimum. It follows that for
most of the time, the system performs harmonic oscillations in one of the wells, which can
be described by normal mode analysis. Rarely, there is a very short but interesting physical
phenomenon, where the system makes a fast transition between minima. This picture has
been confirmed by single molecule experiments, where the waiting time in one state can be
measured, although the time for crossing is so short that it cannot be resolved [67]. Note
however that the whole transition path trajectory distribution has been measured in the
case of DNA hairpin formation [68]. This scenario has also been confirmed recently by very
long millisecond molecular dynamics simulations which for the first time show spontaneous
thermal folding-unfolding events [69].
Our next goal is to try to simulate by this method the folding transition of proteins and
compare it with these folding-unfolding events. To this end, we will implement a more real-
istic energy potential (Go-model) and also use many different initial states using randomly
generated models of unfolded states. If the results compare well, we might be in a position
to simulate folding transitions on much larger proteins that can currently be handled with
the most powerful available MD methods [70].
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A Appendix A

When two harmonic potentials with the same curvature kjeps = kyigne are mixed the height
of the activation barrier varies a lot when the minima are separated by different distances,
if they have a common curvature k;; = ko (Left panel).

1000

800 -

600

ergy
ergy

400

200

Figure 1: Left: Elastic potential of pairs of atoms with different distances and a constant
elastic constant. Right: Modulated elastic constant to conserve the same energy barriers for
pairs of atoms separated by different distances

Hence the idea of the modulation of k;; as a function of the distance between the minima,
as in Eq. (34) in the main text. Indeed, if we use a modulated elastic constant of the form
kij = ko(ﬁf we get the desired result, an energy barrier independent of the position of
the two minima, at the expense of different k;; (Right panel).

Also, care must be taken in the case where ||d) — d?|| becomes very small (i.e. less than 2
A), because in this case the stiffness of the elastic potential becomes unreasonably high and
one gets stuck into numerical problems during derivative’s evaluations.

Therefore, one needs to take a threshold value for the elastic constant, as in the mixed ENM
model presented in the main text. At high temperature, the minima of the mixed-ENM are
no longer exactly at the two extreme conformations, but they are slightly displaced.
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Figure 1: Conditioned Langevin dynamics (CLD) trajectories on the Mueller
potential. (A) Contour plot of the Mueller potential, with the three minima labeled A, B,
and C, and the two saddle points between those minima indicated with an x. 500 converged
trajectories between the minima A and B (B), B and C (C), and A and C (D). The unweighted
mean trajectories are shown in white.
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Figure 2: Evaluation of the CLD trajectories for the Mueller potential. The quality
factor R plotted as a function of the total duration of the transition ¢, for the AB trajectories
in the Mueller potential.
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A) 100 paths with T=0.1 and tg=7 B) 100 paths with T = 0.1 and tg= 10

1.5 1.5

0.5 0.5 ¢

Figure 3: Langevin bridge trajectories on the Mexican hat potential. (A) 100 con-
verged trajectories, all starting at (—1,0) and ending at (1,0), and generated at temperature
T = 0.1 with a duration ty = 7 . Note that with this short transition time, many trajectories
go through the barrier region. (B) Same as in (A), but with ¢; now set to 10. Most of the
trajectories now follow the circle of minima; those trajectories are nearly equally divided
into two groups, those that follow the upper side of the circle (44), and those that follow the
lower side (47) (see text for details).
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Figure 4: Adenylate kinase trajectories. (Left) Different versions of the CLD method
were tested: without derivatives of V and Ng = 100 (red) for the evaluation of the gaussian
integral or with the derivatives of V, with Ng = 1, i.e. z =0, (blue) or Ng = 100 (magenta).
A comparison with an older version of the method [39] is also shown in green. (Right) Runs

with different temperatures ranging from 7' = 5 to T" = 200 using the derivative of V' and
Ng = 1.
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Figure 5: Influence of the length of the simulation ¢y = Ng.,dt on the energy profile
for Adenylate kinase. All trajectories were generated with 7= 5, T,,, = 15007", N, = 50
and Ng = 1, for Ny, = 1000 to 10000 and dt = 0.001.

27



T
N=1000 —+—
N=2500 ---x---
N=5000 ---%---
N=7500 &

N=10000

Q1
Q1

09 —

0.89 L L L L L
0.88 0.9 0.92 0.94 0.96 0.98 1

Figure 6: Evaluation of the (non-) linearity of Adenylate kinase CLD trajectory.
(Left) Percentage of native contacts for the initial form (();) as a function of the percentage
of native contacts for the final form (@) for Ng., = 1000 to 10000. (Right) Different
realisations of the adenylate kinase trajectory for different noise histories.
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Figure 7: Distance of a putative intermediate to successive snapshots of the tra-
jectory. (Green) 5’-nucleotidase (5-NT), (Red) Ribose Binding Protein (RBP), (Blue) The
mean distance between successive CA atoms (in Angstroms).
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Figure 8: A comparison of computed trajectories for three test cases. Adenylate
Kinase, Ribose Binding Protein, and 5-Nucleotidase. The trajectories generated by CLD
(this work), MinActionPath [32] and RelaxPath [65] by generating the contour plot of the
between-structure cRMS values along the trajectories. The cRMS are computed using the

Ca atoms only.
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