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Abstract

Coarse-grained normal mode analyses of protein dynamics rely on the idea that the
geometry of a protein structure contains enough information for computing its fluctu-
ations around its equilibrium conformation. This geometry is captured in the form of
an elastic network (EN), namely a network of edges between its residues. The normal
modes of a protein are then identified with the normal modes of its EN. Different ap-
proaches have been proposed to construct ENs, focusing on the choice of the edges that
they are comprised of, and on their parameterizations by the force constants associated
with those edges. Here we propose new tools to guide choices on these two facets of
EN. We study first different geometric models for ENs. We compare cutoff-based ENs,
whose edges have lengths that are smaller than a cutoff distance, with Delaunay-based
ENs and find that the latter provide better representations of the geometry of protein
structures. We then derive an analytical method for the parameterization of the EN
such that its dynamics leads to atomic fluctuations that agree with experimental B-
factors. To limit overfitting, we attach a parameter referred to as flexibility constant
to each atom instead of to each edge in the EN. The parameterization is expressed
as a non-linear optimization problem whose parameters describe both rigid-body and
internal motions. We show that this parameterization leads to improved ENs, whose
dynamics mimic MD simulations better than ENs with uniform force constants, and
reduces the number of normal modes needed to reproduce functional conformational
changes.

Keywords: Elastic network models, coarse-grained normal modes, protein dynamics,
b-factors, rigidity

∗Department of Computer Sciences and Genome Center, University of California, Davis, CA 95616, USA
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The elastic network model of a protein is a network of springs (red) whose dynamics is ex-
pected to mimic the dynamics of the protein. This is achieved if the network is properly
parameterized. We develop a mathematical approach in which experimental atomic fluctu-
ations serve to generate this parameterization. Using the parameterized elastic network, we
identify the rigid (blue) and flexible (yellow) regions in a protein, as well as the essential
residues for its dynamics (orange).
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1 INTRODUCTION

The function of a biomolecule derives from the specific dynamics of its structure. The

need to observe and analyze such dynamics is therefore at the core of many studies in

structural molecular biology. Unfortunately, we currently lack the experimental and com-

putational tools for a comprehensive representation of the dynamics from the molecular to

supra-molecular levels. Indeed, only a few experimental techniques can collect time-resolved

structural data, and those that can are usually limited to a narrow time range. In paral-

lel, current computational methods such as atomistic molecular dynamics simulations are

restricted in scope, both for time-scale (usually micro-seconds) and length-scale (with sys-

tems of up to hundred thousand atoms), because of limitations in computing power. To

circumvent such problems, there is a need to develop simplified, albeit accurate models to

study the dynamics of a molecule on a computer, to inform those models based on available

experimental data, and to assess their relevance, correctness and usefulness. In this paper,

we address some of these issues in the context of coarse-grained normal mode analyses of

biomolecular dynamics based on elastic network models (ENM).

Experimental data on protein dynamics. Proteins are not static objects and oc-

cupy instead ensemble of conformations. Dynamics is the study of the kinetics of the tran-

sitions between these states. They may occur on a global scale, as observed in allostery or

catalysis, or at a local scale, the so-called local flexibility. Evidence of such local flexibility

is obtained either from NMR spectroscopy, by analyzing the spin relaxation of individual

atoms and assigning them an order parameter, or from X-ray crystallography, by assign-

ing and refining a B-factor, also called the Debye-Waller factor, to each atom to account

for their mobility in the crystal (see for example1). Both have proved useful for analyzing

protein dynamics (see for example Ref.2 for the use of B-factors, and Ref.3 for the use of

order parameters). As such, there have been many efforts to predict their values from the

knowledge of the static structure of a protein4–9, from the sequence of the protein10,11, or

from of the dynamics of the proteins, either derived from rigid motions12, from molecular

dynamics simulations13–15, or from normal mode analyses16–20. It is worth noting that both

the NMR order parameters and the crystallographic B-factors are not quantities that are
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directly observed from an experiment. The NMR order parameter S2 is derived from the

so-called model-free approach introduced by Lipari and Szabo21,22, in which the motion of an

atom is described as the combination of overall rotational reorientation characterized with a

correlation time τc and internal motions described with an amplitude, the order parameter.

In parallel, a B-factor is a parameter that is introduced to account for atomic displacements

during the data collection as well as conformational differences in the different unit cells of

the crystal after plunging (freezing) it in liquid nitrogen. As such, it is dependent on the

conditions in which those data were collected, if the crystals were frozen in liquid nitrogen

or not, as well as on the refinement process of these data to derive a structure. As such

B-factors of one crystal structure cannot be directly compared to those of another. Despite

those limitations, as mentioned above, both NMR order parameters and X-ray B-factors

remain important source of information on the dynamics of proteins. In this paper, we focus

on B-factors.

Computational approaches to studying protein dynamics. Probably the most

natural approach to studying protein dynamics on a computer is to assume that this dynam-

ics follows classical mechanics and accordingly to solve Newton’s equations at the atomic

level: this is the idea behind the now ubiquitous molecular dynamics simulations. However,

such simulations are computationally demanding, and despite progress in hardware, software,

and representations of the molecular system, there is an interest in developing alternate ap-

proaches that would be applicable even on commodity computers. A promising approach

is to infer dynamics from static structures corresponding to locally stable states23, together

with reliable coarse-graining approaches to bridge the time-scale gap24,25. Normal Modes,

for example, represent a class of movements around a local energy minimum that have been

found in many instances to be biologically relevant26–30. Normal modes based on traditional

force fields can, however, be relatively difficult to compute, as those forcefields include terms

such as the vdW interactions that are not well approximated with a quadratic term. The

Elastic Network Model (ENM), introduced by M. Tirion in 1996, offers a particularly simple

and efficient way to circumvent this problem by building a geometric, quadratic potential

with the experimental structure as its minimum, allowing fast access to the collective dy-

namics of even large protein complexes31. Tirion validated her model by showing that its
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low frequency modes match well with those computed from traditional normal modes on G-

actin. Her observation has been confirmed multiple times since then. Coarse grained normal

mode analyses (NMA) based on the ENM have proved useful to characterize the allosteric

change in conformation undergone by hemoglobin from its tense (T) form to its relaxed

(R) form32, to analyse conformational transitions in DNA-based poymerases33, to analyze

global ribosome motions34, and to study the dynamics of viral capsids35–38, among others.

Such coarse-grained analyses of biomolecular dynamics have developed as a viable alternative

to traditional molecular dynamics simulations23,39–42. It should be noted that NMA have

proved also useful in structure refinements based on experimental studies in which dynamics

is considered, such as X-ray crystallography43,44 and cryo-electron microscopy45–47.

The physical model behind EN models. Two categories of normal mode analyses

based on ENMs are widely used today, namely, the Gaussian Network Model (GNM)48,49 and

the anisotropic network model (ANM)17,31,50. Here we follow the latter model, in which the

energy of a molecule is equated with the harmonic energy associated with springs attached

to a set of pairs of atoms. This defines a quadratic energy on the inter-atomic distances,

V (X) =
1

2

∑
(i,j)

kij(rij − r0ij)2 (1)

when the biomolecule is in conformation X. In this equation, kij is the force constant of the

“spring” formed by the pair of atoms i and j, and rij and r0ij are the distances between i

and j in the conformation X, and in the reference conformation X0, usually taken to be the

crystal structure. This model is quite simple as it relies on a very small number of coarse-

grained parameters. As such, it allows for easy computations of coarse-grained normal modes

(this will be discussed in the next section). There are, however, two important decisions to

make when choosing those parameters that shape the model and consequently influence its

effectiveness. First, the geometry of the EN needs to be specified. The potential V involves

a sum over pairs of atoms (i, j). These pairs can be selected as those that satisfy a cutoff

criterium, or as the pairs that best describe the geometric structure of the molecule. Second,

values need to be assigned to the force constants kij associated with those pairs of atoms.

In this paper, we study both decisions. They are discussed in the two following paragraphs.

The geometry of EN models. Several criteria can be used to define the set of atom
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pairs that are used in Eq. (1). In standard EN, the criterium is usually a cutoff distance Rc

such that atoms separated by less than this cutoff are included in the EN. There are however

no guidelines as to which values for Rc are best and sometimes different implementations lead

to contradicting optimal values. Typical values for Rc within ANM models are in the range

13-15 Å when the ENM is based on Cα only51. To avoid selecting a cutoff, it has also been

proposed to include all pairs of residues and to assign length-dependent force constants to

their corresponding springs. For example, Hinsen52 and Kovacs et al53 used force constants

with exponential distance-dependence, while Yang et al.54 developed a parameter-free ENM

in which the force constants are inversely scaled by the squared distance of separation. Note

that in all those approaches, even those based on cutoff, a larger number of interactions are

considered. An alternate method is to build a geometric structure on the sets of positions of

the atoms; the Delaunay complex and its subsequent alpha shape filtrations are well suited

for this purpose55.

Parameterizing the force constants. The choice of the values for the force con-

stants is also important, as they define the amplitude of the predicted internal motions of

the molecule of interest. In her original EN model, Tirion set the force constants to be equal

for all pairs of atoms in the ENM and selected this value such that the density of ANM

modes matches with the density of normal modes computed on the same molecule with a

traditional force field31. Nowadays, the trend is to derive the scale of the force constants by

fitting the predicted thermal displacements of each atom to the experimental mean square

fluctuations, namely the B-factors in X-ray crystallography. Assuming different force con-

stants for each interactions in the ENM, and assuming that internal motions dominate the

dynamics detected with B-factors, perfect fits can be obtained55,56. There is a danger of over-

fitting57, however, as the number of force constants is significantly larger than the number of

experimental values used for the fit. In addition, the implicit assumption of the dominance

of internal motions has been questioned. It is known that B-factors are also influenced by

rigid-body motions taking place in the crystal12. In addition, molecules in crystal experience

a different environment than when isolated in solution, and inter-atomic contacts established

in the crystal have also been shown to affect the normal modes58,59, although most likely to

a lesser extent than rigid body motions60–62.
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Our contribution. Our goal in this paper is to derive a method that combines the

experimental information on the geometry of a protein structure (i.e. its crystallographic

structure) with the dynamics information encoded in the B-factors associated with that

structure to build a better elastic network model for that protein and therefore to derive a

better model of its dynamics. This approach deviates from standard coarse grained normal

mode models based on EN. Indeed, in our approach we build a specific model for each protein

structure of interest, while standard models are designed with generic parameters that can

be transferred from one protein to another. In addition, while those standard models are

often used to predict B-factors, our method takes those B-factors as input. While we lose

transferability, we will show that our dynamic-based EN leads to normal modes that better

match with molecular dynamics simulations than normal modes derived from generic EN

models.

Our approach accounts for both elements that define an EN, namely its geometry and

the parameterization of its edges, as discussed above. Instead of defining the ENM using a

cutoff for distance pairs, we construct the Delaunay complex over the positions of the Cα of

the protein of interest. This construction is completely parameter free. We then assign to

each Cα a flexibility constant ki, and compute the force constant of a pair (i, j) in the ENM

as the harmonic mean kij =
√
kikj of their flexibilities. The flexibility constants are obtained

from a fit to the B-factors that accounts for rigid and internal motions. The implementation

and validation of this approach is a result of the four following goals that are discussed in

detail in the paper:

• Establish mathematically the fitting procedure,

• Evaluate the normal modes computed from the fitted force constants by quantifying

their agreement with molecular dynamics simulations,

• Analyze the amino acid specificity of the flexibility constants, and

• Characterize the concept of flexibilities in the context of the rigidity theory of pro-

teins63,64.

The paper is organized as follows. In the next section we provide background on NMA
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and describes our fitting procedure for computing atomic flexibility based on experimental

B-factors. In the methods section we describe the datasets and methods of analyses used in

our numerical experiments that are described in the following section. We conclude with a

general discussion on how to best parameterize coarse-grained models to compute biologically

relevant normal modes.

2 METHODOLOGY

2.1 Coarse grained Normal mode analysis based on the Tirion elastic

network model

Let B be a protein containing N atoms, with atom i characterized by its position Xi =

(Xi1, Xi2, Xi3). The whole molecule is then described by a 3N position vector X. For two

atoms i and j of B, we set rij = |Xi−Xj| and r0ij = |X0
i −X0

j | to be the Euclidean distances

between them in a conformation X and in the ground-state conformation X0 (which will be

taken to be the X-ray structure), respectively. The elastic potential V of the biomolecule is

given by equation 1. In the normal mode framework, this potential is approximated with a

second-order Taylor expansion in the neighborhood of the ground state X0:

V (X) ≈ V (X0) +∇V (X0)T (X−X0) +
1

2
(X−X0)TH(X−X0) (2)

where ∇V and H are the gradient and Hessian of V , respectively. Note that based on

Equation 1, V (X0) = 0 and ∇V (X0) = 0. The approximate elastic potential is then simply

V (X) ≈ 1

2
(X−X0)TH(X−X0) (3)

For simplicity, we will assume in the following that each atom is assigned a mass of 1.

The procedure can easily be expanded to account for the exact masses of the different atom

types. In Cartesian coordinates, the equations of motion defined by the potential V are

derived from Newton’s equation:

d2X

dt2
= −H(X−X0) (4)
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Writing the solution to this equation as a linear sum of intrinsic motions (the “normal modes”

of the system), the trajectory of atom i can be written as

Xi(t) =
3N∑
k=1

Aikαkcos(ωkt+ δk) (5)

we get a standard eigenvalue problem,

HE = EΩ (6)

The eigenfrequencies ω are given by the elements of the diagonal matrix Ω, namely ω2
k =

Ω(k, k). The eigenvectors are the columns of the matrix E, and the amplitudes and phases,

αk and δk, are determined by initial conditions. Because of the invariance of the potential

V to rotations and translations, the first six eigenvalues of the matrix H are equal to 0.

2.2 Generating the elastic network

The main idea behind the concept of ENM is to define a network of harmonic springs that

capture the geometry and dynamics of the molecule of interest. In the original ENM defined

by Tirion31, the network is defined as a set of links, with a link between two residues only

if the distance between their Cα atoms is smaller than a given cutoff value Rc. There

are however no guidelines as to which value for Rc is best. Recently one of us proposed

an alternate approach for filtering the set of all possible pairs using the concepts of alpha

shapes and Delaunay triangulation65. More specifically, it was found that the set of edges

included in the Delaunay triangulation of the atoms of a molecule forms an elastic network

model that leads to good fit between the dynamics described by its normal modes and the

experimental B-factors55. We briefly describe the procedure for generating the Delaunay

triangulation; more details can be found in65–67.

Delaunay construction Let us define a set P of N points such that Pi is positioned at

the location of the Cα atom of residue i in the protein B. We define the square distance

πi(x) between a point x and a point Pi to be simply the square of the Euclidean distance,

πi(x) = ||x− Pi||2. The Voronoi region Vi of the point Pi consists of all points x that are at

least as close to Pi as to any other point in P , i.e. Vi = {x ∈ R3|πi(x) ≤ πj(x)∀j 6= i}. Vi is a
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A) B) C) D)A) B) C) D)

Figure 1: Illustration of a uniform force constant ENM of the adenylate kinase (PDB code

4AKE). A) Cartoon representation of the protein, with the Cα atoms shown as spheres.

Elastic networks (gray bonds) based on a Delaunay construct (B), or a cutoff of 14 Å(C),

and 20 Å(20). Those networks contain 1478, 3868, and 7863 edges, respectively.

convex polyhedron obtained as the common intersection of finitely many closed half-spaces,

one per point Pj 6= Pi. The union of all Voronoi regions defines the Voronoi diagram of the

set of points; this union covers the whole space. The Delaunay triangulation DT is the dual

of the Voronoi diagram. It contains all points in P . In addition, we draw an edge between

two points Piand Pj if the two corresponding Voronoi regions share a common face, called

a Voronoi plane. Such an edge is included in the Delaunay triangulation. Furthermore, we

draw a triangle connecting Pi, Pj, and Pk if their respective Vi, Vj, and Vk intersect in a

common line segment, called a Voronoi edge; similarly we draw a tetrahedron between four

points if their Voronoi regions meet at a common point, called a Voronoi point. Assuming

general position of the points, there are no other cases to be considered: this is a central

property of the Delaunay triangulation. Note that for the ENM, we only consider the edges

of the Delaunay triangulation.

In the following, we will represent an ENM as N = (V , E), where V and E are the sets of

vertices and edges in the network, respectively. Examples of such networks generated either

with a cutoff, or with the Delaunay construct, are shown in Figure 1.
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2.3 Parameterizing the elastic network

Each edge vij ∈ V is assigned a force constant kij. The number of such force constants,

i.e. |V| can be large, and usually significantly larger than the number of vertices |V| in the

network. As our intent is to parameterize those force constants using experimental values on

the vertices, we believe that allowing the former to be independent variables would lead to

severe risks of overfitting. Instead, we assign to each atom (vertex) i a flexibility constant,

ki, and define the force constant of an edge vij as

kij =
√
kikj (7)

i.e. the geometry mean of the individual flexibility constants. An advantage of using the

geometric mean is that by construction, the force constants kij are positive.

2.4 The Hessian and its derivatives

We introduced recently a simplified representation of the Hessian of the quadratic potential

defined in equation 138,68. We present it here briefly, as it is relevant to our procedure for

fitting B-factors.

Let us rewrite the quadratic potential for the elastic network as:

V (X) =
1

2

∑
(i,j)

Vij(X) (8)

where the summation extends to all pairs of atoms (i, j) that satisfy the cutoff criterium (see

above). We compute the derivatives and Hessian of this potential in vector form.

We first introduce some notations. We write the inner and outer products of two vectors

u and v as (u,v) and u ⊗ v, respectively. We define the vector Uij such that Uij =

(0, . . . , 0,
Xi−Xj

rij
, 0, . . . , 0,

Xj−Xi

rij
, 0, . . . , 0), namely Uij is zero everywhere, except at positions

i and j where it is equal to the normalized difference vector between the positions of i and

j.

Let us first analyze the pairwise potential Vij(X). Its gradient in R3N at a position X is

given by:

∇Vij(X) = kij(rij − r0ij)Uij (9)

11



and its Hessian at the same position X is given by:

Hij(X) = kij(rij − r0ij)
δUij

δX
+ kijUij ⊗Uij (10)

Note that both terms in the expression of the Hessian are matrices of size 3N × 3N . For

normal mode analyzes, the gradient and Hessian are evaluated at X0:

∇Vij(X0) = 0 (11)

and

Hij(X
0) = kijUij ⊗Uij (12)

The total Hessian of the elastic potential is then given by:

H = H(X0) =
∑
(i,j)

kijUij ⊗Uij (13)

In this equation, the vectors U only depend on the ground state conformation of the

molecule, and not on the force constants k. The derivatives of the Hessian with respect to

any of those kij are then trivially given by

dH

dkij
= Uij ⊗Uij (14)

Using the chain rule, the derivatives of the Hessian with respect to the flexibility constants

ki are then,

dH

dki
=

∑
j|(ij)∈V

kj
2kij

Uij ⊗Uij (15)

where the summation extends over all edges that include i. Note that we have assumed that

kij is non-zero, i.e. that an edge is included in the ENM if and only if it actually contributes

to the dynamics.

Expressing the Hessian as a (weighted) sum of tensor products (Equation 13) has the

additional advantages of reducing the amount of memory required to store the Hessian, and

to provide for simpler computations of Hessian-vector multiplications68.
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2.5 Calibration of the force constants using the experimental B-factors

2.5.1 Experimental fluctuations

In X-ray crystallography, the B-factor, or Debye-Waller factor, describes the attenuation of

x-ray scattering caused by thermal motion. The isotropic B-factor of an atom i is related to

its positional fluctuation < |∆Xi|2 > by

Bexp
i =

8π2

3
< |∆Xi|2 > (16)

where the brackets indicate time averages.

Complete fit

Equation 16 gives us a way to relate the experimental B-factor to fluctuations observed

in dynamics simulation. We assume first that the atomic thermal displacements are the

combination of internal and rigid body motions69,

∆Xi = ∆Xrigid
i + ∆X int

i

= t + ω ×X0
i + ∆X int

i (17)

where × indicate cross product, t is a translation vector and ω represents a rotation. We

assume also that rigid-body motions and internal motions are independent of each other,

< |∆Xi|2 >=< |∆Xi|2 >rigid + < |∆Xi|2 >int (18)

or, expressed as B-factors,

Bcalc
i = Brigid

i +Bint
i (19)

As the same rotation and translation apply to all atoms, all the Brigid
i depend on 10 pa-

rameters (see below), while the Bint
i depend on the flexibility constants associated with each

atom. Calibrating the ENM therefore amounts to finding the values of those 10 parameters

and of the flexibility constants that minimize

χ2 =
N∑
i=1

(Bexp
i −Bcalc

i )2 (20)
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in the following, we look in more details at the contributions of rigid body and internal

motions, i.e. their explicit contributions to χ2, as well as the gradients of the latter with

respect to the corresponding parameters.

2.5.2 Rigid body motions

The contribution of rigid body motion is relatively straightforward69,70,

Brigid
i =

8π2

3
< |∆Xi|2 >rigid

=
8π2

3
(< |t|2 > +2(X0

i , < t× ω >)+ < (ω ×X0
i ,ω ×X0

i ) >) (21)

There are 10 parameters in this equation associated with t and ω, which we can write as

A = (a0, a1, . . . , a9),

Brigid
i = a0 + a1X

0
i1 + a2X

0
i2 + a3X

0
i3 + a4X

0
i1X

0
i1 + a5X

0
i1X

0
i2 + a6X

0
i1X

0
i3 +

a7X
0
i2X

0
i2 + a8X

0
i2X

0
i3 + a9X

0
i3X

0
i3

(22)

The derivatives of Brigid
i and therefore of Bcalc

i and χ2 with respect to the 10 parameters

associated with rigid motions are straightforward from this equation.

2.5.3 Internal motions

The calculation of the mean-squared displacements in Eq. 16 necessitates to compute the

inverse of the Hessian of that potential. In the case of the potential specified in Equation

1, the Hessian is singular; indeed, the quadratic potential V only depends on interatomic

distances and is therefore invariant with respect to translations and rotations. The null space

of the Hessian H is then of dimension at least 6, making H non invertible. The covariance

matrix can still be calculated as the Moore-Penrose pseudo-inverse of H, which we note as

H†. The computed B-factor associated with the internal motions predicted by ANM, Bint
i ,

is then

Bint
i =

8π2

3
tr(H†ii) (23)
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where H†ii is the 3 × 3 submatrix of H† at position H†(3i − 2 : 3i, 3i − 3 : 3i) in MATLAB

notation.

We need expressions for the derivatives of Bint
i with respect to the flexibility constants

kj. We note first that

dBint
i

dki
=

∑
j|(ij)∈V

kj
2kij

dBint
i

dkij
(24)

Second, from equation 23 we see that all the Bint
i are defined from the diagonal of the matrix

H†, and as the derivatives of the diagonal of a matrix is the diagonal of the derivatives of

that matrix, the derivatives of Bint
i will be fully characterized from the derivatives of H†

with respect to the force constants kij. In equation 14, we expressed the derivatives of H

with respect to kij. The following proposition shows that the derivatives of H and of H† are

directly related,

Proposition 1. If all the force constants kij are strictly positive,

dH†

dkij
= −H† dH

dkij
H† (25)

Proof. See appendix A.

Replacing equation 14 into equation 25, we get

dH†

dkij
= −(H†Uij)⊗ (H†Uij) (26)

Let Nc be the multiplicity of the zero eigenvalue of H. Then,

H†Uij =
3N∑

k=Nc+1

(ek, Uij)

λk
ek (27)

where e and λ are the eigenvectors and eigenvalues of H, respectively.

2.5.4 Optimization

The two previous subsections provide the full framework for computing the contributions

of rigid motions and internal motions to the atomic position fluctuations, as well as the
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derivatives of those fluctuations with respect to the parameters of the contributions, namely

the 10 parameters ak for the rigid motions and the N parameters ki for the internal motions.

It is then possible to optimize those parameters so that the computed fluctuations match with

the experimental B-factors by minimizing the χ2 given in equation 20. As the derivatives

are known explicitly, we can use the BroydenFletcherGoldfarbShanno (BFGS) algorithm, a

quasi-Newton method to perform this optimization. We use the L-BFGS-B variant of this

algorithm71, as it requires limited amount of memory and enables simple bound constraints

on the variables that are optimized. This is important as we can then enforce positivity for

the flexibility constraints and for a0 that is expected to be positive.

3 METHODS

3.1 Data sets

To test the parameterization procedure described above, we used the dataset of proteins

originally used by Xia et al55 for a similar studies of fitting B-factors using NMA. This dataset

contains 70 non-redundant proteins (see supplement S4 of Xia et al,55) whose structure has

been solved by X-ray crystallography, with resolution better than 2.7 Å. These proteins vary

in size from 40 amino acids to 298 amino acids.

Nine proteins were considered for comparing atomic position fluctuations observed in MD

simulations and in the parameterized normal modes, three α proteins, 1AH7, 1LRV, 153L,

three β proteins, 1AQB, 1AG6, 1JPC, and three α + β proteins, 1A2P, 1AHQ, and 1PLR.

These proteins vary in size from 100 to 259 residues. The MD trajectories were downloaded

from the Molecular Dynamics Extended Library MODEL resource72, available at http://

mmb.pcb.ub.es/MoDEL/. All the MD simulations were performed using AMBER8.073, with

param99 molecular force field and tip3P water model74. These simulations were performed

on the monomeric protein, over 10 ns. More details on the simulations can be found at the

MODEL web page.
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3.2 Metrics for comparing experimental and computed B-factors

We use both correlation coefficients (CC) and root-mean square deviations (RMSD) as met-

rics for comparing B-factors. The CC are computed as Pearson’s correlation coefficients,

CC =

∑N
i=1

(
Bexp
i − B̂exp

)(
Bcalc
i − B̂calc

)
√∑N

i=1

(
Bexp
i − B̂exp

)2∑N
i=1

(
Bcalc
i − B̂calc

)2 (28)

where Bexp
i and Bcalc

i are the experimental and computed B-factors for atom i, respectively,

and B̂exp and B̂calc are the corresponding averages over the N atoms considered.

The RMSD is defined as

RMSD =

√∑N
i=1(B

exp
i −Bcalc

i )2

N
(29)

Note that the optimization procedure described in the section 2 is set to minimize this RMSD

between experimental and computed B-factors.

3.3 Atomic fluctuations from MD simulations

The covariance matrix CMD of atomic fluctuations during an MD simulation is derived from

the snapshots along the trajectory as a sample statistic,

CMD =
1

M − 1

M∑
m=1

(Xm − X̂)⊗ (Xm − X̂) (30)

where X is the vector of dimension 3N specifying the coordinates of the atoms of the

molecule, Xm is the value of that vector at the conformation m in the trajectory which

has been rotated and translated to minimize its cRMS to the experimental structure, M is

the total number of conformations in the trajectory, and X̂ is the mean conformation over

the trajectory

X̂ =
1

M

M∑
m=1

Xm (31)

3.4 Comparing MD simulations and NMA

Both NMA and MD capture the dynamics of a molecule. This dynamic can be represented

with atomic fluctuations and the covariance of those atomic fluctuations, computed as a
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covariance matrix. To assess how well ENM and MD match, we assume that the trajectories

they generate follow multivariate normal distributions. This assumption is justified for ENM,

and only approximate for MD simulations. Referring to those distributions as DENM =

N (µENM , CENM) and DMD = N (µMD, CMD) for ENM and MD, respectively, where µ is the

mean conformation and C the covariance matrix, we use the Bhattacharyya distance75 to

evaluate their similarities,

DB(DENM , DMD) =
1

8
(µENM − µMD)TC−1(µENM − µMD) +

1

2
ln

detC√
detCENM detCMD

(32)

where C = CENM+CMD

2
. Note that in this expression of the Bhattacharrya distance, the first

term is related to the Mahalanobis distance, while the second term is related to the Jensen-

Bregman LogDet divergence76. Computation of the latter term requires caution, as the

covariance matrices are not full rank (due to their invariance with respect to rigid motions)

and therefore their determinants are zero. We apply the rank normalization introduced by

Fuglebakk et al57,77 to correct for this rank deficiency.

For convenience we will report the similarity as the Bhattacharyya coefficient, BC,

BC((DENM , DMD) = e−DB(DENM ,DMD). (33)

This coefficient is between 0 and 1, with 0 indicating poor similarity, and 1 indicating perfect

match, reached when the two distributions are identical.

3.5 Overlaps between normal modes and structure displacements

Let us consider a molecular system S with N atoms for which we have two conformations,

A and B. The conformational change between those two conformations is captured by a

displacement vector, D, such that D = B−A.

Let us now consider a set of k normal modes for S in conformation A. These normal

modes have been computed based on the eigenvalues λ and eigenvectors e of the Hessian of

an elastic network for A. Under the normal mode model, the dynamics of A can be described

as a linear superposition of the fundamental motions described by those eigenvectors. The

corresponding dynamic that will bring A closer to B is obtained by assigning the weights
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W of the modes in this superposition through projections of the displacement vector onto

the eigenvectors:

W = EtD (34)

where E is the matrix of eigenvectors. The contribution of mode i to this optimal collective

change of conformation can then be measured as the absolute value of the cosine of the angle

between the displacement, and the direction of the mode, given by its eigenvector ei:

Oi =
| 〈ei,D〉 |
||ei||||D||

(35)

Oi takes values between 0 and 1, with small values indicating that the mode i contribute

little to the conformational change, while large values indicate a significant contribution.

We note that
3N∑
i=1

O2
i = 1, as the ei are normalized to 1 and are orthogonal to each other.

Then, SOk =
k∑
i=1

O2
i is a measure of the contribution of the first k normal modes to the total

overlaps between the normal modes of A and the displacement between A and B. Note that

when k = 3N , SOk = 1.

3.6 Packing density

Following Halle4, the local packing density ni of an atom i in a protein can be computed

from the X-ray structure by first defining a radial distribution function gi(r) as (see equation

6 in Ref.4):

gi(r) =
1

4πr

∑
j

e
−

(r−r0ij)
2

2σj − e−
(r+r0ij)

2

2σj√
2πσjr0ij

(36)

where σj is the mean-square displacement of atom j, r0ij is the distance between atom j and

atom i in the X-ray structure, and the sum extends over all non-hydrogen atoms j that are

within a distance Rc of i. The contact density ni is then given by:

ni =

∫ Rc

0

4πr2gi(r)dr

=
∑
j

( √
σj√

2πr0ij

(
e
−

(Rc+r
0
ij)

2

2σj − e−
(Rc−r0ij)

2

2σj

)
+

1

2
erf

(Rc + r0ij)√
2σj

+
1

2
erf

(Rc − r0ij)√
2σj

)
(37)
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4 RESULTS AND DISCUSSION

Coarse-grained normal mode analysis popularized by M. Tirion31 are based on a simple

elastic potential that is quadratic, with the crystal structure at its minimum, and defined

over a geometric structure computed over the molecule of interest, the elastic network model

(ENM). Here we focus on the construction of this ENM and its parameterization using

experimental B-factors, as well as on the validity of such parameterization. In all computer

experiments, NMA were performed based on a coarse-grained representation of the proteins

that only consider the Cα atom of each of its residues. We note that other coarse grained

models are available25; the CA-only model is the most common model used for coarse-grained

normal mode analyses. All NMA computations are performed using our own program,

FitNMA, written in C++. The source code for FitNMA is available at https://www.cs.

ucdavis.edu/~koehl/Projects/index.html.

4.1 Building and parameterizing Elastic Network Models

We tested three different types of geometric ENMs, one based on the Delaunay triangulation

of the positions of the Cα atoms in the protein of interest, and the two other based on a

distance cutoff Rc. In the first ENM, referred to as DEL, a pair of Cα atoms is included

if it forms an edge of the Delaunay triangulation, while in the two others, the same pair

is included if the distance between their positions is smaller than Rc. We considered two

values for Rc, i.e. 14 Å, which is within the range of values (13-15) usually considered for

Cα-based ENMs51, and a larger cutoff of 20 Å. The corresponding ENM are referred to

as EL14 and EL20, respectively. Each ENM was then parameterized with respect to the

experimental isotropic B-factors of the Cα from the crystal structure, using the procedure

described in section 2. Briefly, Cα i of the protein is assigned a flexibility constant ki. The

link between two Cα i and j in the ENM is then assigned a force constant kij that is the

geometric mean of the flexibility constants of i and j. Normal modes are computed based

on the corresponding ENM, and the corresponding atomic fluctuations are compared to the

experimental B-factors, taking into account possible rigid motions. The flexibility constants

and the parameters associated to the rigid motions are then adjusted until the experimental
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and computed atomic fluctuations match, in the least square sense.
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Figure 2: Boxplots of the correlation coefficients (left) and of the RMSD (right) between the

computed B-factors and the experimental B-factors over the set of 69 proteins in our dataset,

for the three types of ENM, based on Delaunay triangulation, based on a cutoff Rc = 14 Å,

and based on a larger cutoff Rc = 20 Å. While the fits are relatively consistent for all three

types of ENM, note the presence of a few outliers for the ENMs based on cutoffs. The two

main outliers, 1LTU and 1AF7 are identified (see text for details).

We performed the analysis on a set of 70 high resolution protein structures (see Methods).

The proteins included in this set are diverse, with sizes varying from 40 amino acids to 298

amino acids. In Figure 2, we compare the distributions of correlation coefficients CC and

RMSD between experimental and compute B-factors at convergence of the fitting procedure,

for all three types of ENMs. Overall, the fits are nearly perfect for all three types of ENM,

with the average values for CC over the set of proteins are 0.999, 0.98, and 0.993 for DEL,

EL14, and EL20, respectively, and the corresponding average RMSD values are 0.27 Å2, 0.70

Å2, and 0.30 Å2, respectively. There are however a few outliers for the two ENMs based

on cutoffs, for which the fitting procedure fails. We focus here on the two most significant

ones for the computation based on a cutoff of 14 Å namely the apo structure (i.e. no

iron) of a phenylalanine hydrolase of chromobacterium violaceum (PDB code 1LTU), and

a methyltransferase from salmonella typhimurium (PDB code 1AF7) (see Figure 2). The

structures of those two proteins and the corresponding ENMs are illustrated in Figure 3.

It is known that ENMs based on cutoff values are capable of reproducing experimental B-
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Delaunay Cutoff: Rc=20 Å

B) 1AF7

A) 1LTU

Figure 3: The optimized ENMs of a phenylalanine hydrolase (PDB code 1LTU), top, and

of a methlytransferase (PDB code 1AF7). These proteins illustrate differences between the

Delaunay-based ENM, and the cutoff-based ENMs, as for both of them the parameterization

of the ENMs based on experimental B-factors failed for the cutoff-based ENMs. From

left to right: Cartoon representation of the protein, elastic network (gray bonds) based on

a Delaunay construct, and elastic network (gray bonds) based on a cutoff of 20 Å. The

Delaunay networks contain 2030 and 1934 edges for 1LTU and 1AF7, respectively, while

the corresponding cutoff-based networks with Rc = 20 Å contain 13809 and 12141 edges,

respectively.
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Figure 4: Size (i.e. number of edges) for the three types of ENM considered, i.e. based on

Delaunay triangulation, DEL, based on a cutoff Rc = 14 Å, EL14, and based on a larger

cutoff Rc = 20 Å, EL20, for all 70 proteins in our dataset. Dashed lines represent linear fit

to the data for DEL and EL14, and a quadratic fit to the data for EL20. The corresponding

R2 are 0.99, 0.98, and 0.98, respectively.

factors well for globular proteins51. Indeed, such ENMs capture well their packing densities

which play a dominant role in their dynamics. In contrast, it has been observed that such

cutoff-based ENMs often fail for protein with an irregular shape55. We observe the same

behavior here with the two proteins 1LTU and 1AF7 (1LTU was already identified as an

outlier55). Both include a long flexible segment at their N-terminal region. Using a cutoff

distance of 14 Å or even 20 Å, the cutoff-based ENMs only follow locally those long segments,

while the Delaunay-based ENM provides a better connection of those segments with the rest

of the proteins, thereby allowing for a better representation of their dynamics, as observed

when fitting the B-factors. The same observations apply to the other outliers (results not

shown).

There is another advantage in using a Delaunay-based ENM rather than a cutoff based

ENM, as illustrated in Figure 4. The DEL ENM contains a significantly smaller number of

edges than the EL14 and EL20 ENMs (on average a factor of 3 and 6.2 less, respectively),

while still capturing the geometry of the molecule, as vouched by its ability to reproduce
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experimental B-factors (see above). We believe that this is due to the fact that cutoff-based

ENMs contain a lot of redundant information, while by construction Delaunay edges are

more independent. This was already observed for distance-based statistical potentials for

proteins78.
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Figure 5: Parameterization of the EN is the result of a non-linear optimization process. We

show the mean computing time per iteration in this optimization (panel A) and the total

computing time (panel B) for the three types of ENM considered, i.e. based on Delaunay

triangulation, DEL, based on a cutoff Rc = 14 Å, EL14, and based on a larger cutoff Rc = 20

Å, EL20, for all proteins in our dataset. All computations were performed on an Intel Core

i7 processor with 8 cores running at 4.00GHz, and 64GB of memory.

The results presented above hint at using the Delaunay-based ENM to capture correctly

the geometry of a protein structure. To parameterize this Delaunay-based ENM, we have

used the procedure described in section 2. In this procedure, the computed B-factors, as

well as their derivatives with respect to the atomic flexibility constants are all based on the

Moore-Penrose pseudo inverse H† of the Hessian H of the quadratic potential, see equations

23 and 27. This pseudo inverse is computed over all non-zero eigenvalues of H and their

corresponding eigenvectors. Including all those eigenvalues comes at a computational cost

as illustrated in figure 5.

Our model includes the contributions of rigid motions and internal motions when com-
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puting atomic position fluctuations. It is based on 10 parameters for the rigid motions

and N parameters, the atomic flexibilities ki, for the internal motions. Those parameters

are optimized such that the computed fluctuations match with the experimental B-factors.

This is a non-linear optimization, which we solve using an iterative BFGS procedure (see

Methodology above). Each iteration involves computing the Moore-Penrose pseudo inverse

of the Hessian matrix H, which is obtained from the eigen-decomposition of H, as well as its

derivatives with respect to the atomic flexibilities ki. We used the LAPACK routine dsyev to

perform the eigen-decomposition. Dsyev assumes that the matrix H is dense; as such, this

computation depends on the number of atoms, and not the size of the EN. The situation is

different for the derivatives. From proposition 1 and equations 24, computing those deriva-

tives scales linearly with the number of edges in the EN. In figure 5A, we do observe the

impact of the size of the EN on the computing per iteration of the non linear optimization,

as Delaunay-based EN that contain significantly less edges lead to much shorter computing

time. The same effect is observed for the overall computing time (figure 5B), but with some

outliers. Indeed, some parameterizations of large cutoff based EN can be less demanding in

computing time, as those parameterizations require less iterations. On average, each opti-

mization requires 2000 iterations (with convergence defined with the norm of the derivative

vectors is below 10−4).

The overall computing cost of parameterizing the EN of a protein is large: it takes on

average 300 s on an Intel Core i7 processor with 8 cores running at 4.00GHz for the Delaunay-

based EN, and 2500s for the cutoff-based EN. A significant fraction of the cost comes from

the full diagonalization of the Hessian matrix at each iteration of the optimization of the

parameters. We tested if it is possible to only include a fraction of the eigenpairs of the

Hessian matrix, those corresponding to the smallest eigenvalues that are related to the largest

collective internal motions31. Results are shown in figure 6, for the Delaunay-based ENM.

Similar results are observed for the cutoff-based ENMs (results not shown). We note however

that using only a fraction of the eigenpairs of the Hessian H when computing its Moore-

Penrose pseudo-inverse H† and its derivatives is a major approximation that significantly

reduce the performance of the parameterization of the ENM. While the performance increases

(i.e. increased CC and reduced RMSD) as the number of modes increases, it remains that
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good parameterization is only observed when all modes are included.
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Figure 6: Boxplots of the correlation coefficients (left) and of the RMSD (right) between

the computed B-factors and the experimental B-factors over the set of 70 proteins in our

dataset, for the Delaunay-based ENM, with different numbers of eigenpairs of the Hessian

H included in the computation of the Moore-Penrose pseudo-inverse H† and its derivatives.

4.2 Appraising the parameterized ENMs

Validation of normal mode analysis based on coarse grained ENMs is usually performed by

comparing the atomic fluctuations induced by those normal modes with the crystallographic

B-factors. Such a comparison is futile in our setting, as the ENMs have been parameterize

such that they reproduce those experimental B-factors (nearly) exactly. We rely instead

on comparison with MD simulations, as well as by measuring how well the parameterized

normal modes can capture conformational changes.

Coarse-grained NMA and MD simulations are two techniques that simulate the dynamics

of a molecule computationally. While the former is based on a simplified geometric model

of the protein (the ENM) and a simplified quadratic potential, the latter are based on

usually detailed, anharmonic potentials that have been parametrized semi-empirically (note

that coarse-grained MD simulations have been developed, see for example M. Levitt79).

As MD simulations are usually more detailed and often considered to reproduce correctly

experimental results, many have resulted in benchmarking different ENM models for NMA
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Table 1: Bhattacharyya Coefficients Comparing MD Covariances with Covariances Predicted

from NMA with Different ENMs

Class PDB ID Nres DEL-1 a DEL-opt a EL20-1 a EL20-opt a

α 1AH7 245 0.87 0.88 0.75 0.77

α 1LRV 233 0.61 0.74 0.46 0.74

α 153L 185 0.89 0.90 0.67 0.88

β 1AQB 175 0.85 0.87 0.73 0.81

β 1AG6 100 0.80 0.90 0.77 0.82

β 1JPC 109 0.84 0.85 0.64 0.83

α + β 1A2P 109 0.87 0.90 0.77 0.91

α + β 1AHQ 134 0.90 0.91 0.66 0.90

α + β 1PLR 259 0.84 0.87 0.56 0.86

a) 1 indicates that all the edges of the ENM were assigned the same force constant, 1, while “opt”

indicates instead that the ENM was parameterized using the experimental B-factors

b) The highest coefficients are highlighted in bold. Note that the largest the coefficient, the more

similar the covariance matrices from MD and from NMA are.

against MD (see Ref.57,80–83, among others). We repeat their analyses here to benchmark

our parameterized ENMs.

We used a dataset of 9 proteins, three from each structural class (mainly α, mainly β, and

α + β). For all those structures, we use MD simulations previously published and available

at the Molecular Dynamics Extended Library MODEL resource72. All those simulations

were performed using AMBER, with the param99 forcefield and the tip3p water model.

Most of those simulations were performed over 10ns, with the exception of Lyzozyme (PDB

code 153L), with a total simulation time of 100 ns, and barnase (PDB code 1A2P), with a

simulation time of 13.5 ns. For all simulations, we superimposed all frames in their trajectory

to the PDB structure to remove rigid motions. We then computed a mean structure, and

the covariance of the atomic fluctuations, as described in the Method section. For the

NMA analyses, we generated the Delaunay-based ENM and the cutoff-based ENM (with

Rc = 20 Å) starting from the mean MD structure, and parameterized those ENMs using the
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experimental B factors from the PDB structure. The covariance matrices are then simply the

Moore-Penrose pseudo inverses of the Hessian matrices of the parameterized energy of the

ENM. As both NMA and MD simulations capture dynamics as variations around the mean

MD structure, the Bhattacharyya distance between their distributions of conformations is

reduced to the Jensen Bregman LogDet divergence that directly measures the similarities

between the covariance matrices of the distributions (see Method). The similarities are

reported as Bhattacharyya coefficients BC that vary between 0 and 1, with 0 indicating no

similarity, and 1 perfect similarity. Results for the 9 proteins are shown in table 1.

In their evaluations of ENMs using a comparison with MD simulations, Fuglebakk et al.57

stated that ”It is however not clear that agreement between atomic fluctuations of models

imply agreement between their covariance structures”, to finally reach the conclusion that

”the ENM models that agree best with B-factors model collective motions less reliably and

recommend against using B-factors as a benchmark”. Here we show in contrast to these

findings that parameterization of the ENM using the experimental B-factors improve the

similarity of the covariance matrices computed from MD and computed from the ENM. As

seen in table 1, the improvement is often small but systematic, and can be large, such as

the plastocyanin from spinach (PDB code 1AG6), a compact small β protein. Interestingly,

the improvement is always more significant for the cutoff-based ENM. The covariance of the

parameterized Delaunay-based ENM remains, however, more similar to the covariance of the

MD simulations than the covariance of the cutoff-based ENMs, with one exception, barnase

(PDB code 1A2P).

4.3 Capturing conformational changes with normal modes

One of the main applications of coarse-grained NMA based on ENM is to study functional

conformational changes. By studying proteins for which multiple structures have been re-

solved in different conformations (such as open and closed states, apo and holo forms with

respect to a ligand), it has been shown that the low frequency normal modes of the ENMs

correlate well with the functional conformational changes32,50,84–86 It is this somewhat sur-

prising observation (as ENM computations are only valid for very small deviations around

the equilibrium) that has popularized coarse-grained NMAs based on ENMs. Here we assess
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Figure 7: The N80s, i.e. the number of modes needed such that the overlap between nor-

mal modes and conformational changes reaches 80% are compared for normal modes based

on constant force Delaunay-based ENM (DEL-1) and based on a Delaunay-based ENM pa-

rameterized with experimental B-factors (DEL-opt). The dotted line represents the first

diagonal. Points below the diagonal indicate that less normal modes computed from the

DEL-opt ENM are needed to represent conformational changes.

if parameterizing the ENM using the experimental B-factors help when attempting to cap-

ture conformational changes in proteins using a small number of normal modes. We used a

data set of 31 pairs of protein structures originally designed by Bastolla and Dehouck86. The

list of protein pairs can be found in table S1 of the supporting information of their paper86.

Each pair corresponds to two distinct structures of the same protein chain, representing a

conformational change that is relevant for its function. The coordinate root-mean-square

deviation (cRMS) between structural pairs ranges from 0.35 to 34.4 Å. One structure in

each pair is considered as the initial conformation. For each protein, we build its Delaunay-

based ENM and consider two versions of this ENM, one in which all edges are assigned a

force constant of 1, DEL-1, and one in which the force constants are parameterized using the

experimental B-factors using the procedure described above, DEL-opt. We then assess how

the modes associated with these ENMs can be used to map the conformational changes of

the structures. We use the overlap between the modes and the conformational displacement

to assess this mapping. The overlap is cumulative with respect to the number of modes that
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are considered (see Method). We then estimate the number of modes N80 that is needed to

reach 80% overlap between the normal modes and the conformational changes. The numbers

N80 obtained for DEL-1 and DEL-opt are compared in Figure 7.

In most cases, the number of normal modes needed to represent the conformational

changes for the proteins considered is less for the parameterized ENM than for the constant

ENM. This result, while supporting the rationale for parameterizing ENMs using experi-

mental information on dynamics, should still be considered with caution at this stage, as it

is provided for illustration here. This analysis should be repeated on a much larger number

of proteins.

4.4 Amino acid flexibility constants

The procedure described in this paper performs a parameterization of the force constants

associated with the edges of the ENM describing the protein. Instead of refining directly

those force constants, we express them as the geometric average of the flexibility constants

of the residues that form those edges. From a computational perspective, this has the

advantage of reducing significantly the number of degrees of freedom in the optimization

process fromO(N2) toO(N), which is of significance as the experimental information used for

the parameterization is of order O(N). Introducing more degrees of freedom than constraints

would significantly increase the risk of overfitting. The question now is to see if there is some

meaning to the actual parameters that are refined, namely the constants ki for residues i,

which we have dubbed as ‘flexibility constants”. To better understand those parameters, we

have analyzed their values for all residues in our dataset of proteins, with the exception of

1AMM, and compared them with similar analyses of the corresponding B-factors, which are

much better understood. Note that we have removed the protein with PDB code 1AMM, i.e

the bovine eye lens protein gamma B Crystallin, as its structure was determined at 150K;

as such, its B-factors are significantly lower and cannot be compared directly with those of

proteins whose structures were studied at a higher temperature. We have used the values

derived from the parameterization of the Delaunay-based ENMs of those proteins. We also

computed the accessible surface areas (ASA) of all residues in those proteins, using the

procedure introduced by Le Grand and Merz87. We report the results of those analyses per
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amino acid type. We use the median as a statistics, as the underlying distributions are not

symmetric (see for example Vihinen et al88 for illustrations of the distributions of B-factors).

Note that we did not normalize the values of B-factors, flexibility constants, and ASA, as

originally suggested by Karplus and Schulz89; while we agree that there might be biases in

those values, we are more interested in qualitative average behaviors. Results of our analyses

are presented in figure 8.
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Figure 8: The median Bfactors (subplot A), and the median flexibility constants (subplot

B) for all amino acid types are plotted against their median accessible surface areas. The

distributions of B-factors, flexibility constants, and ASA are computed over all 69 proteins

of our dataset. As those distributions are not symmetric, we consider the median instead of

the mean.

B-factors as reported in protein crystal structures reflect the fluctuation of an atom

about its average position. A large B-factor is usually indicative of high mobility of the

corresponding residue, usually within its side chain. B-factors have been analyzed to define

a flexibility scale for amino acids88–90, which in turn can be used to predict protein flexibility,

as well as disordered regions in proteins91. Intuitively it is expected that residues with high

mobility are more accessible to the solvent9. This is indeed observed in our dataset of

proteins, as illustrated in Figure 8A. The hydrophobic residues, whose median accessibilities

are low, have low median B-factors. In contrast, the hydrophilic residues, especially the large
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charged residues Lysine and Glutamate, are on average highly accessible and highly mobile,

i.e. with large B-factors. Surprisingly, the flexibility constants exhibit an opposite behavior,

as illustrated in Figure 8B. For most amino acids, there is a nearly linear relationship between

the k constants and ASAs, but with a negative slope, i.e. accessible residues have lower

flexibility constants. The five hydrophobic residues V, I, L, M, and F, are exceptions to this

relationship, as they have on average low accessibility and low flexibility constants.

4.5 Flexibility vs B-factors

Table 2: Indicators for predictions of Cα B-factors

Model a Predictor < CC > b Range of CC

a LDM Density nk 0.57 ± 0.12 0.22 to 0.83

b DEL-opt Flexibility constant 0.53 ± 0.14 0 to 0.8

c DEL-opt Frequency Ω 0.65 ± 0.19 0 to 0.9

d DEL-1 Frequency Ω 0.14 ± 0.09 0 to 0.48

e EL20-opt Flexibility constant 0.43 ± 0.23 -0.34 to 0.83

f EL20-opt Frequency Ω 0.77 ± 0.16 0.16 to 0.97

g EL20-1 Frequency Ω 0.54 ± 0.15 016 to 0.82

a) LDM is the local density model of Halle4. DEL and EL20 are elastic networks (EN) based on

the Delaunay complex and a 20 Å cutoff, respectively, with 1 indicates that all the edges of the

EN were assigned the same force constant, 1, while “opt” indicates instead that the EN was

parameterized using the experimental B-factors

b) Correlation coefficients between the experimental B-factors and the inverse of the predictor

values for all Cα. Results are given as mean value ± one standard deviation over the set of 70

proteins.

In a landmark paper, Halle4 proposed that B-factors, or more specifically atomic mean

square displacements (AMSDs), can be predicted solely on the basis of packing density.

Subsequent studies have shown that the same idea applies to NMR, i.e. packing density is a

predictor for NMR order parameters, S2 5,8. In Halle’s model, referred to as LDM for local
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density model, each atom i of a protein is characterized with an AMSD σi, which is related

to the B-factor Bi according to Bi = 8π2σi/3. This AMSD is expected to be related to the

local packing of i, defined based on its contact density, ni, i.e. the number of (non-hydrogen)

atoms within a spherical region centered on i. Namely,

σi =
3

2λ

1

ni
(38)

where λ is a scaling parameter that accounts for temperature. The atomic density ni (see

equation 37) is itself a function of the σk of the atoms k in the neighborhood of i, i.e. a

spherical region of size Rc. The ni and σi are then computed self-consistently using equations

37 and 38, as described by Halle4. At convergence, the computed σi are scaled such that their

mean value over a protein is equal to the mean experimental AMSD over the same protein.

Halle showed that the resulting scaled converged σi reproduce accurately the corresponding

B-factors on a set of 38 proteins. We repeated his calculations on our set of 70 proteins,

using Rc = 7.32Å as suggested by Halle, and found similar results (see Table 2, row a), albeit

with lower accuracy. The difference is most likely due to the fact that we did not account

for crystal contacts in our calculations, while Halle did.

Do our atomic flexibility constants also relate to packing density, or, based on Halle’s

results, do they correlate well with B-factors? Our results seem to indicate that this is not

the case, both for the Delaunay based EN and for the cutoff based EN at least on our dataset

of 70 proteins (see rows b and e of table 2, respectively for the correlations to the B-factors).

The corresponding mean correlation coefficients between packing density, nk, and flexibility

constants, kk, are 0.06 ± 0.09 (with a range -0.27 to 0.28) for the Delaunay based EN, and

-0.15 ± 0.14 (with a range -0.57 to 0.20), for the EL20 cutoff-based EN, i.e. poor correlations

in both cases. These observations allow us to better understand the flexibility constants we

have introduced. Unlike packing density that captures the local environment of an atom,

the atomic flexibility constant is an intrinsic dynamic property of the atom itself. It is the

local network, namely the list of edges in the EN that connect to an atom k that defines the

local environment of an atom. To test if this is the case, we have assigned to each atom i a

33



frequency Ωi
92 such that

Ω2
i =

N(i)∑
j=1

kij =

N(i)∑
j=1

√
kjki (39)

where the summation extends over all atoms j such that ij is an edge in the EN considered.

We computed Ωi for all Cα atoms of all proteins in our dataset, for the Delaunay based

EN and the cutoff based EN, with constant, or optimized values for the force constants kij.

Results are shown in table 2 on rows c and d for the Delaunay based EN, and on rows f

and g for the cutoff-based EN. As expected, the inverse of the frequencies Ω correlate well

with the B-factor values, indicating that these frequencies capture the impact of the local

environment of an atom on its dynamics. We note that the frequencies computed from the

optimized force constants show stronger correlations with the B-factors than the frequencies

computed from constant force constants (rows c vs d and rows f vs g). This may not be too

surprising as the optimization is based on the B-factors.

4.6 Parameterized ENs capture rigidity

The differences between B-factors and flexibility constants suggest that the latter do not ac-

tually characterize residue mobility, as suggested in the name we gave them. We investigated

the connection between flexibility constants and mobility within the broader framework of

rigidity of proteins. Jacobs, Thorpe and collaborators pioneered the use of rigidity-based

methods in protein flexibility analysis63,64,93. Their analysis is based on graph theory. They

start by designing a constraint network on the protein of interest, much akin to the ENMs

considered here, but with the significant difference that the constraint network is designed

to capture the energetics of the protein, rather than its geometry. The constraint network

includes all covalent bonds and strong hydrogen bonds within the protein of interest. They

then run an algorithm, dubbed the 3D Pebble game, to count the degrees of freedom within

this constraint network. From the listing of degrees freedom, the algorithm identifies ‘all

the rigid and flexible substructures in the protein, including over-constrained regions (with

more bonds than are needed to rigidify the region) and under-constrained or flexible re-

gions, in which internal motions can occur”, paraphrasing the authors’ descriptions of their
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A) Barnase (1A2P) B) HIV Aspartyl Protease (1HHP)

Figure 9: Rigidity analysis of Barnase (PDB code 1A2P), left, and of the ligand-free aspartyl

protease of HIV-1 (PDB code 1HHP), right. The rigid and flexible regions of the proteins,

as identified by the program ProFlex from the Leslie Kuhn group (see text for details) are

shown in blue and pale yellow, respectively. The edges of the parameterized Delaunay-based

ENM are shown in red. Residues with large flexibility constants are highlighted with orange

spheres.

algorithm63. With this underlying definition of flexibility and rigidity, we mapped the po-

sitions of residues with large flexibility constants on the partitioning of a protein structure

into rigid and flexible regions obtained with the 3D Pebble game algorithm for two pro-

teins, barnase (PDB code 1A2P), and a ligand-free HIV protease (PDB code 1HHP). We

use the implementation of the 3D Pebble game from the software package ProFlex devel-

oped by the group of Leslie Kuhn at Michigan State University, and available at the URL

https://kuhnlab.natsci.msu.edu/software/proflex/. The residues with large flexibil-

ity constants were identified from the parameterized Delaunay-based ENMs for those two

proteins. Results are shown in figure 9. Clearly, for those two proteins all residues with

large flexibility constants fall within the regions defined as flexible by ProFlex. From the

definition of flexibility in the theory behind ProFlex, those regions are under-constrained and

then prone to internal motions. The parameterized ENMs implicitly capture this flexibility

by assigning large force constants in those regions, with those large force constants allowing

35

https://kuhnlab.natsci.msu.edu/software/proflex/


for concerted motions as described by the normal modes of the ENMs. It is therefore more

appropriate to refer to the parameterized constants ki as flexibility constants for the residues.

5 CONCLUDING REMARKS

Coarse-grained normal mode analyses rely on the idea that the geometry of a protein struc-

ture contains enough information for computing its fluctuations around its equilibrium con-

formation. This geometry is captured in the form of an elastic network, i.e. a network

of edges between residues in the protein structure. A spring is then associated with each

of these edges. The normal modes of the protein of interest are then identified with the

normal modes of the corresponding elastic network. Constructing the elastic network and

parameterizing this network remain topics of research and development in the computational

biology community. In this paper, we advocate for using the edges of the Delaunay triangu-

lation of the points representing the Cα atoms of the protein as the elastic network, and for

parameterizing this Delaunay-based elastic network such that its dynamics match with the

experimental B-factors of the Cα atoms. Both comes with some sacrifice in simplicity, but

with benefits that we highlight below.

Computing a three dimensional Delaunay triangulation is more complex and more oner-

ous in computing time than simply selecting the edges of an elastic network based on their

lengths. A Delaunay-based elastic network, however, has several advantages, some of which

are highlighted in figure 3. First, it is completely parameter-free: there is no need to define

a cutoff value for selecting edges. Second, it leads to a much smaller elastic network in terms

of number of edges. Finally, it is able to capture even long range contacts in the protein.

The advantages of including long range interactions has been advocated before57. Other

geometric constructions could replace the Delaunay triangulation, such as alpha shapes65.

Such alpha shapes have already been considered for building elastic networks55. Finally, we

note that many implementations of Delaunay triangulation algorithms are available, thereby

mitigating the difficulties associated with their complexities.

An appealing aspect of coarse grained NMAs comes from the simplicity of their imple-

mentations. Besides the constructions of the elastic network described above, their parame-
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terization is often simple, as a constant force constant is assigned to each edge, as prescribed

by Tirion31. Here we advocate for parameterizing instead the elastic network such that its

dynamic leads to atomic fluctuations that match with experimental B-factors. Most current

models for fitting the EN to the B-factors are based on the assumption that the atomic

displacements captured by B-factors result from internal motions of the protein structure.

However, B-factors are known to be influenced by rigid-body motions taking place in the

crystal12. In addition, contacts between molecules in the crystal are known to affect atomic

fluctuations58,94, such are other effects like twinning and lattice disorders95. We have cho-

sen to focus on and include in our model the contribution of rigid-body motions, as several

studies indicate that their effects are more important than those resulting from crystal con-

tacts60–62. In addition, we were careful in reducing the risk of overfitting in this process by

attaching a variable to each atom, and not to each edges in the network. We have shown

that such a parameterization leads to improved NMAs, as it defines dynamics that is close

to MD simulations (see table 1), as well as it reduces the number of normal modes needed

to reproduce functional conformational changes (figure 7). In addition, the atomic constants

defined in the parameterization process are found to be related to the concept of flexibility

introduced in the protein rigidity theory introduced by Thorpe and co-workers (see figure

9).

The optimized normal mode model we propose is protein-specific, derived from the geom-

etry of its static structure (in our study the X-ray structure), as well as from its dynamics as

captured by the B-factors associated with the structure. Those B-factors, however, are indi-

rect measures of dynamics and are subject to the refinement methods used to obtain them.

There are options to circumvent this limitation. Diamond96 and Kidera and Go97 for exam-

ple proposed independently to express the Debye-Waller factors directly in terms of normal

modes, thereby allowing for atomic motions to be treated as anisotropic and concerted. In

their models, the amplitudes (Diamond) or the amplitudes and directions (Kidera and Go)

of those normal modes become parameters that are then refined against the experimental

structure factors. Both models are derived from “standard” normal mode models, i.e. de-

rived from a semi-empirical force-field. This idea was later expanded to the use of EN-based

normal mode models (see for example Delarue and Dumas43). We see a potential extension
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of our method in this direction. Instead of parameterizing the EN based on B-factors, we

would use instead directly the experimental structural factors. Conversely, the Debye-Waller

factors in the structure refinement would be written as functions of the force constants of

the EN that models the dynamics of the protein, instead of the amplitudes and directions

of their normal modes. We are currently exploring this extension of our model.

We reckon the increase in computational costs that comes with our procedure. We have

expressed the parameterization of the elastic network as a non linear optimization problem

whose parameters are the variables associated with rigid motions and the atomic flexibility

constants associated with internal motions. While we are able to find analytical expressions

both for the function that we minimize and for its derivatives, each iteration of the quasi

Newton algorithm we use for the optimization is costly in computing time, as it requires that

the Hessian of the quadratic potential of the elastic potential be diagonalized, and that all

eigen pairs be computed. While this process can be parallelized, it remains a O(N3) process.

We have tried to remove the requirement of using all eigen pairs, but found that this removal

leads to loss of performance (figure 6). While the computation cost remains manageable for

most protein structures available in the PDB (i.e. with up to 1000 residues), it can become

an issue for larger protein complexes, such as viral envelopes. We are currently working on

strategies for reducing significantly the computational cost of our procedure.
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APPENDIX A

Let us first reintroduce some notations. H is the Hessian of the quadratic potential defined

in equation 1. We have shown68 that H can be written as:

H =
∑
(i,j)

kijUij ⊗Uij (40)

where the vector Uij is defined as Uij = (0, . . . , 0,
Xi−Xj

rij
, 0, . . . , 0,

Xj−Xi

rij
, 0, . . . , 0). The

derivatives of the Hessian with respect to any of the kij are given by

dH

dkij
= Uij ⊗Uij (41)

As the fluctuations in atomic positions are related to the inverse H† of the Hessian matrix

H (see equation 23), we also need the derivatives of this inverse. In the main text, we have

stated the following proposition:

Proposition. If all the force constants kij are strictly positive,

dH†

dkij
= −H† dH

dkij
H† (42)

which we validate here.

Proof. The matrix H can also be written as

H =
3N∑
k=1

λkek ⊗ ek (43)

where λ and e are the eigenvalues and eigenvectors of H, respectively. Note that that some

of the λk may be zero, i.e. the null space of H may not be empty. To account for this

possibility, we prove the proposition separately in the case of an empty null space, and in

the case of a null space with finite dimension.
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Case 1: All eigenvalues of H are non zero

This is the easiest case and the proof of proposition 1 is simple. As all the eigenvalues are

non zero, the matrix H is invertible and its Moore Penrose inverse is its actual inverse.

Therefore,

HH† = I (44)

where I is the 3N × 3N identity matrix. Deriving this equation by kij, we get,

dH

dkij
H† +H

dH†

dkij
= 0 (45)

therefore,

dH†

dkij
= −H† dH

dkij
H† (46)

which concludes the proof of proposition 1 for this specific case. Note that this case will not

occur if the Hessian is based on Cartesian coordinates; it will occur, however, if the potential

is computed based on internal degrees of freedom.

Case 2: Some eigenvalues of H are zero

As mentioned above, this is the general case when the potential and its Hessian are based

on Cartesian coordinates. Indeed, as the potential is only function of interatomic distances,

it is invariant with respect to rotations and translations, and therefore its Hessian will have

(at least) 6 zero eigenvalues. For generality, we will define as Nc the multiplicity of the

eigenvalue 0 of H. The pseudo inverse of H is then given by:

H† =
3N∑

k=Nc+1

1

λk
ek ⊗ ek (47)

When H is not full rank, equation 44 does not hold anymore. Indeed,

HH† =
3N∑
k=1

3N∑
l=Nc+1

λk
λl

(ek ⊗ ek)(el ⊗ el)

=
3N∑
k=1

3N∑
l=Nc+1

λk
λl

(ek, el)ek ⊗ el

=
3N∑

k=Nc+1

ek ⊗ ek (48)
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where the last equality comes from the fact that the eigenvalues e form an orthonormal base.

We rewrite this equation as

HH† = I −
Nc∑
k=1

ek ⊗ ek (49)

where I is the 3N × 3N identity matrix. Note that this is a known result for Moore-Penrose

inverses. The proof used in the case of a matrix H that is full rank then does not apply in the

case under consideration. To prove proposition 1, we use instead a more general relationship

between the derivatives of H and of its Moore-Penrose inverse originally derived by Golub

and Pereyra98

dH†

dkij
= −H† dH

dkij
H† +H†2

dH

dkij
(I −HH†) + (I −HH†) dH

dkij
H†2 (50)

This formula is adapted from Golub and Pereyra98 in the specific case of H and H† real,

symmetric. In this equation, the first term on the right is the term we want. There are two

additional terms, which we note as B and C, with

B = H†2
dH

dkij
(I −HH†)

C = (I −HH†) dH
dkij

H†2

We need to prove that B = C = 0. As C = BT , it is enough to prove that B = 0.

Let us first notice that

H†2 =
3N∑

k=Nc+1

3N∑
l=Nc+1

1

λkλl
(ek ⊗ ek)(el ⊗ el)

=
3N∑

k=Nc+1

1

λ2k
ek ⊗ ek (51)

as the eigenvectors e are orthonormal. Replacing equations 41, 49 and 51 into the definition

of B, we get,

B =
3N∑

k=Nc+1

Nc∑
l=1

1

λ2k
(ek ⊗ ek)(Uij ⊗Uij)(el ⊗ el)

=
3N∑

k=Nc+1

Nc∑
l=1

1

λ2k
(ek,Uij)(el,Uij)ek ⊗ el

=

(
3N∑

k=Nc+1

(ek,Uij)

λ2k
ek

)
⊗

(
Nc∑
l=1

(el,Uij)el

)
(52)
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Let el be an eigenvector in the null space of H. Then,

Hel = 0 (53)

Using equation 40, we get ∑
(i,j)

kij(Uij ⊗Uij)el = 0 (54)

or ∑
(i,j)

kij(el,Uij)Uij = 0 (55)

Taking the inner product with el, we get∑
(i,j)

kij(el,Uij)
2 = 0 (56)

As we have assumed that all the kij are strictly positive, the inner products (el,Uij) have to

be zero, for all pairs (ij) ∈ V (i.e. the set of edges in the ENM), and for all l ∈ {1, . . . , Nc}.

Replacing in the right most term in equation 52, we find that B = 0, which concludes the

proof.
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16. R. Brüschweiler, J. Am. Chem. Soc. 114, 5341 (1992).

17. A. Atilgan, S. Durell, R. Jernigan, M. Demirel, O. Keskin, and I. Bahar, Biophys. J. 80,

505 (2001).

43



18. B. Erman, Biophys. J. 91, 3589 (2006).

19. L. Yang, G. Song, and R. Jernigan, Proteins: Struct. Func. Bioinfo. 76, 164 (2009).

20. P.-C. Chen, M. Hologne, O. Walker, and J. Hennig, J. Chem. Theory Comput. 14, 1009

(2018).

21. G. Lipari and A. Szabo, J. Am. Chem. Soc. 104, 4546 (1982).

22. G. Lipari and A. Szabo, J. Am. Chem. Soc. 104, 4559 (1982).

23. S. Mahajan and Y. Sanejouand, Arch. Biochem. Biophys. 567, 59 (2015).

24. M. Saunders and G. Voth, Annu. Rev. Biophysics 42, 73 (2013).

25. S. Kmiecik, D. Gront, M. Kolinski, L. Wieteska, A. Dawid, and A. Kolinski, Chem. Rev.

116, 7898 (2016).

26. T. Noguti and N. Go, Nature 296, 776 (1982).

27. B. Brooks, R. Bruccoleri, and B. Olafson, J. Comp. Chem. 4, 187 (1983).

28. M. Levitt, C. Sander, and P. Stern, J. Mol. Biol. 181, 423 (1985).

29. B. Books, D. Janezic, and M. Karplus, J. Comp. Chem. 16, 1522 (1995).

30. D. Case, Curr. Opin. Struct. Biol. 4, 285 (2004).

31. M. Tirion, Phys. Rev. Lett. 77, 1905 (1996).

32. C. Xu, D. Tobi, and I. Bahar, J. Mol. Biol. 333, 153 (2003).

33. M. Delarue and Y.-H. Sanejouand, J. Mol. Biol. 320, 1011 (2002).

34. Y. Wang, A. Rader, I. Bahar, and R. Jernigan, J. Struct. Biol. 147, 302 (2004).

35. E. Dykeman and O. Sankey, J. Phys. Condens. Matter 21, 035116 (2009).

36. E. Dykeman and O. Sankey, Phys. Rev. E 81, 021918 (2010).

37. Y.-C. Hsieh, F. Poitevin, M. Delarue, and P. Koehl, Frontiers Bio. Sci. 3, 85 (2016).

44



38. P. Koehl and M. Delarue, Prog. Biophys. Mol. Biol. 143, 20 (2019).

39. T. Lezon, I. Shrivastava, Z. Yan, and I. Bahar, in Handbook on Biological Networks,

edited by S. Boccaletti, V. Latora, and Y. Moreno (World Scientific Publishing Co,

Singapore, 2010), pp. 129–158.

40. Y. Sanejouand, Methods Mol. Biol. 914, 601 (2013).

41. H. Wako and S. Endo, Biophys. J. 9, 877 (2017).

42. Y. Togashi and H. Flechsig, Int. J. Mol. Sci. 19, 3899 (2018).

43. M. Delarue and P. Dumas, Proc. Natl. Acad. Sci. (USA) 101, 6957 (2004).

44. E. Lindahl, C. Azuara, P. Koehl, and M. Delarue, Nucl. Acids. Res. 34, W52 (2006).

45. F. Tama, O. Miyashita, and C. Brooks III, J. Struct. Biol. 147, 315 (2004).
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J. Camps, C. Fenollosa, D. Repchevsky, et al., Structure 18, 1399 (2010).

73. D. Case, T. Cheatham III, T. Darden, H. Gohlke, R. Luo, K. Merz Jr., A. Onufriev,

C. Simmerling, B. Wang, and R. Woods, J. Comp. Chem. 26, 1668 (2005).

46



74. W. Jorgensen, J. Chandrasekhar, J. Madura, R. Impey, and M. Klein, J. Chem. Phys.

79, 926 (1983).

75. A. Bhattacharyya, Bull. Calcutta Math. Soc. 35, 99 (1943).

76. A. Cherian, S. Sra, A. Banerjee, and N. Papanikolopoulos, in 2011 International Con-

ference on Computer Vision (ICCV) (2011), pp. 2399–2406.

77. E. Fuglebakk, J. Echave, and N. Reuter, Bioinformatics 28, 2431 (2012).

78. A. Zomorodian, L. Guibas, and P. Koehl, Comput. Aided Geom. Design 23, 531 (2006).

79. M. Levitt, Angew. Chem. Int. Ed. Engl. 53, 10006 (2014).

80. C. Micheletti, P. Carloni, and A. Maritan, Proteins: Struct. Func. Bioinfo. 55, 635

(2004).

81. M. Rueda, P. Chacon, and M. Orozco, Structure 15, 565 (2007).

82. L. Orellana, M. Rueda, C. Ferrer-Costa, J. Lopez-Blanco, P. Chacon, and M. Orozco, J.

Chem. Theory Comput. 6, 2910 (2010).

83. N. Leioatts, T. Romo, and A. Grossfield, J. Chem. Theory Comput. 8, 2424 (2012).

84. D. Tobi and I. Bahar, Proc. Natl. Acad. Sci. (USA) 102, 18908 (2005).

85. R. Mendez and U. Bastolla, Phys. Rev. Lett. 104, 228103 (2010).

86. U. Bastolla and Y. Dehouck, J. Chem. Inf. Model. 59, 4929 (2019).

87. S. Le Grand and K. Merz, J. Comp. Chem. 14, 349 (1993).

88. M. Vihinen, E. Torkkila, and P. Riikonen, Proteins: Struct. Func. Genet. 19, 141 (1994).

89. P. Karplus and G. Schulz, Naturwissenschaften 72, 212 (1985).

90. D. Smith, P. Radivojac, Z. Obradovic, A. Dunker, and G. Zhu, Protein Sci. 12, 1060

(2003).

47



91. P. Romero, Z. Obradovic, C. Kissinger, J. Villafranca, and A. Dunker, in Int. Conf.

Neural Net. (1997), pp. 90–95.

92. P. Koehl, F. Poitevin, R. Navaza, and M. Delarue, J. Chem. Theory Comput. 13, 1424

(2017).

93. D. Jacobs, L. Kuhn, and M. Thorpe, in Rigidity theory and applications, edited by

M. Thorpe and P. Duxbury (Kluwer Academic, New York, 1999), pp. 357–384.

94. O. Carugo and P. Argos, Protein Sci. 6, 2261 (1997).

95. J. Helliwell, Crystallogr. Rev. 14, 189 (2008).

96. R. Diamond, Acta Crystallogr. A 46, 425 (1990).

97. A. Kidera and N. Go, Proc. Natl. Acad. Sci. (USA) 87, 3718 (1990).

98. G. Golub and V. Pereyra, SIAM J. Num. Anal. 10, 413 (1973).

48


	INTRODUCTION
	METHODOLOGY
	Coarse grained Normal mode analysis based on the Tirion elastic network model
	Generating the elastic network
	Parameterizing the elastic network
	The Hessian and its derivatives
	Calibration of the force constants using the experimental B-factors
	Experimental fluctuations
	Rigid body motions
	Internal motions
	Optimization


	METHODS
	Data sets
	Metrics for comparing experimental and computed B-factors
	Atomic fluctuations from MD simulations
	Comparing MD simulations and NMA
	Overlaps between normal modes and structure displacements
	Packing density

	RESULTS AND DISCUSSION
	Building and parameterizing Elastic Network Models
	Appraising the parameterized ENMs
	Capturing conformational changes with normal modes
	Amino acid flexibility constants
	Flexibility vs B-factors
	Parameterized ENs capture rigidity

	CONCLUDING REMARKS

