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The immune response to viral infection involves the recognition of pathogen-derived nucleic
acids by intracellular sensors, leading to type I interferon (IFN), and downstream IFN-
stimulated gene, induction. Ineffective discrimination of self from non-self nucleic acid can
lead to autoinflammation, a phenomenon implicated in an increasing number of disease
states, and well highlighted by the group of rare genetic disorders referred to as the type I
interferonopathies. To understand the pathogenesis of these monogenic disorders, and
polyfactorial diseases associated with pathogenic IFN upregulation, such as systemic lupus
erythematosus and dermatomyositis, it is important to define the self-derived nucleic acid
species responsible for such abnormal IFN induction. Recently, attention has focused on
mitochondria as a novel source of immunogenic self nucleic acid. Best appreciated for their
function in oxidative phosphorylation, metabolism and apoptosis, mitochondria are double
membrane-bound organelles that represent vestigial bacteria in the cytosol of eukaryotic
cells, containing their own DNA and RNA enclosed within the inner mitochondrial
membrane. There is increasing recognition that a loss of mitochondrial integrity and
compartmentalization can allow the release of mitochondrial nucleic acid into the cytosol,
leading to IFN induction. Here, we provide recent insights into the potential of mitochondrial-
derived DNA and RNA to drive IFN production in Mendelian disease. Specifically, we
summarize current understanding of how nucleic acids are detected as foreign when
released into the cytosol, and then consider the findings implicating mitochondrial nucleic
acid in type I interferonopathy disease states. Finally, we discuss the potential for IFN-driven
pathology in primary mitochondrial disorders.

Keywords: type I interferonopathy, mitochondrial disease, type I interferon, autoinflammation, mitochondria,
mtDNA, mtRNA, innate immunity
INTRODUCTION

Most cells are equipped with cytosolic sensors involved in the intracellular surveillance of
pathogens, leading to the rapid induction of an antiviral IFN response (1). DNA is recognized by
cyclic GMP–AMP synthase (cGAS), activating endoplasmic reticulum (ER)-resident Stimulator of
interferon genes (STING) (2). STING then traffics to the Golgi, eventually inducing the
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transcription of IFN. Along similar lines, RNA species are
recognized by RIG-I-like receptors (RLRs), RIG-I (retinoic
acid-inducible gene I) and MDA5 (melanoma differentiation-
associated protein 5), activating the adaptor protein
mitochondrial antiviral-signaling protein (MAVS) on
mitochondria, again leading to IFN induction (1).

The type I interferonopathies are rare genetic diseases
characterized by chronic upregulation of type I IFN signaling
(3). Strikingly, the majority of type I interferonopathy-related
disease genes identified to date encode molecules playing a role
in nucleic acid processing or sensing, highlighting the
importance of active mechanisms to prevent antiviral
responses triggered by self nucleic acids, and the challenge of
self/non-self discrimination (4). Indeed, aberrant sensing of self
nucleic acids has been increasingly implicated in a diversity of
pathologies including autoimmunity, genome instability
syndromes, cancer, neurodegeneration and senescence (4).

To better understand pathogenesis, it is important to
determine the source of the self nucleic acids detected by
innate (antiviral) sensors. Recent studies have established that
genomic DNA represents such an agonist when abnormally
exposed to cGAS (2, 5–7). Interestingly, in some type I
interferonopathies, and in senescence, DNA and RNA derived
from endogenous retroelement expression may also represent
‘self’-derived nucleic acid capable of triggering IFN signaling (8–
12). Notably, beyond the nucleus, mitochondria constitute the
other intracellular source of self nucleic acids, possessing their
own DNA (mtDNA) and RNA (mtRNA) enclosed by the
mitochondrial membranes (13). The mtDNA encodes 13
respiratory chain proteins, 22 tRNAs and 2 rRNAs, with the
remaining ∼1,300 mitochondrial proteins imported after
translation from the nuclear genome (13). Since mitochondria
constitute the cytosolic remnants of the endosymbiosis of
proteobacteria within eukaryotic cells (14), mtDNA and
mtRNA demonstrate immunostimulatory characteristics of
pathogens, with the potential to be misinterpreted as foreign.
Thus, each cell contains hundreds to thousands of copies of
circular double stranded (ds) mtDNA molecules, which are
hypomethylated, devoid of histones, exposed to reactive
oxygen species (ROS) and poorly repaired. Furthermore,
bidirectional transcription generates long dsRNA and
uncapped mRNAs, and mtDNA transcription and replication
give rise to single stranded DNA, RNA-DNA hybrids and G-
quadruplexes (13, 15, 16), all of which have immunostimulatory
capacity. Indeed, there is increasing recognition of the potential
of mitochondrial-derived nucleic acids (mtNA) to act as agonists
of the IFN signaling machinery, possibly contributing to complex
autoinflammatory diseases such as systemic lupus erythematosus
(SLE) (17), as well as neurodegeneration (18, 19) and cancer
(20, 21).

In this review we focus on mtNA cytosolic sensing leading to
IFN induction. However, we note that mtDNA and other
mitochondrial molecules [cardiolipins, formyl peptides,
mitochondrial ROS (mROS)] can also trigger other innate
sensing pathways. For example, these molecules can engage the
inflammasome, resulting in interleukin 1b (IL1b)-mediated
Frontiers in Immunology | www.frontiersin.org 2
inflammation (22–25) and endosomal Toll-like receptor 9
(TLR9) activation, leading to IFN and NF-kB-dependent
inflammatory cytokine induction (26, 27). These pathways,
also implicated in inflammatory diseases, are specific to
discrete cell types and have been extensively reviewed
elsewhere (15, 24, 25, 28, 29). mtDNA can also be released into
the extracellular space, acting as a plasmatic marker and driver of
systemic inflammation in autoimmunity, traumatic injury, lung
inflammation and cardiovascular disease (30, 31).
MITOCHONDRIAL NUCLEIC ACID IS
INTERFERONOGENIC IN THE CYTOSOL

mtNA remains ‘immunologically inert’ when retained inside the
two nested compartments delimited by the mitochondrial
membranes: the matrix enclosed in the inner mitochondrial
membrane (IMM), and the inner membrane space (IMS)
between the IMM and the outer mitochondrial membrane
(OMM) (25) (Figure 1). Thus, an increasing number of
reports indicate that loss of mitochondrial integrity and
compartmentalization, as a result of mitochondrial stress, can
allow the release of mtNA, and subsequent interaction with
cytosolic receptors leading to IFN induction (25, 28).

Seminal studies first described IFN induction due to mtDNA
release upon abortive apoptosis in 2014 (32, 33), the process of
which was detailed in real-time by high-resolution imaging in
2018 (34, 35). Upon mitochondrial apoptosis triggered by the
activation of BAX (Bcl-2 associated-X protein) and BAK (BCL-2
homologous antagonist/killer), BAX/BAK pores are formed in
the OMM, releasing proapoptotic factors from the IMS, and
leading to activation of caspases 9, 3 and 7 and apoptotic cell
death (36). However, when BAX/BAK activation is induced
together with caspase inhibition, mtDNA complexed to TFAM
into nucleoids is released into the cytosol, sensed by cGAS-
STING, and IFN induced (32, 33), suggesting a role for
programmed cell death completion in preventing inflammatory
mtNA sensing. Despite these insights, the question of how
mtDNA might first cross the IMM remained. A contribution
of the mitochondrial permeability transition pore (mPTP), an
IMM channel that allows for non-selective diffusion of low
molecular weight solutes and water (<1.5 kDa) (37), as well as
mROS-dependent destabilization of the IMM, have been
suggested to facilitate such egress (23, 30, 38, 39). Recent work
has also highlighted IMM herniation, through BAX/BAK
macropores, followed by IMM permeabilization independent
of mPTP opening (34, 35) (Figure 1). However, these
mechanisms of IMM crossing are difficult to reconcile with the
size of mtDNA nucleoids (40).

Remarkably, an increasing number of situations associated with
mitochondrial stress have been linked to the release and sensing of
mtNA,mostlymtDNAthroughcGAS-STING, and the inductionof
IFN (28). These include environmental insults, oxidative stress,
‘suboptimal’ mitochondrial function, mitochondrial dysfunction
due to mutations (mitochondrial disease detailed below),
August 2021 | Volume 12 | Article 729763
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proteotoxic stress, and infection (24, 25, 30). Such stress, typically
evidenced by impaired oxidative phosphorylation and ATP
production, metabolic imbalance, loss of mitochondrial potential
and mROS induction, results in a loss of mitochondrial integrity
and release of mitochondrial components. Notably, this
phenomenon can be considered ‘physiological’ when induced by
pathogens, promoting an antiviral state (41–45). CytosolicmtDNA
then constitutes a second messenger, initiating the antiviral
response. Along similar lines, upon genotoxic stress, mtNA
release is sensed as a sign of genomic instability and can activate
Frontiers in Immunology | www.frontiersin.org 3
DNA repair pathways (20, 46, 47). Interestingly, in the context of
SLE, mitochondrial oxidative stress enhances the interferonogenic
potential of mtDNA itself by oxidation (17, 48, 49) (Figure 1).
Indeed, mitochondrial hyperpolarization causes slippage of
electrons onto molecular oxygen, which is reversible by treatment
with the antioxidant N-acetylcysteine in vitro and in vivo; also
demonstrating therapeutic efficacy in patients with SLE (50, 51).

Studies of mtNA release upon different mitochondrial stresses
have both reinforced the role of BAX/BAK macropores (21, 43,
46, 52, 53) and mPTP (17, 54), and elucidated further relevant
FIGURE 1 | Main pathways of mitochondrial nucleic acid release and sensing. Upon extrinsic or intrinsic insult, the mitochondrial membrane integrity is
compromised and mtDNA and mtRNA, normally contained within the double membrane, can be released into the cytosol. Release of mtDNA packaged into
nucleoids by TFAM is mediated by outer mitochondrial membrane (OMM) perforation by BAX/BAK macropores, while mtDNA fragments devoid of TFAM are thought
to egress through VDAC1 pores. Inner mitochondrial membrane (IMM) permeabilization to mtNA can involve herniation into BAX/BAK pores, destabilization due to
oxidative stress (e.g. mitochondrial ROS (mtROS) generated from electrons (e_) leaking from the electron transport chain (ETC)), and/or opening of the mitochondrial
permeability transition pore (mPTP). In the cytosol, mtDNA, oxidized (Ox) mtDNA and mtRNA are detected as foreign by innate cytosolic sensors of
immunostimulatory DNA (e.g. cGAS), and RNA (e.g. RIG-I, MDA5, PKR). These receptors then activate the adaptor molecules STING and MAVS, respectively,
leading to the induction of IFN and subsequent IFN-stimulated gene (ISG) expression. IMS, inner membrane space.
August 2021 | Volume 12 | Article 729763
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mechanisms and the type of mtDNA species egressing. As an
example, upon loss of mitochondrial endonuclease EndoG,
oxidative stress triggers voltage-dependent anion-selective
channel 1 (VDAC1) oligomerization and the formation of
pores in the OMM, with subsequent release into the cytosol of
mtDNA fragments, rather than TFAM-bound nucleoids, a
situation relevant to SLE (17), viral infection (55) and altered
mitochondrial proteostasis (56) (Figure 1). In some instances, a
combination of VDAC1 pores in the OMM, and mPTP for IMM
permeabilization, facilitates complete mitochondrial envelope
opening (17, 19). In the case of infection, viroporins and other
microbial proteins have been proposed to perforate
mitochondrial membranes (43, 57). Host inflammasome
effector Gasdermin D can also permeabilize mitochondria (58),
and the RLR adaptor MAVS has been described as a
mitochondrial membrane remodeler (43, 59, 60), although the
release of mtNA remains to be observed in this situation.

Analogous to theprocesses involvingmtDNAdescribedabove, a
few studies have reported mtRNA relocalization leading to innate
immune stimulation. Upon loss of p53, mtRNA is sensed by
cytosolic MDA5 and RIG-I (61), possibly related to the opening
of the mPTP (62). In a model of Huntington’s disease, mtRNA
accumulated in the cytosol, activating the RNA sensor protein
kinase R (PKR) and subsequent IFN-stimulated gene (ISG)
expression (63). Interestingly, mtDNA ds breaks can lead to
mtRNA sensing by RIG-I in the cytosol (46). Additionally,
mtRNA sensing might be relevant in the context of TLR7-
dependent IFN induction upon ablation of the mitophagy actor
IRGM1 in mouse macrophages (TLR7 being an RNA sensor) (64),
and in the RNA sensing/MAVS-dependent mtDNA cytosolic
leakage upon influenza virus M2 viroporin expression (43).

Although speculative, loss of membrane integrity might also
allow the entry of nucleic acid sensors into mitochondria. Indeed,
mitochondrial membranes contain complexes involved in the
import of nuclear-encoded mitochondrial proteins (65), enabling,
for example, aberrant entry of mutated TDP-43 in the context of
amyotrophic lateral sclerosis (ALS) (19). This phenomenon could
explain the observation of a basal interaction between PKR and
mitochondrial dsRNA (66). Interestingly, although cGAS
recruitment to IMM hernias, for mtDNA sensing, is not observed
during abortive apoptosis (35), cGAS contains a cryptic
mitochondrial targeting sequence, and truncated cGAS can
translocate to mitochondria and become activated (67).

Mitophagy constitutes the selective degradation of damaged
mitochondria by autophagy, participating inmitochondrial quality
control (25). A priori, removal of dysfunctional mitochondria
leaking mtNA may act as a safeguard against detrimental IFN
induction. Thus, although not directly implicated in mtNA
retention, mitophagy activation could limit mitochondrial
immunogenicity and pathogenicity (68). As such, autophagy and
mitophagy have been shown to dampen the innate immune
response induced by mtNA leakage and sensing (17, 21, 23, 27,
69, 70), and, even, to be triggered by pathogens themselves (71, 72).
Consistently, defective mitophagy can enhance sensing (18, 73)
[reviewed in (24, 25, 74)]. Importantly, such ‘mitophagic
maintenance’ has been suggested to have pathogenic relevance in
Frontiers in Immunology | www.frontiersin.org 4
autoimmune diseases [e.g. Sjögren’s syndrome (64) and SLE (75)],
and Parkinson’s disease (18).

Summarizing, our understanding of how mitochondrial stress
and damage leads to mitochondrial rupture and IFN-inducing
mtNA release has recently broadened. However, these data have
been mostly derived from in vitro studies, mouse models, or
through biomarker correlations (28–30).
IMMUNOSTIMULATORY
MITOCHONDRIAL NUCLEIC ACID
IN TYPE I INTERFERONOPATHIES

Providing strong evidence of the potential of mtNA to induce
pathological IFN induction in humans, inappropriate sensing of
mtNA has recently been demonstrated in Mendelian diseases
due to mutations in PNPT1, NGLY1 and ATAD3A (73, 76, 77)
(Figure 2). These observations highlight mechanisms involved in
mitochondrial homeostasis directly relevant to the avoidance of
aberrant sensing of mtNA in human health.

Dhir et al. described lossof themtRNAexoribonucleasePNPT1to
result in an accumulation and cytosolic leakage of dsRNA derived
from bidirectional mtDNA transcription, triggering IFN through a
BAX/BAK-dependent mechanism (76). Consistent with the type I
interferonopathy disease spectrum, patients carrying hypomorphic
mutations in PNPT1 display enhanced IFN signaling in blood (and,
in some cases, intracerebral calcification, a well-known clinical
feature of IFN activation) (76, 78). Mutations in NGLY1, encoding
conserved deglycosylation enzyme NGLY1, cause a severe
neurodevelopmental phenotype (79, 80). In a mouse model, Yang
et al. showed that loss of NGLY1 also results in chronic activation of
cytosolic nucleic acid sensing pathways, likely induced by a
combination of mtRNA and mtDNA (73). Here, mitochondrial
quality control may be the broad link between NGLY1 and mtNA
homeostasis, involving mitophagy and/or proteasome function.
Relating to the clinical phenotype, an apparent resistance to viral
infection was noted, and increased ISG expression recorded in
patient-derived cell lines, although the contribution of IFN to the
observed neuropathology remains to be defined (73).

Very recently, we directly implicated, for the first time, mtDNA
sensing in IFN induction in a Mendelian disease context (77).
Specifically, we identified two patients demonstrating chronically
enhanced IFN signaling in blood and features of systemic sclerosis, a
rare autoimmune disorder where IFN signaling and mtDNA have
been suggested to play a role in pathogenesis (81–83). Surprisingly,
these patients carried dominant negative heterozygous mutations in
ATAD3A, encoding the mitochondrial AAA ATPase protein
ATAD3A, previously described to cause mitochondrial disease
with neurological features (84, 85). Importantly, we also observed
enhanced IFN signaling in patients with a predominant neurological
clinical phenotype, suggesting a consistent link between ATAD3A
mutations and IFN signaling. We demonstrated cytosolic leakage of
mtDNA, and cGAS-STING-dependent IFN induction (Figure 2).
AlthoughVDAC1 oligomers seemed to be relevant, themechanisms
of mtDNA cytosolic relocalization will require further study, and a
direct role for ATAD3A cannot be excluded. Indeed, ATAD3A has
August 2021 | Volume 12 | Article 729763
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been implicated in multiple mitochondrial processes, including
mtDNA maintenance, mitochondrial ultrastructural organization,
mitochondria-ER junction stabilization and cholesterol biosynthesis
(86–90).

Interestingly, hypomorphicmutations inRNASET2 andTRNT1
mayalsobeassociatedwithperturbedmtNAhomeostasis leading to
enhanced IFN signaling (91, 92). Mutations in RNASET2 cause a
phenotype mimicking congenital viral infection, reminiscent of
some type I interferonopathies (78, 93), and RNASET2 has been
suggested to play a role in mitochondrial ribosomal RNA
degradation in the IMS (94). Further, IFN pathway induction has
been observed in some patients withmutations inTRNT1 (91), and
TRNT1 is required for tRNA aminoacylation ofmitochondrial and
cytosolic tRNA, with protein dysfunction leading to defective
mitochondrial translation (95). Of interest, a Mendelian
metabolic disease due to deficiency in mevalonate kinase,
involved in the biosynthesis of cholesterol and isoprenoids, may
also involve mitochondrial damage, mtDNA release and sensing
(96). However, to date, only inflammasome pathway activation,
leading to IL1b induction,hasbeen implicatedmechanistically (97).
Since anti-IL1b signaling treatments are only partially effective in
this context (98, 99), one might speculate that enhanced IFN
signaling may be contributive to the phenotype (100–102). We
Frontiers in Immunology | www.frontiersin.org 5
also note that in iPSC-derived motor neurons from patients
carrying TDP-43 mutations associated with ALS, mtDNA release
and sensing lead to IFN induction, although the relevance of IFN
signaling to ALS remains unclear (19).

Interestingly, mtRNA relocalization and sensing have been only
infrequently implicated in the numerous studies reporting in vitro
mitochondrial stress leading to IFN induction (46, 61, 63, 64).
However, given that mtDNA depletion, used in vitro to prove the
implication of mtDNA, also results in mtRNA depletion, mtRNA
may have a currently unappreciated role in this context (even when
demonstrating DNA-dependent sensing). Further, since the
majority of dsRNA detected in the cytosol is of mitochondrial
origin (28), and PKRbindsmtRNAat steady state (66), constitutive
leakage of mtRNA may prevent the recording of acute mtRNA
sensing. Indeed, mtRNAmay bemore ‘mobile’ thanmtDNA, since
it is untethered to the mitochondrial membrane (unlike mtDNA
nucleoids organized around TFAM) (13). Alternatively, it may be
thatmtRNAabundanceandcontainmentare tightly regulated,with
redundant mitochondrial and cytosolic nucleases preventing their
accumulation (103, 104), and/or thatmtRNA cytosolic leakage and
sensing are more harmful to cells in vitro, leading to toxic
translational arrest through activation of the PKR pathway
(66, 105).
FIGURE 2 | Potentially common pathogenic mechanisms in type I interferonopathy and mitochondrial disease and therapeutic perspectives. Due to the
immunostimulatory potential of mtNA, active processes are required to ensure mitochondrial homeostasis and immunological quiescence. These include degradation
of mtdsRNA by PNPT1, maintenance of mtDNA and mitochondrial structure by molecules such as ATAD3A, and metabolism of mtRNA by proteins such as
RNASET2 and TRNT1. More general mitochondrial quality control mechanisms are involved as well, including mitophagy and mitochondrial proteases. Defects in
these processes may result in both mitochondrial disease and a type I interferonopathy state. Indeed, loss of function of PNPT1 and ATAD3A, and possibly of
RNASET2 and TRNT1, can lead to mitochondrial stress and mtNA cytosolic leakage and sensing. In the type I interferonopathies linked to mutations in PNPT1 and
ATAD3A, in addition to mitochondrial dysfunction, there is chronic induction of IFN and ISGs. This might also be a feature of other mitochondrial diseases, which
may have gone undetected due to lack of relevant investigations. Identifying immunostimulatory mtNA and IFN induction as pathogenic mechanisms opens new
therapeutic perspectives, including by inhibition of type I IFN signaling (JAK inhibitors (JAKi), anti-IFN system antibodies), mtNA sensing (cGAS/STING inhibitors),
mitochondrial membrane opening [VBIT-4, cyclosporin A (CsA)], or by mitophagy induction.
August 2021 | Volume 12 | Article 729763
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The above cases illustrate the potential of the study of type I IFN-
related Mendelian disease to define novel cellular functions, revealed
by hypomorphic or gain-of-function mutations, providing insights
into poorly understood mechanisms of mtNA retention.
AN OVERLAP BETWEEN TYPE I
INTERFERONOPATHY AND
MITOCHONDRIAL DISEASE?

Mutations inmore than 350 nuclear ormtDNA-encoded genes are
known to result in mitochondrial disease, involving diverse tissues
and responsible for heterogenous clinical phenotypes (106, 107).
Clinical characterization is lengthy and difficult, and, where a
genetic diagnosis is unavailable, relies on the identification of
metabolic changes, neuropathological manifestations and
mitochondrial dysfunction in muscle biopsy (106, 108, 109).
While the contribution of defective oxidative phosphorylation
and bioenergetic and metabolic stress is clear, the findings
summarized above suggest that mtNA sensing driving IFN
signaling may also be relevant to mitochondrial disease
pathology. Thus, disease caused by mutations in PNPT1 and
ATAD3A are considered as bona fide primary mitochondrial
disorders, and might now also be included in the type I
interferonopathy grouping (76, 77, 106). Mitochondrial disease is
typically accompanied by various types of mitochondrial
dysfunction and/or due to specific defects in mtNA metabolism
(106, 108), with the potential to cause mtNA release and sensing.
Interestingly, it has been suggested that enhanced IFN signaling,
linked to mtDNA cytosolic release, can occur in mitochondrial
syndromes due to single large-scale mtDNA deletions, associated
with clinical features overlapping with those seen in certain type I
interferonopathies (such as basal ganglia calcification and skin
lesions) (110). Additionally, some mitochondrial disease mouse
models manifest exacerbated IFN signaling associated with
engagement of cytosolic mtDNA sensing, e.g. upon loss of the
mitochondrial proteases CLPP and YMEL1 (56, 111). Similarly,
multisystemic dysfunction caused by mtDNA mutation
accumulation in the proofreading-deficient POLG mutator
mouse can be rescued by ablation of cGAS-STING activity or IFN
signaling (112). Whether maladaptive inflammation is observed in
the corresponding human mitochondrial diseases has not
been explored.

It is important to emphasize that the evaluation of IFN signaling
is still not routine in medical practice (113, 114), even for
inflammatory diseases. Thus, even if autoinflammation is not
typically reported in mitochondrial disease (115–117), we suggest
that increased IFN signaling may be more broadly associated with
mitochondrial dysfunction than is currently appreciated,
potentially contributing to the clinical phenotype beyond
bioenergetic or metabolic defects. Indeed, enhanced interferon
signaling related to ATAD3A dysfunction was only recognized
six years after gene mutations were initially described (77, 84, 85).
Further indicationof a possible relationshipbetweenmitochondrial
disease and the type I interferonopathies comes fromshared clinical
features, such as intracranial calcification being an established sign
Frontiers in Immunology | www.frontiersin.org 6
in both settings (3, 118). Similarly, bilateral striatal necrosis is
recurrent in mitochondrial disease, and consistently described in
the context of mutations in both PNPT1 (78) and the type I
interferonopathy due to ADAR1 loss-of-function (119). Likewise,
dystonia, peripheral neuropathy, hypertrophic cardiomyopathy
and isolated spastic paraparesis, recorded in patients with
mutations in ATAD3A (77, 84, 85), are features of interferon-
related disease (120, 121).
PERSPECTIVES

The power of studying Mendelian diseases lies in the
deconvolution of complex processes relevant to human health.
Thus, if further validated, an overlap between type I IFN-related
and mitochondrial diseases would, in combination, facilitate our
understanding of the safeguards in place to prevent inappropriate
mtNA sensing leading to harmful IFN induction. In vitro
screening approaches using knock down strategies are hampered
by the potential induction of cellular toxicity, and do not
necessarily afford the mechanistic insights that studying gain-of-
function and hypomorphic mutations can provide. Indeed, the
diversity of processes described so far as contributing to mtNA
leakage and sensing upon mitochondrial stress, suggests that the
immunological quiescence of mtNA is achieved through currently
incompletely understood, and difficult to predict, active processes.

Clearly, the extent and significance of an overlap between
mitochondrial dysfunction and type I IFN induction in human
disease needs to be defined, perhaps foremost by the systematic
screening of IFN signaling status in the blood and cerebrospinal fluid
of mitochondrial disease patients. Such studies could have important
clinical implications, both from a diagnostic and therapeutic
perspective. Thus, therapies targeting IFN signaling, and showing
clinical benefits in type I interferonopathies, are available (JAK
inhibition) (122, 123), and others are in development [e.g. anti-IFN
(receptors) antibodies and STING inhibitors] (28, 124, 125)
(Figure 2). These could provide a new therapeutic angle for
mitochondrial disorders, most lacking real treatment options (126).
Proving the contribution of pathogenic IFN signaling to disease will
require the observation of clinical improvement with such IFN-
targeted therapies. Therapeutic approaches could also target
broader processes beyond blocking IFN signaling in diseases
implicating mtNA sensing, e.g. through the removal of ruptured
mitochondria by inducingmitophagy (17, 74, 127, 128) (Figure 2). In
this regard, two patients with mutations in ATAD3A have been
treated for inflammatory features by rapamycin (77), used as an
immunosuppressant (129), but which, one could speculate, may act
as a mitophagy inducer in this case. Indeed, rapamycin has shown
benefit in a few patients with a mitochondrial encephalopathy (130),
and a clinical trial of rapamycin is planned for the mitochondrial
disorder Leigh syndrome (126).

Taking account of the potential sensing of escaped mtNA in
mitochondrial disease might shed light on pathogenesis, and
explain poorly understood features of these diseases such as
variable clinical penetrance, specificity of tissue involvement only
partially correlated to bioenergetic demands, and exacerbation of
mitochondrial disease after infection or metabolic challenge
August 2021 | Volume 12 | Article 729763
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(106, 109). Conversely, mitochondrial damage due to mutations
in mitochondrial genes as a cause of type I interferonopathies
lacking a genetic cause is also worthy of closer consideration.
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