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Abstract

Background

Understanding epidemiological variables affecting gametocyte carriage and density is

essential to design interventions that most effectively reduce malaria human-to-mosquito

transmission.

Methodology/Principal findings

Plasmodium falciparum and P. vivax parasites and gametocytes were quantified by qPCR

and RT-qPCR assays using the same methodologies in 5 cross-sectional surveys involving

16,493 individuals in Brazil, Thailand, Papua New Guinea, and Solomon Islands. The pro-

portion of infections with detectable gametocytes per survey ranged from 44–94% for P. fal-

ciparum and from 23–72% for P. vivax. Blood-stage parasite density was the most
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important predictor of the probability to detect gametocytes. In moderate transmission set-

tings (prevalence by qPCR>5%), parasite density decreased with age and the majority of

gametocyte carriers were children. In low transmission settings (prevalence<5%), >65% of

gametocyte carriers were adults. Per survey, 37–100% of all individuals positive for gameto-

cytes by RT-qPCR were positive by light microscopy for asexual stages or gametocytes

(overall: P. falciparum 178/348, P. vivax 235/398).

Conclusions/Significance

Interventions to reduce human-to-mosquito malaria transmission in moderate-high

endemicity settings will have the greatest impact when children are targeted. In contrast, all

age groups need to be included in control activities in low endemicity settings to achieve

elimination. Detection of infections by light microscopy is a valuable tool to identify asymp-

tomatic blood stage infections that likely contribute most to ongoing transmission at the time

of sampling.

Author summary

Plasmodium vivax and Plasmodium falciparum cause the vast majority of all human

malaria cases. Across all transmission settings, a large proportion of infections of the two

species remain asymptomatic. These infections are not diagnosed and treated by control

programs focusing on clinical cases. They can carry gametocytes, the sexual stage of the

parasite that establishes infections in mosquitos, thus asymptomatic infections contribute

to transmission. In order to determine who is likely to contribute to transmission, game-

tocyte densities were measured by sensitive molecular methods in afebrile individuals in

four countries. The proportion of infections with gametocytes varied greatly among sur-

veys, and was higher in regions that had experienced low transmission for extended peri-

ods of time. In moderate-high transmission settings, gametocyte densities were

particularly high in children below six years, highlighting the importance that interven-

tions to reduce transmission include this age group. The majority of gametocyte carriers

was positive by light microscopy. The comprehensive data on gametocyte carriage pre-

sented here lays the foundation for the development of more effective screen and treat

activities to reduce malaria transmission.

Introduction

A variety of malaria control interventions aim to reduce the transmission of parasites from the

human to the mosquito host. Vector control tools such as bed nets and indoor residual spray-

ing [1] lower the risk for infection in humans, and for onward transmission. Additional public

health interventions primarily aimed at reducing human-to-mosquito transmission are cur-

rently being applied or developed, e.g. mass screening and treatment [2], mass drug adminis-

tration [3], transmission blocking vaccines [4], and ivermectin administration [5].

Interventions that reduce human-to-mosquito transmission are most effective when they

target individuals within a population who contribute most to transmission. Not all individuals

with blood-stage parasitemia are equally infectious to mosquitos. Only a small fraction of all

parasites in the human host develop into sexual stages termed ‘gametocytes’; parasite
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development in the mosquito relies on uptake and subsequent mating of male and female

gametocytes [6].

Developing P. falciparum gametocytes are sequestered in extravascular sites such as bone

marrow for 1–2 weeks [7, 8]. Gametocytes appear in the blood stream after the first wave of

asexual parasites, and, in the case of symptomatic malaria cases, are detectable by microscopy

often only 1–2 weeks after presentation with fever [9]. Mature gametocytes infective to mos-

quitos circulate in peripheral blood for a period of a few days to up to three weeks [10–12].

Most commonly used antimalarials used to treat symptomatic cases do not clear sequestered

or mature gametocytes. This is also the case for artemisinin combination therapy (ACT), the

first-line drug in most P. falciparum endemic countries. As a result of the continued release of

sequestered gametocytes after treatment, and their circulation for days to weeks, individuals

can carry gametocytes for several weeks after treatment [12–14]. Primaquine is the only

approved drug that clears P. falciparum gametocytes. Low-dose primaquine has been shown to

reduce duration of gametocytemia after treatment [15, 16].

P. vivax gametocytes infective for mosquitoes appear within 2–3 days after blood-stage asexual

parasitemia commences and might circulate for only 2–3 days [17, 18]. Gametocytes are present

in the majority of clinical cases [19–21]. P. vivax gametocytes are sensitive to common drugs

such as chloroquine or artemether-lumefantrine. In drug trials, up to 90% of patients were game-

tocyte-free one day after treatment, and virtually none carried gametocytes at day 7 [20–22].

In most malaria endemic regions the vast majority of infections are asymptomatic, i.e. not

associated with fever. 50–80% of infections are not detectable by microscopic inspection of

blood smears [23, 24]. Since gametocytes account for only a small proportion of all parasites in

peripheral blood, they are more difficult to detect by light microscopy (LM) than asexual para-

sites. The development of molecular methods to detect gametocyte-specific RNA transcripts

by nucleic acid sequence-based amplification (NASBA) or reverse-transcriptase quantitative

PCR (RT-qPCR) has allowed for detection of submicroscopic gametocytemia [25, 26]. How-

ever, few studies have reported gametocyte carriage in asymptomatic individuals in non-Afri-

can settings, especially with respect to P. vivax [27–33]. It is not known whether gametocyte

densities differ across regions of different transmission intensities, and the distribution of

gametocyte carriers among various demographic groups within a community is not well

understood. Knowledge of these epidemiological variables is needed to target transmission-

reducing interventions to those at highest risk of gametocyte carriage and to understand the

long-term impact of these interventions on progress towards malaria elimination.

To advance our understanding of P. falciparum and P. vivax gametocyte carriage across a

range of transmission settings, five cross-sectional surveys involving a total of 16,493 individu-

als were conducted in Brazil, Thailand, Papua New Guinea (PNG) and Solomon Islands [27–

31]. The surveys included endemic areas where transmission was moderate to high or had

recently decreased (PNG in 2010 and 2014, Solomon Islands) and regions where transmission

was low, with P. vivax being the predominant parasite (Brazil, Thailand). Blood samples were

collected from the general population irrespective of symptoms of malaria illness. Total blood-

stage parasites and gametocytes were quantified by LM and sensitive qPCR and RT-qPCR

assays using the same methodology across all studies, allowing for the first direct comparison

across transmission intensities.

Study sites and methods

Ethics statement

The study was approved by the PNG Institute of Medical Research IRB (1116/1204), the PNG

Medical Research Advisory Committee (MRAC numbers 11.21, 05.20, 12.06, 12.01), the
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WEHI Human Research Ethics Committee (WEHI HREC, 12/09), the Case Western Reserve

University Hospitals of Cleveland Medical Center (CWRU UHCMC, 05-11-11), the Solomon

Islands National Health Research Ethics Committee (HRC12/022), the Ethics Committee of

the Faculty of Tropical Medicine, Mahidol University, Thailand (EC approval number MUTM

2012-044-01), the Brazilian National Committee of Ethics (CONEP) (349.211/2013), and by

the Committee of Ethics for Clinical Investigation from Barcelona Hospital Clinic (7306/

2012). Prior to sample collection, the aims of the study were explained to all individuals and

informed written consent was obtained from participants or, in case of minors, from their

guardians.

Study sites and sample collection

Details on study sites are given in Table 1. Community sensitization took place 1–2 weeks

prior to sample collection. Convenience sampling was applied to select households for the sur-

veys. All members of the selected households were noted on a list, and individuals above 6

months of age were invited to participate. Sampling started in the morning and continued

throughout the day. As children might be in school during this time and adults away for work,

efforts were made to sample school-aged children and working adults after they returned

home. The age and gender distributions of the study participants for each survey is given in S1

Table, and is expected to be representative for the population. Overall, the distributions were

similar across surveys, with the exception of a lower proportion of all sampled being small chil-

dren in Brazil and Thailand.

The study sites experience little or moderate seasonality in transmission. In PNG, the rainy

season is from December to April. Both surveys were conducted in May to July, i.e. after the

rainy season. There is minimal seasonal variation in Solomon Islands; samples were collected

in May to June. In Thailand, the peak transmission season is from April to July, and samples

were collected in September and October. In Manaus, Brazil, highest incidence occurs from

May to September. Half of the samples were collected in September to early January, and the

other half in August to September.

Form each participant, 250 μL blood was collected by finger prick into 2 mL EDTA micro-

tainers (BD). Hemoglobin levels were determined using the HemoCue handheld meter. For

RNA extraction and gametocyte detection, 50 μL blood was transferred into tubes containing

250 μL of RNAprotect (Qiagen) in the field. Samples in RNAprotect were kept on ice packs in

the field and transferred to -80˚C storage every evening and kept there until RNA extraction.

The remaining 200 μL blood were kept in the EDTA microtainer, also kept on ice packs, and

transferred to -20˚C storage until DNA extraction.

Table 1. Cross-sectional surveys included in this study.

Survey Location Year Individuals Measures of recent malaria transmission Reference

PNG, Madang Province 2010 2083 Prevalence by PCR 41.7% P. vivax and 42.1% P. falciparum in 2006. After bed net roll out in

2007–2008, 4–5 fold decrease of clinical incidence in children, and 3-fold decrease of P. vivax
molecular force of infection.

[27, 28]

2014 2517

Solomon Islands, Ngella, Central

Islands Province

2012 3501 10-fold decline in clinical incidence in last 20 years across Solomon Islands. In Tetere,

Guadalcanal Province, prevalence by microscopy was 12.9% P. falciparum and 19.1% P. vivax
in 2004–2005.

[30]

Thailand, Kanchanburi and

Ratchaburi Provinces

2013 4309 Prevalence by LM 0.1–5.2% P. falciparum and 0.2–5.9% P. vivax in 2000–2004 [29]

Brazil, Manaus 2012–

2013

4083 Prevalence by PCR <1–2% P. falciparum and 8.5–15% P. vivax in different regions in the

Amazon in 2002–2008. Since then 10-fold decrease in prevalence, virtually no P. falciparum
left.

[31]

https://doi.org/10.1371/journal.pntd.0009672.t001

PLOS NEGLECTED TROPICAL DISEASES Asymptomatic P. falciparum and P. vivax gametocyte reservoir

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009672 August 27, 2021 4 / 18

https://doi.org/10.1371/journal.pntd.0009672.t001
https://doi.org/10.1371/journal.pntd.0009672


Molecular methods

DNA was extracted from 200 μL whole blood kept in EDTA microtainers and eluted in 200 μL

elution buffer. Parasites were quantified by qPCR using the 18S rRNA gene as target [34]. The

assay used detects one copy of the gene. 4 μL DNA was screened by qPCR, thus the limit of

detection was 0.25 parasites/μL blood (i.e. 1 genome per 4 μL DNA). RNA was extracted from

50 μL whole blood kept in RNAprotect, and eluted in 50 μL elution buffer. 2 μL RNA was

screened by RT-qPCR. Gametocytes were quantified by RT-qPCR of the female gametocyte-

specific transcripts pfs25 and pvs25 [35].

Procedures for sample collection, qPCR, and RT-qPCR were standardized between all sites.

Results of individual cross-sectional surveys have been published previously [28–31, 35]. For

qPCR and RT-qPCR, standardized plasmids were distributed to all laboratories and run along

samples for relative quantification and estimation of sensitivity. Sensitivity of all assays was

0.5–1 copies/uL DNA or RNA. For absolute measurements of copy numbers, a subset of sam-

ples from each laboratory was quantified by droplet digital PCR [36]. Due to different proce-

dures of RNA sample collection in Solomon Islands, only positivity, but not pvs25 and pfs25
copy numbers, were included in the analysis. Expert microscopy was conducted in PNG, Solo-

mon Islands, and for parts of the survey in Brazil. To determine multiplicity of infection

(MOI), P. falciparum infections were genotyped by msp2 [37], and P. vivax infections were

genotyped by msp1F3 and MS2 [38].

Data analysis

The following definitions are used: ‘proportion gametocyte-positive infections’ describes the

number of gametocyte carriers divided by the number infected with asexual parasites and/or

gametocytes; ‘population gametocyte prevalence’ is the prevalence of gametocytes among all

individuals, infected and non-infected [39].

Multivariable regression models were used to predict factors associated with the proportion

gametocyte-positive infections and gametocyte density. Parasite densities were log10 trans-

formed for all calculations. To correct for imperfect detection of gametocytes and include low-

density infections without gametocytes detected in multivariable models, +0.1 was added to all

gametocyte density values prior to log10-tranformation. For multivariable analyses, individuals

were grouped into age classes�6, >6–12,>12–20, and>20 years. Survey and age group were

included as fixed effects. The ratio of pfs25 or pvs25 transcripts per parasite genome was

assessed, representing the proportion of gametocytes among all parasites. Infections (Pf:
n = 12, Pv: n = 5) with densities at the technical limit of detection of 0.25 copies/μL blood (i.e.

1 DNA/RNA template per PCR) were excluded from correlation analysis as quantification is

imprecise at very low densities, and including them at a set density of 0.25 copies/μL would

artificially increase correlation. All data is available in supplementary file S1 Data.

Results

Prevalence and parasite density

Prevalence of P. falciparum by qPCR ranged from 0.14% (Solomon Islands, 5/3501) to 18.5%

(PNG 2010, 385/2083), and P. vivax prevalence from 3.3% (Thailand, 144/4309) to 19.7%

(PNG 2014, 496/2517) (Table 2 and Fig 1). Light microscopy (LM) detected 27.9–80.0% of P.

falciparum, and 13.3–51.8% of P. vivax infections positive by qPCR (Table 2). Mean parasite

densities of both species differed significantly between surveys (one-way ANOVA P<0.0001),

with no clear trend between population parasite prevalence and mean parasite densities

(Table 2 and Fig 1). In each survey, 80.0–94.5% of all P. falciparum infections and 80.0–97.5%
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of all P. vivax infections (by qPCR) were asymptomatic, i.e., not accompanied by measured or

reported febrile illness in the preceding 48 hours.

Gametocyte carriage

By pfs25 RT-qPCR, the proportion of gametocyte-positive infections differed significantly

between surveys (Chi-Square test, P<0.001, Table 2). 93.75% (15/16), 80.0% (4/5), and 70.8%

(34/48) of P. falciparum qPCR-positive individuals carried gametocytes in Brazil, Solomon

Islands and Thailand, respectively, and 42.9% and 60.5% in PNG 2014 and PNG 2010, respec-

tively. This resulted in a population P. falciparum gametocyte prevalence ranging from 0.11%

in Solomon Islands to 11.2% in PNG 2010 (Table 2). In univariate analysis across all surveys,

no correlation between P. falciparum DNA copy number and pfs25 copy numbers was

observed (gametocyte-positive infections above technical limit of detection included, n = 379,

R2 = 0.013, P = 0.804, Fig 2A). However, each 10-fold increase in DNA copy number increased

the odds to detect P. falciparum gametocytes 1.59-fold (all infections included, n = 676,

P<0.001).

By pvs25 RT-qPCR, P. vivax gametocytes were detected in 22.6% and 23.5% of infected

individuals in PNG 2014 and Solomon Islands, and in 48.9%, 53.7%, and 71.5% of infections

Table 2. Parasite and gametocyte prevalence by LM and qPCR and RT-qPCR, and parasite densities by qPCR.

PNG 2010 PNG 2014 Solomon Is. Thailand Brazil

Number of participants 2083 2517 3501 4309 4083

P. falciparum
Prevalence by LM1 7.44% (155/2083) 2.74% (69/2513) 0.11% (4/3501) NA 0.55% (11/2010)

Prevalence by PCR 18.48% (385/2083) 8.98% (226/2517) 0.14% (5/3501) 1.11% (48/4309) 0.39% (16/4083)

qPCR copies/uL [CI95] 26.0 [18.7–36.0] 16.4 [11.4–23.0] 7.7 [0.9–63.8] 5.6 [2.4–13.5] 30.7 [6.4–147.1]

Proportion LM positive 37.40% (144/385) 27.88% (63/226) 80.00% (4/5) NA 63.64% (7/11)

Infected + febrile/reported fever 12.77% (48/376) 5.48% (12/219) 20.0% (1/5) 8.7% (4/46) 16.67% (2/12)

Gametocyte prevalence by RT-qPCR 11.19% (233/2083) 3.85% (97/2517) 0.11% (4/3501) 0.86% (37/4309) 0.37% (15/4083)

Proportion gametocyte positive2 60.52% (233/385) 42.92% (97/226) 80% (4/5) 70.83% (34/48) 93.75% (15/16)

Proportion gametocyte carriers LM positive3 54.51% 37.11% 100.00% NA 78.57%

P. vivax
Prevalence by LM1 7.00% (146/2083) 2.70% (68/2513) 3.63% (127/3501) NA 1.79% (36/2010)

Prevalence by PCR 12.96% (270/2083) 19.71% (496/2517) 13.37% (468/3501) 3.34% (144/4309) 3.82% (156/4083)

qPCR copies/uL [CI95] 4.8 [3.98–5.9] 2.0 [1.7–2.4] 1.1 [1.0–1.3] 2.2 [1.5–3.1] 10.0 [6.7–14.7]

Proportion LM positive 51.85% (140/270) 13.31% (66/496) 27.14% (127/468) NA 37.21% (32/86)

Infected + febrile/reported fever 8.27% (22/266) 2.52% (12/477) 20.0% (93/465) 8.51 (12/141) 17.42% (27/155)

Gametocyte prevalence by RT-qPCR 6.34% (132/2083) 4.45% (112/2517) 3.14% (110/3501) 2.39% (103/4309) 2.03% (83/4083)

Proportion gametocyte positive2 48.89% (132/270) 22.58% (112/496) 23.5% (110/468) 71.53% (103/144) 53.21% (83/156)

Proportion gametocyte carriers LM positive3 84.09% 39.64% 49.09% NA 58.14%

P. falciparum/P. vivax co-infections4

Prevalence by LM 0.72% (15/2083) 0.32% (8/2513) 0% (0/3501) NA 0% (0/2010)

Prevalence by qPCR 3.90% (81/2083) 1.63% (41/2517) 0.14% (5/3501) 0.26% (11/4309) 0.02% (1/4083)

NA = not available
1 Positive by LM for asexuals and/or gametocytes. In Brazil, LM was conducted only on a subset of n = 2010 samples.
2 Proportion of qPCR positive samples with gametocytes detected by RT-qPCR
3 Proportion of study subjects positive for gametocytes by RT-qPCR with asexual parasites and/or gametocytes detected by LM
4 Data in the Table for P. falciparum and P. vivax includes co-infections with the respective other species. Prevalence of co-infections represents co-infections among all

individuals sampled (not among those positive by either species).

https://doi.org/10.1371/journal.pntd.0009672.t002
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in PNG 2010, Brazil, and Thailand (P<0.001, Table 2). This resulted in a population P. vivax
gametocyte prevalence of 2.0–4.3%. P. vivax parasite and gametocyte densities were strongly

correlated (n = 415, R2 = 0.69, P<0.0001, Fig 2B), and a 10-fold increase in DNA copy number

increased the odds of detecting P. vivax gametocyte by 2.91-fold (n = 1501, P<0.001).

To assess whether the proportion of gametocytes among all blood-stage parasites differs

between infections of different parasite density, the number of pfs25 or pvs25 transcripts per P.

falciparum or P. vivax genome among gametocyte-positive samples was plotted (Fig 3A and

3B, infections with�5 DNA copies excluded). For P. falciparum, a 0.39-fold decrease in the

proportion gametocytes per 10-fold increase in parasite density was observed (n = 255,

P<0.001), while no significant change was observed for P. vivax (n = 243, 1.19-fold increase

per 10-fold increase in parasite density, P = 0.057). A febrile episode and/or antimalarial treat-

ment in the preceding 2 weeks increased the proportion gametocytes significantly for P.

Fig 1. Parasite prevalence and mean parasite density by qPCR in five cross-sectional surveys. Error bars represent

95% confidence intervals.

https://doi.org/10.1371/journal.pntd.0009672.g001

Fig 2. Relationship of P. falciparum (A) and P. vivax (B) parasite density by qPCR and pfs25/pvs25 transcript numbers by RT-qPCR.

https://doi.org/10.1371/journal.pntd.0009672.g002
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falciparum (n = 255, 27 episodes, Wilcoxon rank sum test P = 0.0002, Fig 3C), but had no

impact on P. vivax gametocyte proportions (n = 288, 4 episodes, P = 0.4319, Fig 3D).

Multivariate risk factors of gametocyte positivity and density

In multivariate analysis across all surveys, parasite density was a strong predictor for the prob-

ability that a sample was gametocyte-positive (Table 3). Each 10-fold increase in P. falciparum
parasite density resulted in a 1.59-fold increase in the odds of gametocyte positivity, and in a

1.9-fold increase in gametocyte densities (Table 3). The correlation was much stronger for P.

vivax, where each 10-fold increase in parasite density resulted in a 3.15-fold increase in the

odds of gametocyte positivity and a 3.9-fold increase in gametocyte density (Table 3). Concor-

dance between P. vivax genome and gametocyte density was even higher for infections above 5

Fig 3. Proportion of gametocytes among all blood-stage parasites. Proportion P. falciparum (A) and P. vivax (B) gametocytes

among all blood-stage parasites by parasite density with LOWESS splines (red). Very low-density infections with<5 DNA

copies/uL are excluded, as quantification (and thus the calculated proportions) might be inaccurate at low densities. Panels C

and D show transcript vs. total parasite density stratified into those infections with and without a febrile episode in the 2 weeks

prior to sampling (self-reported febrile illness or antimalarial treatment). Boxplots show median (solid line), 25th and 75th

percentile (box), whiskers extend up to 1.5-fold the interquartile range.

https://doi.org/10.1371/journal.pntd.0009672.g003
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DNA copies/uL (n = 373), with 9.0-fold more gametocytes per 10-fold increase in genome

density.

Among P. falciparum positive individuals, the odds to detect gametocytes was 54% lower

(P<0.0001) and gametocyte densities were 69% lower (P<0.0001) in individuals co-infected

with P. vivax. Reported malaria or anti-malarial treatment in the past 2 weeks was associated

with higher P. falciparum gametocyte prevalence and densities (Table 3). Parasite densities

strongly decreased with increasing age. Even when including parasite density as confounder,

P. falciparum gametocyte positivity and density decreased with increasing age, i.e., gametocyte

densities decrease to a greater extent than blood-stage parasitemia (Table 3). Among P. vivax
positive individuals, gametocyte densities, but not positivity decreased with age (Table 3).

Apart from DNA copy numbers, no other significant associations were observed.

Factors affecting gametocyte density were assessed independently in PNG 2010 (moderate-

high transmission), PNG 2014 (recently decreased transmission), and Thailand and Brazil

pooled (long-time low transmission) (Table 4). For PNG 2010 results were very similar to

Table 3. Multivariate predictors of gametocyte positivity and density.

Gametocyte positivity

P. falciparum (n = 647) P. vivax (n = 1501)

OR P OR P
log10 Pf/Pv copies 1.59 <0.0001 3.15 <0.0001

PNG 2010 (reference) [Reference] [Reference]

PNG 2014 0.55 0.40

Solomon Is. 8.54 <0.0001 0.62 <0.0001

Thailand 2.99 5.60

Brazil 11.03 0.65

age: 0–6 y (reference) [Reference]

age: >6–12 y 1.13

age: >12–20 y 0.56 0.0006

age: >20 y 0.47

P. vivax PCR positive 0.41 <0.0001

Reported malaria last 2 weeks 2.28 0.032

Gametocyte density

P. falciparum (n = 642) P. vivax (n = 1041)

Coef. P Coef. P
log10 Pf/Pv copies 0.20 <0.0001 0.59 <0.0001

PNG 2010 [Reference] [Reference]

PNG 2014 -0.44 -0.08

Thailand 0.58 <0.0001 0.83 <0.0001

Brazil 1.73 0.02

age: 0–6 y (reference) [Reference] [Reference]

age: >6–12 y -0.33 -0.07

age: >12–20 y -0.76 <0.0001 -0.18 0.0167

age: >20 y -0.82 -0.20

P. vivax PCR positive -0.51 <0.0001

Reported malaria last 2 weeks 0.82 <0.0001

(A) Gametocyte positivity, (B) gametocyte density. Additional factors tested, but not found to be associated, included fever measured at the day of survey or reported

from the past 2 days, and reported malaria or antimalarial treatment in the past 2 weeks. In each subgroup, only variables with a significant effect (P<0.05) on

gametocyte positivity or densities are shown.

https://doi.org/10.1371/journal.pntd.0009672.t003
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pooled data from all surveys. In PNG 2014, for P. falciparum, gametocyte densities decreased

with age and were lower in individuals co-infected with P. vivax, but were not significantly

associated with parasite density (P = 0.085). In Thailand and Brazil, for both species, and for P.

vivax in PNG 2014, no other factors than parasite density were significantly associated with

gametocyte density.

As a result of the correlation of parasite and gametocyte density and the decreasing

parasite densities with age in both PNG surveys, for both species the majority of individu-

als with detectable gametocytes were children. 48–78% of gametocyte carriers were <12

years (Fig 4). In contrast, 65–67% of gametocyte carriers were >20 years in Thailand and

Brazil.

When including parasite density in multivariable analysis to correct for differences in mean

density among surveys, the proportion gametocyte positive infections, and gametocyte densi-

ties of both species differed significantly between surveys (P<0.0001, Table 3). The probability

to detect gametocytes increased in all surveys with increasing genome density. An interaction

analysis did not reveal a significant difference of this increase between surveys (Pf: n = 676,

P = 0.471; Pv: n = 1501, P = 0.512). Likewise, P. falciparum and P. vivax gametocyte densities

were not affected by an interaction between DNA copies and survey (Pf: n = 375, P = 0.877, Pv:

n = 415, P = 0.132).

Hemoglobin measurements and multiplicity of infection data were available from the sur-

veys in PNG and Solomon Islands; neither affected gametocyte positivity or density in multi-

variate analysis (S2 and S3 Tables).

Table 4. Mutlivarable predictors of P. falciparum and P. vivax gametocyte density under different transmission scenarios.

A) P. falciparum
PNG 2010 (n = 364) PNG 2014 (n = 226) Thailand + Brazil (n = 59)

Coef. P Coef. P Coef. P
log10 Pf copies 0.34 <0.001 0.37 0.015

age: 0–6 y (reference) [Reference] [Reference]

age: >6–12 y -0.37 -0.42

age: >12–20 y -0.71 0.002 -1.01 <0.001

age: >20 y -0.84 -1.03

Pv PCR positive -0.51 0.002 -0.81 <0.001

Reported malaria last 2 weeks 1.13 <0.001

B) P. vivax
PNG 2010 (n = 252) PNG 2014 (n = 496) Thailand + Brazil (n = 300)

Coef. P Coef. P Coef, P
log10 Pv copies 0.63 <0.001 0.47 <0.001 0.62 <0.001

age: 0–6 y (reference) [Reference]

age: >6–12 y -0.25

age: >12–20 y -0.42 0.0009

age: >20 y -0.52

Pf PCR positive

Reported malaria last 2 weeks

Mutlivarable predictors of P. falciparum and P. vivax gametocyte density in PNG 2010 (intermediate transmission), PNG 2014 (recent reduction in transmission), and

Thailand and Brazil pooled (extended period of low transmission). In each subgroup, only variables with a significant effect (P<0.05) on gametocyte densities were

included.

https://doi.org/10.1371/journal.pntd.0009672.t004
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Ability of light microscopy to diagnose gametocyte carriers

Restricting the analysis to sites where LM was conducted (PNG, Solomon Islands, Brazil,

n = 10,107), P. falciparum gametocytes were detected by RT-qPCR in 80.2% (178/222) of LM-

positive individuals. Among LM-negative individuals, gametocytes were detected in 40.2%

(170/422) of individuals. Pfs25 transcript densities were nearly 10-fold higher in LM-positive

individuals (33.40 vs. 4.27 transcripts/μL, P = 0.001). The ability of LM to detect P. falciparum
gametocyte carriers differed significantly between surveys (P<0.001, Table 2), and appeared to

be particularly high when prevalence was low. For example, 4/4, and 7/10 P. falciparum game-

tocyte carriers were LM-positive in Solomon Islands and Brazil, respectively (Table 2).

P. vivax gametocytes were detected by RT-qPCR in 64.9% (235/362) of LM-positive indi-

viduals, but in only 16.7% (163/976) of LM-negative individuals. Mean gametocyte densities in

LM-positive individuals were almost twice as high compared to LM-negative individuals (6.02

vs. 3.44 transcripts/μL, P<0.001). Thus, approximately 50% of P. falciparum and 59% of P.

vivax gametocyte carriers were positive by light microscopy.

Discussion

We observed substantial differences in the proportion of P. falciparum and P. vivax infections

carrying detectable gametocytes in 5 cross-sectional surveys representing distinct malaria-epi-

demiological contexts. The proportion of gametocyte-positive infections in community sur-

veys is heavily impacted by the sensitivity of the assays used for parasite and gametocyte

detection [39]. The use of the identical methodology and external reference standards for all

surveys allowed, for the first time, direct comparisons between regions of different transmis-

sion intensity.

Fig 4. pfs25 and pvs25 transcript densities for each survey stratified by age group. The black line shows the median. The percentage

shows the proportion of gametocyte carriers in an age group among all gametocyte carriers within this survey.

https://doi.org/10.1371/journal.pntd.0009672.g004
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Blood-stage parasite densities were a strong predictor for gametocyte positivity and could

largely explain differences between surveys. In most surveys, the majority of gametocyte carri-

ers of both Plasmodium species (as determined by RT-qPCR) were positive by LM for asexual

parasites. A lower proportion of gametocyte carriers was LM-positive in Madang 2014 (both

species) and Solomon Islands (P. vivax), where transmission had declined in the years prior to

the surveys [28, 30], and parasite densities were very low. In these surveys, a large proportion

of gametocyte carriers could not be diagnosed by microscopy. In contrast, in the sites where

transmission had been reduced for longer (Brazil, P. falciparum in Solomon Islands), expert

LM or other tools such as RDT remain sufficiently sensitive to identify the majority of gameto-

cyte carriers.

Pronounced age trends in gametocyte carriage were evident in PNG and Solomon Islands.

Prevalence of infection peaked in children or adolescents, and parasite densities decreased rap-

idly with increasing age, most likely due to the acquisition of immunity. As a result, the vast

majority of gametocytes were detected in children below 6 years, especially for P. vivax. This

contrasts findings from P. falciparum in Africa, where school-age children were proposed to

contribute most to transmission densities [40, 41]. In moderate-high transmission settings and

in regions of steep decline in transmission in recent years, gametocyte densities decreased

even faster than parasite densities with age. Thus, changes in parasite prevalence and density

with age might not appropriately reflect changes in transmission potential. In Brazil and Thai-

land, the risk of infection increased with increasing age, age trends of parasite densities were

moderate, and as a result no age trends in gametocyte densities were evident.

Apart from parasite density, limited effects of transient factors on gametocyte densities

were observed. Multiple clone infection or hemoglobin levels did not affect gametocyte car-

riage of either species. For P. vivax, a constant proportion of gametocytes among all parasites

was observed irrespective of parasite density. In the case of P. falciparum, high proportions of

gametocytes were observed in a subset of infections with low-to-moderate densities The

2-week sequestration of developing P. falciparum gametocytes results in a temporal lag of peak

gametocytemia following peak parasitemia [6]. Thus, infections with low parasite but high

gametocyte densities might have experienced a recent wave of asexual parasitemia [42]. This is

corroborated by the fact that self-reported febrile illness in the two weeks prior to sample col-

lection resulted in higher gametocyte densities (Fig 3C and 3D). Conversion of a large propor-

tion of all parasites into gametocytes when parasite densities drop to very low levels has also

been described in a rodent malaria model [43]. Longitudinal studies with frequent sampling

will be needed to assess how closely P. falciparum gametocyte density reflects parasite density

in the preceding 2 weeks.

As an exception to the limited impact of transient factors, a lower proportion P. falciparum
gametocyte positive infections and lower gametocyte densities were observed in individuals

co-infected with P. vivax. It is not known whether co-infection results in an adjustment of the

gametocyte conversion rate, or whether multi-species infection is a surrogate marker for

higher exposure, and thus, higher levels of gametocyte-specific immunity.

Mosquito feeding assays have repeatedly shown a correlation between parasite density and

infectivity. Few studies have included asymptomatic individuals and individuals negative by

LM for gametocytes and asexual stages [44–50]. With few exceptions, e.g., one study on P.

vivax infectivity in Brazil [48], individuals with either asexual parasites or gametocytes

detected by LM were far more infective than submicroscopic infections (Fig 5). For P. vivax, in

Thailand a steep increase in infectivity was found at densities (by LM) of 10–100 parasites/uL,

with little effect if densities increased further [47]. This density closely matches the limit of

detection of expert LM. The finding in the present study of a majority of gametocytes
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concentrated in LM-positive individuals, together with the results from mosquito-feeding

studies, corroborate that LM-positive individuals likely are the main infectious reservoir.

Studies assessing gametocyte densities and infectivity over time will be required to deter-

mine what proportion of low-density infections will rise in density and become highly infec-

tive. The importance of male gametocyte densities to predict infectivity is increasingly

recognized. In low density infections, male gametocytes might be the limiting factor for

onward transmission [51]. Measuring male gametocyte densities in addition to female densi-

ties, as measured by pfs25 and pvs25 RT-qPCR, is expected to allow for better predictions of

infectivity [51]. Due to the non-linear relationship between gametocyte density and infectivity,

age trends in gametocyte density might not fully reflect infectivity. Lastly, while higher game-

tocyte densities result in increased oocyst numbers in mosquitos [51], it is unclear whether

oocyst numbers have an effect on the efficiency of onward transmission.

Even after correcting for different mean parasite densities between surveys, a higher pro-

portion gametocyte positive samples were found for both species in Thailand and for P. falcip-
arum in Brazil and Solomon Islands compared to PNG. Recent malaria control activities have

resulted in significant changes in vector composition and biting behavior in the study sites [52,

53]. A reduction in the number of mosquito bites or shift towards a less competent vector

might select for parasites with higher gametocyte conversion rates. Such a selection has been

suggested by recent genome and transcriptome studies. Expression of the AP2-G transcription

factor and additional epigenetic factors involved in gametocytogenesis were adjusted to trans-

mission levels in P. falciparum populations in East Africa [54], and the gametocyte development
gene 1 (gdv1), which is essential for early gametocyte development, was found to be under

strong selection in P. falciparum populations in regions of different endemicity in West Africa

[55]. In Cambodia, control efforts resulted in strong selection of the AP2-G homolog in P.

vivax [56]. The present study, for the first time, found differences in the proportion of gameto-

cytes among all parasites between regions of different transmission intensity.

Conclusions

The probability to detect gametocytes was closely correlated to blood-stage parasitemia in dif-

ferent transmission settings. The vast majority of all infections with high gametocyte densities

(as determined by RT-qPCR) could be diagnosed by microscopy. Pronounced age trends of

gametocyte carriage in areas of moderate to high transmission was observed. Even though the

contribution to transmission is influenced by vector exposure and transmission blocking

Fig 5. Infectivity of P. falciparum and P. vivax infections in membrane-feeding assays based on clinical status and ability of light

microscopy to diagnose infections. ‘% Mosquitos infected’ shows the combined proportion of mosquitos infected including individuals that

did not infect any mosquitos. n/N show the proportion of individuals that infected at least one mosquito. Infectivity varied widely, but with the

exception of the study on P. vivax in Brazil, microscopy-positive individuals were 5-10-fold more infective that those with submicroscopic

infection. Data from [45, 47–50].

https://doi.org/10.1371/journal.pntd.0009672.g005
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immunity in addition to gametocyte prevalence and density, the age trends suggest that inter-

ventions to reduce transmission will have the greatest effect when targeted towards children.

In contrast, in order to achieve elimination in low transmission settings individuals of all ages

need to be protected from vector contact, which is often not the case [57].
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