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Abstract 23 

It is of uttermost importance that the global health community develops the surveillance capability 24 

to effectively monitor emerging zoonotic pathogens that constitute a major and evolving threat for 25 

human health. Here, we propose a comprehensive framework to measure changes in (i) spillover risk, 26 

(ii) interhuman transmission, and (iii) morbidity/mortality associated with infections based on six 27 

epidemiological key indicators derived from routine surveillance. We demonstrate the indicators’ 28 

value for the retrospective or real-time assessment of changes in transmission and epidemiological 29 

characteristics using data collected through a long-standing, systematic, hospital-based surveillance 30 

system for Nipah virus in Bangladesh. We show that while interhuman transmission and 31 

morbidity/mortality indicators were stable, the number and geographic extent of spillovers varied 32 

significantly over time. Such combination of systematic surveillance and active tracking of 33 

transmission and epidemiological indicators should be applied to other high risk emerging pathogens 34 

to prevent public health emergencies. 35 

Key words: Nipah virus, Emerging pathogens, Surveillance, Monitoring 36 
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Introduction 39 

Emerging zoonotic pathogens represent an important and growing risk to humans. As cross-species 40 

interactions increase at the human-animal interface, more opportunities arise for pathogens to 41 

spillover. Large-scale epidemics of human immunodeficiency virus (HIV), Ebola, or Middle East 42 

respiratory syndrome coronavirus (MERS-CoV) can trace their roots back to spillovers from a 43 

zoonotic reservoir [1]. The timely deployment of targeted interventions to prevent public health 44 

emergencies would clearly benefit from the real-time evaluation of temporal trends suggestive of 45 

altered spillover risk or evolutionary changes linked to increased transmission or disease. Given that 46 

many emerging pathogens spillover infrequently, changes in pathogen characteristics may go 47 

undetected unless there exist systematic efforts to track these changes. Enhanced monitoring 48 

approaches that go beyond tracking case numbers to identify changes in disease risk and underlying 49 

mechanisms would therefore help improve global preparedness and response capacities. The 50 

International Health Regulations and Global Health Security Agenda both call for stronger 51 

surveillance and trend monitoring [2,3]. It has however rarely been possible to develop a 52 

comprehensive monitoring framework for emerging zoonotic pathogens due to the lack of stable 53 

surveillance collecting detailed case information. 54 

Nipah virus (NiV) is an emerging zoonotic pathogen found in fruit bats throughout South and 55 

Southeast Asia. NiV is considered by the World Health Organization as an important health threat to 56 

humans due to the severity of disease, the absence of treatments or vaccines, and its ability to be 57 

transmitted between people [4,5]. Bangladesh is the only country reporting regular spillovers of NiV, 58 

which are nearly exclusively detected through a systematic, hospital-based surveillance system, 59 

implemented in 2007 following the ad-hoc identification of ~100 cases during 2001-2006 [6]. The 60 

surveillance system is based on three sentinel hospitals where all meningoencephalitis cases are 61 

routinely tested for NiV. Identification of a NiV case triggers detailed investigations in affected 62 

communities including the identification of transmission networks and the tracing of contacts. The 63 
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hospital-based surveillance system leverages clinical services and is therefore less expensive and 64 

easier to maintain than other population-based surveillance systems.  65 

Here we propose six epidemiological indicators of emerging zoonotic pathogens and their 66 

transmission that can be derived from such routine surveillance data to measure changes in (i) 67 

spillover risk, (ii) interhuman transmission, and (iii) morbidity/mortality associated with infections 68 

(Figure 1A). Although many of these measures are commonly used in epidemiological studies, their 69 

role in the routine monitoring of emerging infectious diseases is not yet defined. The NiV surveillance 70 

system in Bangladesh provides a unique opportunity to collect comparable data on cases and their 71 

characteristics over time. The objective of this study was to demonstrate how these indicators can be 72 

obtained from routine surveillance data and used to monitor changes in disease transmission and 73 

epidemiology to inform future public health policy and practice. 74 

Methods 75 

Establishing baseline measures and assessing historical changes 76 

We used data from the systematic NiV surveillance system collected during 2007-2018 to establish 77 

baseline measures of the six indicators and assess historical changes over time. Details of the 78 

surveillance methods have been previously published [7,8], but in short, at three tertiary care 79 

hospitals, all patients admitted with signs and symptoms consistent with febrile neurological illness 80 

during December – March had clinical and epidemiological information and serum collected for 81 

testing for IgM antibodies against NiV. We further assessed all six indicators using data collected 82 

during 2001-2006, a time period before routine hospital-based surveillance was implemented and 83 

cases were not systematically detected (see Supplementary Material). During this time period, cases 84 

were detected through community investigations following the notification of case clusters and NiV 85 

cases not associated with case clusters were likely to be missed. 86 

1. Spillover risk 87 
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In Bangladesh, humans usually acquire NiV through drinking date palm sap contaminated with the 88 

virus by fruit bats [4]. It is important to monitor spillover frequency since any increase may result in 89 

higher disease burden, or may indicate emergence of new transmission pathways. In addition, each 90 

spillover event represents an opportunity for more transmissible or virulent strains to emerge. A 91 

spillover event is defined as a single case infected from the reservoir or a cluster of cases that can be 92 

traced back to a single spillover source (i.e., one or several individuals infected through a 93 

contaminated palm sap pot plus subsequent cases infected by interhuman transmission) and the 94 

annual spillover rate as the number of spillover events in a given transmission season (December of 95 

the previous year until May of the given year). We assumed that spillover events follow a Poisson 96 

distribution and estimated the spillover rate observed in a given year with Poisson exact 95% 97 

confidence intervals (95%CI) and the average annual spillover rate during a given time period (i.e. for 98 

the duration of stable surveillance or time periods between change points) with approximate Poisson 99 

95%CIs. We tested the statistical significance of changes in spillover frequency pre and post a specific 100 

time point using exact Poisson test, where we moved the time point by one-year increments over the 101 

duration of stable surveillance. If several time points resulted in significant differences, we selected 102 

the time point resulting in the lowest p-value. We further assessed linear changes in annual spillover 103 

rates using Poisson regression; we evaluated statistical significance of linear changes using a 104 

likelihood ratio test and compare this model to step-change models using the Akaike Information 105 

Criterion (AIC).  106 

2. Geographic extent 107 

The geographic extent of case occurrence informs the size and location of the population at risk. 108 

Moreover, pathogen introductions into new ecological areas or populations (e.g. higher population 109 

density, mobility) can affect transmission dynamics and potentially boost the spread and impact of 110 

the pathogen [9]. Using surveillance data on geographic location of cases we can monitor the 111 

geographic extent of NiV risk. The geographic extent of case reports is defined as the number of 112 
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districts from which cases are reported, we quantified the geographic extent using 3-year sliding 113 

windows over the duration of the surveillance dataset and assessed spatial patterns based on 114 

administrative boundaries obtained from the Database of Global Administrative Areas 115 

(www.gadm.org). 116 

3. Cluster size 117 

The NiV surveillance data can also be used to monitor indicators for changes in spillover mechanisms. 118 

The number of individuals who are infected from the reservoir during each spillover event, may vary 119 

depending on the spillover source. For example, clusters associated with drinking palm sap may 120 

differ in size from clusters associated with pig exposure, which was the main spillover route in the 121 

Malaysian NiV outbreak [10]. Cluster sizes are also affected by interhuman transmission through the 122 

number of secondary cases associated with a spillover event (see section below). We defined a 123 

cluster of cases as individuals who acquired infection through a single spillover event (either through 124 

one or more bat-to-human transmission events in one time and place or through subsequent 125 

interhuman transmission). We estimated the median and interquartile range (IQR) of cluster sizes for 126 

a given year, or a given time period. We used Wilcoxon rank sum test to assess changes in outbreak 127 

sizes by comparing cluster size distributions pre and post a specific time point that we moved along 128 

the time of stable surveillance. 129 

4. Reproduction number 130 

The reproduction number R (i.e., the average number of individuals infected by a case) is the 131 

standard measure of the interhuman transmission potential of a pathogen [11]. While sustained 132 

transmission of a pathogen in a population can occur only if R≥1, even increases in R to values <1 can 133 

lead to larger cluster sizes with transmission ceasing only after a substantial number of transmission 134 

generations. Tracking this parameter can therefore provide an early warning sign of a change in 135 

transmission [12–14]. For NiV in Bangladesh, this essential parameter can be directly estimated from 136 

the transmission trees that are reconstructed during outbreak investigations. We estimated R and 137 

http://www.gadm.org/
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95%CIs based on the observed number of secondary cases caused by a case, assuming that the 138 

number of secondary cases follows a negative binomial distribution with mean R and a dispersion 139 

parameter k [14]. We used a likelihood ratio test to assess changes in R pre and post a specific time 140 

point that we moved along the duration of stable surveillance. We further assessed linear changes in 141 

R by year using negative binomial regression. 142 

5. Proportion of cases who transmit infection 143 

Interhuman transmission of emerging zoonotic pathogens is often highly heterogeneous, meaning 144 

that a large part of secondary cases originates from only a few superspreading events as previously 145 

noted for NiV [8,15]. The mechanisms leading to superspreading events can be of social (e.g., a 146 

higher number of contacts resulting in more transmission opportunities) or biological nature (e.g., 147 

higher levels of virus shedding or stronger symptoms facilitating transmission) [14]. The extent of 148 

transmission heterogeneity has important implications for the optimisation of control strategies [14]. 149 

Where detailed information on transmission trees is available, we can quantify transmission 150 

heterogeneity as the percentage of cases who transmit the pathogen [14]. For a given reproduction 151 

number, a smaller percentage of cases who transmit will indicate a stronger transmission 152 

heterogeneity [14]. We estimated the proportion of spreaders among NiV cases and exact binomial 153 

95%CIs for a given year, or a given time period. We used an exact binomial test to assess changes in 154 

the proportion of spreaders pre and post a specific time point that we moved along the time of 155 

stable surveillance. We further assessed linear changes in proportion spreaders by year using logistic 156 

regression. We also assessed the probability of observing multiple superspreading events (i.e. a NiV 157 

case infecting ≥5 individuals) during outbreaks of various sizes (Supplementary material). 158 

6. Morbidity and mortality 159 

Changes in the case fatality ratio (CFR) and the prevalence of specific symptoms such as difficulty 160 

breathing (a symptom previously found associated with interhuman transmission[6]), can indicate an 161 

adaptation of a pathogen to the human host. We estimated the case fatality ratio (i.e. the proportion 162 
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of cases who died among cases) and exact binomial 95%CIs for a given year, or a given time period, 163 

separately for cases infected by the reservoir (primary cases) and cases infected through interhuman 164 

transmission (secondary cases). We used an exact binomial test to assess changes in the case fatality 165 

rate pre and post a specific time point that we moved along the time of stable surveillance. We 166 

further assessed linear changes in the case fatality rate by year using logistic regression. We applied 167 

the same methods to assess changes in the proportion of cases with difficulty breathing. 168 

Real-time monitoring of indicators 169 

Changes in the transmission and epidemiology of NiV can also be assessed in real-time using the 170 

proposed framework by plotting new observations against baseline distributions of indicators 171 

established above. To facilitate identification of epidemiologic changes prospectively within this 172 

system, we identified thresholds for “highly unlikely” events by quantifying the 2.5th and 97.5th 173 

percentiles of these baseline distributions.  174 

Results 175 

Monitoring spillover risk 176 

During 2007-2018, 76 NiV spillover events  were detected in Bangladesh resulting in 166 NiV cases 177 

(Figure 1B). We observed that the average annual number of spillovers detected in Bangladesh 178 

varied significantly over time; it increased from 2.2 (95%CI 1.3-3.7) in 2007-2009 to 10.5 (95%CI 8.2-179 

13.4) in 2010-2015, and returned to the lower level in 2016-2018 (Figure 2A).  180 

Coinciding with the temporary increase in spillover frequency, we found that the number of districts 181 

reporting cases was more than two times greater in 2011-2015 compared to the other time windows 182 

(Figure 2B). This increase however does not seem to reflect a gradual spread of NiV into previously 183 

unaffected areas; instead there were more regular spillovers in geographic regions where NiV had 184 

previously been observed (Figure S1). Two NiV cases who acquired infections in rural areas were 185 

reported in Dhaka, the capital city of Bangladesh.  186 
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We observed a constant median cluster size of 1 case (Interquartile range [IQR] 1-2) over time (Figure 187 

2C). The median cluster size was higher in 2008 (with two clusters of 6 and 4 spillover cases, 188 

respectively) than in other years. 189 

Monitoring interhuman transmission 190 

Transmission potential of NiV did not vary significantly in Bangladesh during 2007-2018, with an 191 

average reproduction number of 0.20 (95%CI 0.10-0.40) (Figure 2D). No interhuman transmission 192 

events were observed in 2008-2009 and 2015-2018, which is consistent with the estimated average 193 

reproduction number and may be explained by a smaller number of NiV cases during these years 194 

(Figure S2).  195 

Eight percent (95%CI 5-14) of cases transmitted NiV to another person, which was stable over time 196 

(Figure 2E). During 2007-2018, two outbreaks were driven by a superspreading event. The 197 

occurrence of more than one superspreading event in a single outbreak has never been observed 198 

and is unlikely given the current reproduction number (Figure S3).  199 

Monitoring morbidity/mortality associated with infections 200 

We observed a stable CFR over time among cases infected by the reservoir (86%, 95%CI 79-92) 201 

(Figure 2F) and those infected through interhuman transmission (46%, 95%CI 29-63) (Figure S4A). 202 

The percentage of NiV cases who developed breathing difficulties also remained constant over time 203 

with an average of 57% (95%CI 49-64) (Figure S4B). No significant difference in the proportion with 204 

breathing difficulties were detected between cases infected by the reservoir and those infected 205 

through interhuman transmission (chi-squared p-value= 0.37). The CFR was higher among cases with 206 

breathing difficulty (90%) than those without (61%, chi-squared p-value <0.001). 207 

Based on data collected during 2001-2006, a period before routine hospital-based surveillance was 208 

implemented and cases were not systematically detected, we observed a much higher variability in 209 
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some of these indicators (in particular for spillover frequency, outbreak size, and reproduction 210 

number) (Figure S5). 211 

Real-time monitoring of indicators 212 

The baseline measures for these six indicators that we established here can be used by public health 213 

officials to detect future changes in NiV characteristics (Figure S6). Such changes can be evaluated in 214 

real-time by comparing expected values (e.g., percentiles of estimated distributions) to new 215 

observations, either for a single outbreak or for a transmission season. For example, based on 216 

current estimates of spillover frequency, observing more than 17 spillovers in a season is very 217 

unlikely (based on the 97.5th percentile of the high spillover frequency period), while half of the 218 

time, more than 10 spillovers are expected to occur (Figure S6A).  219 

Discussion 220 

Systematic NiV surveillance in Bangladesh has been an important step forward in the response to the 221 

emerging threat of NiV. These routinely collected data enable the establishment of baseline 222 

measures that comprehensively describe current NiV spillover risk, interhuman transmission and 223 

morbidity/mortality, which can now be used by public health authorities to guide rapid and reliable 224 

decisions to respond to NiV outbreaks. Using these baseline measures in real-time assessments 225 

allows the detection of deviations from these at early stages of a transmission season or an ongoing 226 

outbreak. 227 

While interhuman transmission and morbidity/mortality of NiV has been stable since the start of 228 

systematic surveillance, frequency and geographic extent of spillovers temporarily increased during 229 

that time period before returning to initial levels. The temporary increase may reflect NiV 230 

transmission and shedding dynamics in bat populations [16], changes in bat behaviour (e.g., moving 231 

to new areas to look for food), or changes in human behaviour (e.g., sap drinking, access to 232 

hospitals). A study of weather associations with spillovers between 2007 – 2013 identified a 233 

significant correlation between increasing spillovers and colder winter temperatures, suggesting that 234 
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climatic factors could be driving some of these patterns over longer time scales [17]. The monitoring 235 

framework has thereby provided insights that can form the basis of studies to test different 236 

hypotheses of what drives these patterns, and measure changes in patterns that could result from 237 

primary or secondary prevention programs. Continuing surveillance efforts to monitor time trends or 238 

cyclical dynamics in this disease system are critical and should be prioritized for funding.  239 

Observed cluster sizes were stable over time, suggesting that no changes in spillover mechanisms 240 

had occurred during the time period of surveillance. This finding is consistent with other 241 

epidemiological evidence that identified palm sap as main spillover route over time, including during 242 

spillovers in 2008 that were larger in size [18,19]. No increase in the interhuman transmission 243 

potential has been suggested by any of the indicators and the reproduction number currently is 244 

lower than what is required for a large outbreak. Based on the established baseline measures, the 245 

occurrence of multiple superspreading events during a single outbreak is highly unlikely and may 246 

therefore represent an early warning sign for the emergence of a more transmissible strain. For 247 

monitoring situations where details on transmission networks are unavailable, R could also be 248 

derived from the distribution of cluster sizes or the proportion of cases infected by the reservoir 249 

[13,20]. The detection of two NiV cases in Dhaka, the capital of Bangladesh, demonstrates the risk of 250 

virus introductions into densely populated areas where large-scale outbreaks may be more likely to 251 

occur. The observed heterogeneity in some indicators during 2001-2006, a time period before 252 

hospital-based surveillance started in Bangladesh, highlights that systematic surveillance for NiV, as 253 

introduced in Bangladesh in 2007, is key for establishing reliable baseline estimates of transmission 254 

characteristics and will remain crucial for the detection of departures from these trends in the future. 255 

Based on established estimates of R it would however be highly unlikely to observe superspreading 256 

events as reported before 2007 (with 11 and 22 secondary cases generated by a NiV case) (Figure 257 

S6C). 258 
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The analysis of the collected epidemiological data also provided other insights that can be 259 

investigated in future studies, such as the difference in the CFR between cases infected through the 260 

reservoir and those infected through interhuman transmission. This difference may be due to a 261 

higher dose of virus received through date palm sap than through contact with a patient.Developing 262 

capacities to efficiently detect and respond to unusual public health events is key for improved global 263 

epidemic preparedness [2,3]. The World Health Organization in 2015 therefore advocated for 264 

prioritizing a number of emerging zoonotic diseases for urgent research and development that would 265 

allow for improved disease control. In addition to NiV, these diseases included Crimean Congo 266 

haemorrhagic fever, Ebola, Marburg, Lassa fever, Middle East respiratory syndrome and other 267 

coronaviruses, and Rift Valley fever [5]. We believe that systematic surveillance for these diseases, as 268 

exemplified by NiV surveillance in Bangladesh, should be implemented to enable the collection of 269 

comparable and reliable data over time. The framework proposed here would also allow tracking 270 

outbreaks of these diseases and targeting disease control measures. The global community would be 271 

much better prepared for these threats through investments in systematic surveillance coupled with 272 

active tracking and reporting of transmission and epidemiological indicators.  273 
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Figure legends 333 

Figure 1. (A) Indicators for changes in spillover risk, interhuman transmission and 334 

morbidity/mortality of Nipah virus and other zoonotic pathogens. (B) Total number of Nipah cases 335 

ever reported by districts in Bangladesh (2007 to 2018). 336 

 337 

Figure 2. Baseline estimates and historical changes of key indicators to monitor Nipah virus 338 

epidemiology and transmission. Average number of spillovers (Poisson exact 95%CI) (A), number of 339 

districts reporting NiV cases within 3 year window (time windows are indicated as grey bars) (B), 340 

median cluster size (interquartile range) (C), reproduction number (negative binomial 95%CI) (D), 341 

proportion spreaders (binomial exact 95%CI) (E), CFR among primary cases, i.e. cases infected by the 342 

reservoir (binomial exact 95%CI) (F). The year represents a transmission season, which lasts from 343 

December of the previous year until May of the indicated year. 344 
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 354 

1. Probability of no spreaders and superspreaders 355 

The probability of not observing any NiV spreading events by increasing number of cases is shown in 356 

Figure S2. For example, the probability of not observing any spreading event is 41% among 10 NiV 357 

cases and 17% among 20 cases. 358 

The probability of observing at least one, at least two, or at least three superspreading events (i.e. a 359 

NiV case infecting ≥5 individuals) is shown in Figure S3. Among 10 cases, the probability of observing 360 

at least one superspreading event is 10%; however as low as 0.4% and 0.01% for observing at least 2 361 

or 3 superspreading events. 362 

2. Importance of systematic surveillance for baseline establishment 363 

We also estimated the indicators for each year during 2001-2006, a time period before routine 364 

hospital-based surveillance was implemented and cases were not systematically detected. During 365 

2001-2006, we observe a much higher variability in some of these key measures: the observed 366 

annual spillover frequency ranged from 0 to 14, annual median outbreak sizes from 1 to 13, and the 367 

annual estimated reproduction number from 0 to 0.85 (Figure S5). This demonstrates the difficulties 368 

for establishing some of these baseline measures in the absence of stable surveillance.  369 
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3. Supplementary Figures 370 

Figure S1. Location of districts reporting Nipah cases within moving 3-year time intervals during 371 

2007-2018. 372 

 373 
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Figure S2. Probability of observing zero spreading events by number of cases.  374 

 375 

 376 

Figure S3. Probability of observing at least 1, at least 2, and at least 3 superspreading events by 377 

number of cases. 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 
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Figure S4. Baseline estimates and historical changes of key indicators to monitor Nipah virus 391 

epidemiology and transmission- additional measures. CFR among secondary cases, i.e. cases 392 

infected by interhuman transmission (binomial exact 95%CI); no secondary cases occurred during 393 

2015-2018 (A), proportion of cases with difficulty breathing (binomial exact 95%CI) (B). The year 394 

represents a transmission season, which lasts from December of the previous year until May of the 395 

indicated year. 396 

 397 

 398 

  399 
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Figure S5. Comparing key indicators before (2001-2006) and after implementation of systematic 400 

hospital-based surveillance (2007- 2018). Average number of spillovers (Poisson exact 95%CI) (A), 401 

number of districts reporting NiV cases within 3 year window (time windows are indicated as grey 402 

bars) (B), median cluster size (interquartile range) (C), reproduction number (negative binomial 403 

95%CI) (D), proportion spreaders (binomial exact 95%CI) (E), CFR among primary cases, i.e. cases 404 

infected by the reservoir (binomial exact 95%CI) (F). The year represents a transmission season, 405 

which lasts from December of the previous year until May of the indicated year.  406 

 407 

  408 
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 409 

Figure S6. Detecting outliers in Nipah virus transmission and epidemiology using baseline 410 

estimates. Distribution of annual number of outbreaks (A). Empirical distribution of observed 411 

outbreak sizes (B). Distribution of number of individuals infected by a case (C). Distribution of 412 

number of spreaders among 20 cases (D). Distribution of number of deaths among 20 primary cases 413 

(E). Distribution of number of cases with difficulty breathing among 20 cases (F). The dotted lines 414 

indicate the 50th percentile; the dashed lines indicate the 2.5th and 97.5th percentile. 415 

 416 

 417 

 418 
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