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Estimating the size and infection severity of the SARS-CoV-2 epidemic is made 

challenging by inconsistencies in available data. The number of COVID-19 deaths is 

often used as a key indicator for the epidemic size, but observed deaths represent only a 

minority of all infections
1,2

. Additionally, the heterogeneous burden in nursing homes 

and variable reporting of deaths in elderly individuals can hamper direct comparisons 

across countries of the underlying level of transmission and mortality rates
3
. Here we 

use age-specific COVID-19 death data from 45 countries and the results of 22 

seroprevalence studies to investigate the consistency of infection and fatality patterns 

across multiple countries. We find that the age distribution of deaths in younger age 

groups (<65 years) is very consistent across different settings and demonstrate how this 

data can provide robust estimates of the share of the population that has been infected. 

We estimate that the infection-to-fatality ratio (IFR) is lowest among 5-9 years old, with 

a log-linear increase by age among individuals older than 30 years. Population age-

structures and heterogeneous burdens in nursing homes explain some but not all of the 

heterogeneity between countries in infection-fatality ratios. Among the 45 countries 

included in our analysis, we estimate approximately 5% of these populations had been 

infected by the 1st of September 2020, with much higher transmission likely to have 

occurred in a number of Latin American countries. This simple modelling framework 

can help countries assess the progression of the pandemic and can be applied wherever 

reliable age-specific death data exists. 

 

As SARS-CoV-2 continues its rapid global spread, increased understanding of the underlying 

level of transmission and infection severity are crucial for guiding pandemic response. While 

the testing of COVID-19 cases is a vital public health tool, variability in surveillance 

capacities, case-definitions and health-seeking behaviour can cause difficulties in the 

interpretation of case data. Due to more complete reporting, COVID-19 deaths are often seen 

as a more reliable indicator of epidemic size. If reliably reported, the number of COVID-19 

deaths can be used to infer the total number of SARS-CoV-2 infections using estimates of the 

infection fatality ratio (IFR, the ratio of COVID-19 deaths to total SARS-CoV-2 infections). 

Estimates of the IFR derived from seroprevalence studies that carefully estimate the number 

of individuals with detectable antibodies can help make the link between deaths and total 

infections as well as refine estimates of the relative burden in different age groups
1
. While it 

is clear that infection severity increases significantly with age
2,4

, there remain key 

unanswered questions as to the consistency of mortality patterns across countries. Underlying 

heterogeneities in the age structure of the population, or in the prevalence of comorbidities 

can contribute to differences in the levels of observed COVID-19 fatalities
5
. In addition, 

when looking at the total number of COVID-19 deaths, the level of transmission amongst the 

general population can be difficult to disentangle from large outbreaks in vulnerable 

populations such as nursing homes and other long-term care settings. Indeed for many 

countries, the SARS-CoV-2 pandemic has been characterized by a heavy burden in nursing 

home residents, with over 20% of all reported COVID-19 deaths occurring in nursing homes 

in countries such as Canada, Sweden and the United Kingdom
6
. In other countries, such as 

South Korea and Singapore, few COVID-19 deaths have been reported in nursing homes
6
. In 

this context, simply comparing the total number of deaths across countries may provide a 

misleading representation of the underlying level of transmission. Focusing on COVID-19 

death data in younger individuals, however, may provide more reliable insights into the 

underlying nature of transmission.  
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Seroprevalence surveys provide valuable information on the proportion of the population that 

have ever experienced an infection
7-10

, however, they can be subject to a number of biases 

and variable performance of different assays can complicate comparisons of results across 

studies
11

. Here, we present a model framework that integrates age-specific COVID-19 death 

data from 45 countries with 22 national-level seroprevalence surveys, providing new insights 

into the consistency of infection fatality patterns across countries (Figure 1A). We use our 

model to produce ensemble IFR estimates by age and sex in a single harmonized framework 

as well as estimates of the proportion of the population infected in each country.  

  

Age-specific mortality patterns 

Using population age structures and age-specific death data, we compare the relative number 

of deaths by age within each country, using 55-59 year olds as the reference group. We find a 

very consistent pattern in the relative risk of death by age for individuals <65 years old across 

countries and continents, with a strong log-linear relationship between age and risk of death 

for individuals 30-65 years old (Figure 1B, Supplementary Methods S1). The observed 

relative risk of death in older individuals appears substantially more heterogeneous across 

locations. Given the potential for important variability in mortality associated with nursing 

home outbreaks across countries, we first investigate mortality patterns specifically in the 

general population, using age-specific deaths ≥65 from England, where granularity of the 

data allows us to remove deaths in nursing home populations. We find that the log-linear 

relationship between age and risk of death continues into older age groups (Figure 1B). To 

assess the generalizability of data from England to other countries, we use these estimates to 

reconstruct the number of non-nursing home deaths in 13 other countries and find the 

predictions consistent with reported numbers of non-nursing home deaths (Figure 1C, 

Supplementary Methods S2). 

In order to translate relative risks of death by age to underlying IFR, we combine age-specific 

death data with 22 seroprevalence surveys, representing 16 of the 45 countries (multiple 

studies are available for Belgium, England, Scotland, Sweden and the Netherlands, 

Supplementary Table S1). We use daily time-series of reported deaths to reconstruct the 

timing of infections and subsequent seroconversions. To limit biases that can be introduced 

by outbreaks in nursing homes and potentially variable reporting practices of fatalities 

amongst individuals ≥65, we fit our model investigating the relationship between 

seroconversion and mortality exclusively to death data from those <65 years old. To infer 

IFRs in age groups ≥65 years, we use our estimates of the relative risk of death derived from 

England non-nursing home deaths. As our baseline model, we use an ensemble model where 

we include results from all national-level seroprevalence studies within a single framework. 

In addition, we consider separate models where we use the results of each individual 

serostudy to investigate the consistency of estimates provided by different studies. As older 

individuals have fewer social contacts
12

 and are more likely to be isolated through shielding 

programmes we assume a baseline relative infection attack rate of 0.7 for individuals aged 

≥65, relative to those <65, and assume equal infection attack rates across age groups <65 

years. We find that age-specific IFRs estimated by the ensemble model range from 0.001% 

(95% Credible Interval [CrI]: 0-0.001) in those aged 5-9 (ranging from 0-0.002% across 

individual national-level serostudies) to 8.29% (95%CrI: 7.11-9.59%) in those aged 80+ 

(range: 2.49-15.55% across individual national-level serostudies) (Figure 2A). We estimate a 

mean increase in IFR of 0.59% with each 5-year increase in age (95%CrI: 0.51-0.68%) for 

ages ≥10. We estimate that the risk of death given infection for men is significantly higher 
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than that of women (Figure 2A) particularly in older individuals with ensemble IFR estimates 

of 10.83% for men aged 80+ (95%CrI: 9.28-12.52%, individual serostudy range: 3.25-

20.30%) and 5.76% for women aged 80+ (95%CrI: 4.94-6.66%, individual serostudy range: 

1.73-10.80%), consistent with previous findings
13,14

. 

  

Consistency of IFRs across serostudies 

We use our model framework to facilitate robust comparisons of IFRs across settings, 

considering only age-specific deaths amongst <65 year olds. Using country-specific 

demographic distributions (both age and sex) we estimate population-weighted IFRs for each 

country. Taking France as a reference population, the ensemble model estimates a population 

IFR of 0.79% (95%CrI: 0.68-0.92%) though we find notable heterogeneity in IFR estimates 

as suggested by individual national-level seroprevalence studies, with a median range of 

0.24-1.49% (Figure 2B). In particular, seroprevalence studies from New York City (2.28, 

95%CrI: 2.15-2.42%), Scotland (1.49%, 95%CrI: 1.25-1.82%) and England (1.41%, 95%CrI: 

1.38-1.44%) suggest a significantly higher IFR while studies in Kenya (0.24%, 95%CrI: 

0.23-0.25%), Slovenia (0.25%, 95%CrI: 0.24-0.30%) and Denmark (0.26%, 95%CrI: 0.24-

0.32%) support a lower IFR than that of the ensemble model. We note that, the application of 

age- and sex-specific IFR estimates suggested by individual national-level seroprevalence 

studies at the lower end of the scale (e.g. Kenya, Slovenia, Denmark), to mortality data in 

highly-impacted settings would imply attack rates >100% (Figure S3). Potential explanations 

for the variable IFR estimates observed across settings include different prevalences of high-

risk populations (e.g. individuals with comorbidities), differences in methodology and 

representativeness of seroprevalence studies, heterogeneities in availability and quality of 

care or variations in reporting of COVID-19 deaths. We have fit our model to seroprevalence 

data adjusted for reported assay sensitivity and specificity but find that using unadjusted 

estimates provides similar results (Figure S5). As the duration of SARS-CoV-2 seropositivity 

amongst infected individuals is as-yet unclear
15

, in sensitivity analyses we explore the 

potential effect of waning antibodies over time. In an extreme scenario with assumed 5% 

exponential decay of seroconversions per month the ensemble model estimates a population 

IFR of 0.65% in France (95%CrI: 0.56-0.73%) (Figure S4). Further, we demonstrate that our 

results are robust to different assumptions regarding the mean delay between infection and 

seroconversion (Figure S4). There may also be individuals who never seroconvert or only 

develop a T-cell response, and would be missed in these studies
16

. Of the studies included in 

our analysis, we find that those conducted amongst blood donors (which exclude children and 

require individuals to be asymptomatic at the time of sampling) do not give significantly 

different results to those conducted amongst the general population (Figure S6). However, 

further comparisons are needed to fully understand the representativeness of different 

serological study designs. 

Considering the demographic structures of each country, we find that population-weighted 

IFR estimates by the ensemble model are highest for countries with older populations such as 

Japan (1.09%, 95%CrI: 0.94-1.26%, individual serostudy range: 0.33-2.05%) and Italy 

(0.94%, 95%CrI: 0.80-1.08%, individual serostudy range: 0.28-1.76%), whilst the lowest 

IFRs are for Kenya (0.09%, 95%CrI: 0.08-0.10%, individual serostudy range: 0.03-0.17%) 

and Pakistan (0.16%, 95%CrI: 0.14-0.19%, individual serostudy range: 0.05-0.31%) (Figure 

2C). Our ensemble model reproduces the reported seroprevalence values for the majority of 

studies including temporal dynamics. However, consistent with a substantial heterogeneity in 

IFR across countries, the ensemble model cannot fully reconcile the relationship between 
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reported seroprevalence and age-specific death data in some locations (Figure 3B). Of the 45 

countries included in our analysis, representing 3.4 billion people, we estimate an average of 

5.27% (95%CrI: 4.51-6.20%, individual serostudy range: 2.80-13.97%) of these populations 

had been infected by the 1st of September 2020 ranging from 0.06% (95%CrI: 0.04-0.09%, 

individual serostudy range: 0.02-0.20%) in South Korea to 62.44% (95%CrI: 54.07-72.90%, 

individual serostudy range: 33.13-207.20%) in Peru. These results indicate large 

heterogeneity in the level of transmission across countries, with particularly high attack rates 

estimated in many South American countries. Given the underlying heterogeneity in IFR that 

could not be captured by the ensemble model, it is important to consider the full range of 

uncertainty in these estimates as suggested by individual seroprevalence studies (grey points 

in Figure 3B). Estimates of high transmission levels in some South American countries are 

consistent with recent subnational seroprevalence studies
17–19

. Our estimates are also 

consistent with mathematical modelling efforts for individual countries, where additional 

metrics of epidemic size (e.g. numbers of cases, hospitalizations and/or ICU admissions) 

have been considered
13,20,21

 (Figure S7). The medium and longer term implications for the 

pandemic in countries which have experienced high levels of infection remain unclear; in 

particular, whether there exists sufficient immunity to halt the epidemic locally
22

. 

  

Heterogeneities in ≥65 mortality 

Using our model framework we estimate the number of deaths expected in the absence of 

nursing home transmission in those aged ≥65 years, given the reported number of deaths in 

younger age groups, and compare them to the reported number of COVID-19 deaths in ≥65 

year olds (Figure 4A). We find that many countries in South America had significantly fewer 

reported deaths in individuals ≥65 years than expected, consistent with under-reporting of 

COVID-19 deaths amongst elderly individuals. For example, we find that in Ecuador there 

are 220 fewer reported deaths per 100,000 in those ≥65 years than expected (95%CrI: 200-

240), equivalent to approximately 2,800 missing deaths. While lower infection attack rates in 

elderly populations due to reduced contacts or successful shielding policies may also explain 

lower mortality rates, in sensitivity analyses we show that for some countries unrealistically 

low infection attack rates amongst ≥65 year olds compared to the rest of the population 

would be required to reconcile the reported number of deaths in these age-groups (Figure S8). 

By contrast, for many European countries we observe a higher incidence of deaths in older 

individuals than expected (Figure 4A). This is consistent with the large proportion of reported 

COVID-19 deaths attributable to outbreaks in nursing homes, highlighting the enormous 

burden experienced by these communities in many higher-income countries
23,24

. We use the 

age and sex-distribution of nursing home residents to derive a population-weighted IFR of 

22.25% (95%CrI: 19.06-25.74%) among French nursing home residents, assuming 

individuals in nursing homes are 3.8 times more frail than individuals in the general 

population of the same age and sex, as previously estimated
25

 (Figure 4B). Using this 

estimate of the IFR would suggest that 7.28% of the French nursing home population had 

been infected by the 1st of September 2020 (95%CrI: 6.29-8.49%), a 1.70 fold higher 

infection attack rate than the general population (Supplementary Methods S3). In our baseline 

model we derive IFR estimates amongst the general population (i.e. excluding nursing home 

deaths) so as to facilitate robust comparisons of IFR and general population transmission 

across settings. However, we demonstrate that where high rates of infection have occurred 

amongst nursing home residents, overall IFRs will be significantly greater than in scenarios 

where these populations have been successfully shielded or experienced little exposure 
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(Figure 4C). For example, in France, including nursing homes deaths increases the IFR from 

0.74% for the general population (95%CrI: 0.64-0.86%) to 1.10% overall (95%CrI: 0.95-

1.28%). This highlights the complexity in comparing headline IFR estimates across 

populations where very different levels of transmission may have occurred in these hyper-

vulnerable communities. 

  

Discussion 

In our analysis we assess the relationship between seroprevalence and the age-specific 

number of COVID-19 deaths across many settings. Accounting for population demographics 

and variable mortality burdens amongst elderly populations, we find considerable 

heterogeneity in the overall IFR of SARS-CoV-2 across settings, suggesting additional 

important drivers of infection fatality ratios. 

Seroprevalence surveys have, to date, shown inconsistent patterns in age-specific infection 

attack rates across settings (Figure S10) as contact patterns are likely to have changed 

significantly over the course of the pandemic. In sensitivity analyses we find our results to be 

relatively consistent when using different assumed age-specific infection attack rates (Figure 

S9). Here we have used data from national reporting systems of COVID-19 associated 

deaths. However, in some settings these may not capture all deaths associated with COVID-

19. It has been estimated for a subset of countries (N=6/45) that reported COVID-19 deaths 

were between 40% undercounted to 10% overcounted as compared to excess death 

estimates
26

. Assuming that these differences occur equally across all age groups would result 

in a change of mean IFR for these countries of 0.66% to 0.87%. Note that this represents an 

extreme scenario, as most unaccounted for deaths are likely to be in the oldest age groups, 

which would not affect our estimates
26

. We note that there are a number of complexities in 

the interpretation of excess death data that can inhibit their direct use in assessments of IFR. 

Specifically, excess death estimates are highly sensitive to the reference time period used 

(Figures S11-S12), frequent negative excess deaths occur, especially in younger ages (Figure 

S12), and there is limited availability of excess deaths for narrow age-groups or outside 

resource-rich countries. While both seroprevalence and reported COVID-19 death data can be 

subject to potential limitations, considering these data across multiple settings in a 

harmonized framework allows us to robustly assess trends in the transmission and fatality 

rates of SARS-CoV-2 and derive global ensemble estimates. 

Translating the number of COVID-19 deaths into estimates of the number of infections 

requires careful consideration of fatalities from outbreak events in highly vulnerable 

populations. By providing a benchmark of the expected number of deaths by age in older 

individuals, our approach allows us to identify countries where excess transmission in 

nursing home populations has likely occurred. We demonstrate how outbreaks in nursing 

homes can drive overall population IFRs, through both increased attack rates and increased 

vulnerability. The results and modelling framework we present demonstrate how age-specific 

death data can be used to robustly reconstruct the underlying level of transmission. This 

approach could be applied at sub-national scale and may be of particular use in settings where 

there do not exist the resources to carry out large, representative seroprevalence studies. 
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Figures 

 

Figure 1. Patterns of COVID-19 mortality across settings. (A) Countries with age-specific 

death data (beige tiles) and locations with seroprevalence data (coloured points). (B) 

Estimated median and 95% credible interval (CrI) of the proportion of the population that 

have died in each age group, relative to the proportion that have died among 55-59 year olds 

in that country (black dots and lines), plotted on a log-linear scale. Coloured dots represent 

the country- and age-specific risks of COVID-19 death in the population relative to that of 

55-59 year olds observed from reported death data, accounting for population age 

distributions (Supplementary Methods S1) (N=538,477 reported deaths). All data points are 

plotted at the midpoint of the reported age group. The grey shaded areas highlight the relative 

risks of death by age for age groups ≥65, excluded from model fitting and black stars 

represent estimates inferred from England data only which are derived independent of 

nursing home deaths. (C) Comparing the reconstructed number of deaths with reported data 

for age-groups 60 or 65+ for a subset of countries where nursing home deaths could be 

excluded. Black dots and lines indicate the estimated median and 95%CrI; coloured bars 

show the reported incidence of non-nursing home deaths aged ≥60. Countries labelled with 

an asterisk * indicate where the number of deaths were reconstructed for ages 65+, to align 

with the reported age-groups for each country. 



 

Figure 2. Infection fatality ratio (IFR) estimates. (A) Estimated median and 95% credible 

interval (CrI) of the IFR, stratified by age and sex and plotted on a log-linear scale. The IFR 

is estimated with the ensemble model (filled dots and black lines). Black stars on the right-

hand side represent the estimated IFRs for age-groups ≥65, which were excluded from the 

fitting of the ensemble model. The coloured shaded dots represent median IFRs estimated 

from separately fitting to each individual serosurvey. (B) Population-weighted IFR estimates 

derived from separately fitting individual serological surveys in the model and using France 

as a reference population, with points and lines indicating the median and 95%CrI. The blue 

dashed line and ribbon indicate the median and 95%CrI of the population-weighted IFR 

produced by the ensemble model. Hollow dots represent the estimates from subnational 

serological surveys that were excluded from the fitting of the ensemble model. (C)  Median 

and 95%CrI of the population-weighted IFRs estimated by the ensemble model for each of 

the 45 countries, coloured by continent. Grey shaded dots represent the median estimates for 

each country, derived from fitting the model separately to each individual seroprevalence 

survey. 



 

Figure 3. Infection attack rates. (A) Estimates of the infected population proportion for 

each country as of the 1st of September 2020*. Grey shaded dots indicate the median 

estimates by fitting the model with each individual seroprevalence survey. Coloured dots and 

lines represent the median and 95% credible intervals (CrI) estimated by the ensemble model. 

*The y-axis has been capped at 1. In Figure S4 we show the same graph with the full range of 

values. (B) Proportion seropositive over time for each of the 12 countries with national-level 

seroprevalence data. Green curve and ribbon indicate the median and 95%CrIs estimated by 

the ensemble model. Dots and lines represent the mean and 95% binomial confidence interval 

reported by the published seroprevalence data. For countries with > 1 seroprevalence surveys, 

black dots and lines correspond to the study-1 as referenced in Figure 2 and Supplementary 

Table S1, whereas pink dots and lines correspond to the study-2 (e.g. Belgium-2) and navy 

dots and lines to study-3. Blue shaded regions indicate the start and end dates of sampling for 

each seroprevalence survey. Grey dashed lines and ribbons represent the median and 95%CrI 

model estimates derived from separately fitting to each individual serostudy. 



 

 

Figure 4. Infection fatality patterns amongst ≥60s. (A) Difference between the reported 

and expected incidence of COVID-19 deaths per 100,000 population amongst ≥60s or ≥65s 

in each country. Coloured bars represent the median difference and black lines represent 95% 

credible intervals (CrIs). Countries labelled with an asterisk * indicate where the number of 

deaths were reconstructed for ages 65+, to align with the reported age-groups for each 

country (N=429,039 reported deaths 60 or 65+). (B) Population-weighted IFRs for the 

general population and nursing home residents, using France as a reference population 

(N=10,560 reported deaths amongst nursing home residents and N=20,528 amongst the 

general population). The relative frailty of nursing home residents is assumed to be 2 

(yellow), 3.8 (green), or 6 (blue). Dots and lines indicate the median and 95%CrIs estimated 

by the ensemble model. (C) Population-weighted IFR in France, estimated with different 

assumed infection attack rates and frailty of nursing home residents relative to those of the 

same age and sex in the general population. Coloured ribbons indicate 95%CrIs and the black 

dashed line represents the median population-weighted IFR estimated when assuming a zero 

infection attack rate amongst nursing home residents (N=10,560 reported deaths amongst 

nursing home residents and N=20,528 amongst the general population). 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Methods 

 

Data 

Age- and sex- specific COVID-19 fatality data 

We collated national-level age-stratified COVID-19 death counts from official government 

and department of health webpages and reports for 45 countries. Where available, the 

stratification by both age and sex were used. Sub-national age-stratified death counts were 

additionally collated for 4 regions where seroprevalence surveys had been conducted. For 

countries where information on age was missing for a subset of deaths, we assumed the age-

distribution of the missing subset to be the same as that of the deaths with available age data. 

Information on age was missing for 29% of deaths in Spain. In addition, the time series of 

daily reported deaths from each country/region were obtained from the COVID-19 Data 

Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins 

University
27

. Age- and sex-specific population data were obtained from the United Nations 

2019 World Population Prospects
28,29

. 

 

Seroprevalence studies 

We used data from 25 SARS-CoV-2 seroprevalence surveys from 20 countries/regions where 

the results were representative of the general population and where age-stratified death data 

were also available, shown in Figure 1A and Supplementary Table S1. In the ensemble model 

we consider only the 22 national-level seroprevalence surveys, representing 16 countries. 

Where estimates of seroprevalence reported by individual studies had not been adjusted for 

the performance of the serological assay, we used the reported values of assay sensitivity and 



specificity to adjust the reported values (Supplementary Table S1). Seroprevalence values 

from 24/25 studies included in our analysis were adjusted for assay performance, while the 

serological assay used by the remaining 1 study had not been reported at the time of 

publishing. 

 

Model 

We combined age- and sex-specific COVID-19 death data from 45 countries with data from 

15 seroprevalence surveys, to jointly infer the age- and sex-specific IFRs and country-

specific cumulative probabilities of infection. Age- and sex-specific IFRs were estimated in 

5-year age-groups, with individuals aged 80+ considered as a single age group. Let        be 

the population size for the age group a of sex s in country c. The expected number of deaths 

for the age group a of sex s in country c,        is estimated as shown in equation 1, which we 

assume to follow a Poisson distribution.    denotes the cumulative probability of infection in 

country c,    the relative probability of infection in age-group a, and        the infection 

fatality ratio of age-group a and sex s. This assumes that age- and sex-specific IFRs are 

constant over the course of the pandemic. Where improvements in COVID-19 outcomes have 

occurred over time, our estimates would represent the average probabilities to-date.  

 

 

 

                            

[Equation 1] 

 

The expected number of deaths estimated by 5-year age-groups were summed to match the 

corresponding age-groups of observed deaths when reported in coarser age-groups. We fit 

exclusively to the reported number of deaths for age groups <65 years for each country (i.e. 

including all age-groups where the upper bound is <65 years). IFRs for age groups ≥65 were 

derived from age-specific death data reported by the Office for National Statistics (ONS) in 

England
30

, which allows us to exclude the age-specific number of deaths among nursing 

home residents (Supplementary Methods S2). As an external validation, we apply these IFRs 

to reported death data for a subset of 13 countries where an adjustment for deaths occurring 

in nursing homes could be applied (Supplementary Methods S2). 

 

To align estimates of the cumulative probability of infection,   , with data from 

seroprevalence surveys, we used daily time-series of reported deaths to infer the timing of 

infections and subsequent seroconversions. We assumed a gamma distributed delay between 

onset and death with mean of 20 and standard deviation of 10 days
31

 and a gamma distributed 

delay between infection and onset with mean 6.5 and standard deviation 2.6 days
32

.  The 

delay between onset and seroconversion was assumed to be gamma distributed with a mean 

of 10 and standard deviation of 8 days
33

. We derive the approximated seroprevalence at a 



given survey period  ,     , as shown in equation 2. Here,      is the inferred number of 

seroconversions in country   on day  , as inferred from the convolution of the death time-

series,      is the  number of new deaths reported in country c on day i, and    is the date of 

reporting of the age-stratified cumulative death data. 

 

             

 

   

      

  

   

 

 

[Equation 2] 

 

We include all data from national-level seroprevalence studies in an ensemble model, where 

the expected seroprevalence is assumed to follow a Beta distribution with unknown variance 

parameter,  , as shown in equation 3. To investigate the contribution of different serological 

studies to the likelihood the model was fit separately to data from each individual 

seroprevalence survey, including an additional 3 subnational seroprevalence studies 

(Supplementary Table S1). For each seroprevalence survey the expected number of 

seropositive individuals in country   at sampling period  ,        , is assumed to follow a 

Binomial distribution as shown in equation 4, where             is the number of 

serological samples taken in country   at time  34
.  

 

 

                    

[Equation 3] 

 

                                   

 

[Equation 4] 

 

All parameters were estimated in a Bayesian framework using RStan
35 

using R version 3.6.1. 

We assumed uniform priors on all parameters, between -50 and -0.001 on a log scale for all 

IFR estimates, and between -50 and 2 on a log scale for all estimates of the cumulative 

probability of infection. The model was run with 3 chains of 10,000 iterations each. 95% 

credible intervals (CrI) are calculated by taking the 0.025 and 0.975 quantiles of the posterior 

distribution. 
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Data Availability 

Data is available at https://github.com/meganodris/International-COVID-IFR. Queries can be 

addressed to mo487@cam.ac.uk 

Code Availability 

All code necessary to reproduce this analysis is available at 

https://github.com/meganodris/International-COVID-IFR 
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