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Supplement S1: Model details  1 

S1.A. Detailed within-canton transmission 2 

          represents the force of vector-borne infection from female midges located in the 3 

canton that got infected locally while feeding on infectious ruminants in the previous time steps, 4 

that completed the extrinsic incubation period (EIP) required for BTV replication and 5 

dissemination up to the arthropod vector salivary glands, and survived up to time t. We made the 6 

assumption that, in a given canton, and during the vector activity period, the vector to host ratio 7 

was constant. Under this assumption, the vector-borne transmission can be represented by a non-8 

Markovian force of infection, which accounts for the Culicoides cohorts that emerged in the 9 

preceding weeks. 10 

                                       11 

with τ(k,t), the weekly effective contact rate at which vectors and hosts from canton k come into 12 

effective contact;    , the relative preference of vectors for cattle or sheep (conditional on 13 

feeding on these species); Prev(k,t-i), the proportion of infectious animals at time t-i weighted by 14 

vectors species-specific trophic preferences; wi, the fraction of Culicoides vectors that have 15 

completed their EIP in i weeks and survived over that period. 16 

τ(k,t), Prev(k,t-i) and wi are given by: 17 

Prev(k,t-i) =               -                      -   18 

 with   , the preference for feeding on cattle vs sheep (if feeding of these species). 19 

    20 0     if Tp(t-i,k) < Tmin or i=0 

(1-µ
v
)
(i*7)

 *          if Tp(t-i,k) ≥ Tmin and i>0     21 

 (i*7)/EIP    if i*7 < EIP 22 

wi = 
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  1    if i 7 ≥ EIP 23 

with Tp(t-i,k), the temperature;        , the fraction of Culicoides that have completed their EIP 24 

in i weeks; µ
v,
 the daily mortality proportion of Culicoides vectors; and Tmin, the threshold 25 

temperature for virus replication. 26 

                          

with β0, a coefficient that represents the baseline exposure of hosts to vectors, defined here as the 27 

product of the baseline vector to host ratio, the host to vector and vector to host probabilities of 28 

successful transmission, and the trophic preference of Culicoides for cattle and sheep vs other 29 

warm-blooded species; Env(k), the environmental variables used as proxy of host availability, 30 

Culicoides presence and abundance;       , the temperature dependent biting rate of Culicoides 31 

at time t in canton k that represents the seasonal variation in Culicoides activity. 32 

Env(k) was defined under the assumption that bluetongue transmission in a given area 33 

depends on the proportion of surface covered in pastures, where hosts and vectors come into 34 

contact. We modulated the effect of transmission that occurred on pastures by considering two 35 

additional land cover metrics: (i) the edge density between pastures and arable lands where 36 

manure is spread and provides suitable breeding sites for BTV vector species (Ninio, 2011); and 37 

(ii) the edge density between pastures and forests/semi-natural areas which provide shelter to the 38 

wild animals that may contribute to BTV sylvatic cycle (Rossi et al., 2014). Edge densities are 39 

landscape diversity indicators, here defined as the cumulative length of borders (m) between two 40 

types of land cover within a canton, divided by the surface area of the canton (hm
2
).We attributed 41 

coefficients βa and βf to the edge densities of pasture vs arable lands and vs forest respectively, 42 

and expressed the Env(k) term as follows:  43 

                                        



3 

 

with         , the proportion of the surface of canton k covered in pastures;       and       , 44 

the edge densities of pasture vs arable lands and vs forest respectively, in canton k. 45 

S1.B. Detailed between-canton transmission 46 

BTV transmission through the three contact networks depends on both the frequency of 47 

movements and prevalence of infection in the source canton. We represented BTV transmission 48 

due to midges dispersal by applying a fraction of the force of infection of a given canton to its 49 

neighbors on the pasture network.           , the force of vector-borne infection applied to 50 

canton k at time t from all its neighbors was given by: 51 

                                       52 

with          the neighbors of canton k on the pasture network; ΨP, the proportion of canton 53 

surface that can be reached by vectors coming from a neighboring canton;          , the force of 54 

infection in canton j, neighbor of canton k on the pasture network. 55 

We estimated       
       , the number of infectious animals introduced in cell k at time t, 56 

as the sum of those introduced through the farm and trade networks (     
        and 57 

      
       ):  58 

      
              

               
        

      
              

                 
                                        59 

with          and          , the neighbors of canton k on the farm and trade network 60 

respectively;      
          and       

         , the number of infected animal introduced from 61 

canton j to canton k at time t on the trade and farm network respectively. 62 
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where      
         , the weekly number of animals moved on the farm network from canton j to 63 

canton k at time t is given by: 64 

      
                  

                 65 

with ΨF, the weekly proportion of animals moved through the farm network;      
       , the 66 

proportion of cattle or sheep farms from canton j that have pastures in canton k; and 67 

           the number of animals of each species in canton j at time t. 68 

       
           69 

      
                     

                              without movement restrictions 70 

      
                     

                              with movement restrictions, R=0 71 

      
                       with movement restrictions, R=1 72 

with       
        , the total number of cattle traded from canton j to k on week t, which could be 73 

fully informed by data. R was randomly drawn before each movement: R ~ Bern( ); with  , the 74 

probability that control measures are correctly implemented and complied with. Movement 75 

restrictions were applied for R=1.  76 

S1.C. Discussion of modelling assumptions 77 

We attributed weights to the prevalence of infectious animals in the previous time steps 78 

(wi) to account for the proportion of Culicoides that had achieved their EIP and survived between 79 

the time when they got infected and the current time step. These weights were calculated using 80 

survival probabilities specific to Culicoides Obsoletus that had been measured in a unique setting 81 

(17-25°C, Goffredo et al., 2004). The vast majority of authors who modeled BTV transmission in 82 

the 2006/09 European outbreak (Gubbins et al., 2008; Szmaragd et al., 2009; Guis et al., 2012; 83 

Graesbøll et al., 2012; Sumner et al., 2017) represented Culicoides survival using the same 84 

formulae (Gerry and Mullens, 2000) that accounts for the temperature-dependency of survival. 85 
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However, that formulae originates from a study conducted under a different climate (Southern 86 

California) and on C. sonorensis (Gerry and Mullens, 2000), a species considered as the main 87 

BTV vector in North America (Ninio C., 2011), but not in Europe where the Obsoletus group is 88 

thought to play a major role in BTV transmission (Ninio C., 2011). These vector species have 89 

different life history traits: C. sonorensis have a short life expectancy that highly varies with 90 

temperatures: from a few days in summer, up to >10 days in winter (Gerry and Mullens, 2000); 91 

by contrast, the variation in the number of Culicoïdes from the Obsoletus group between seasons 92 

may rather be attributed to the impact of temperatures on larval development than on survival 93 

probabilities (Birley and Boorman, 1982), and higher life expectancies have been found in this 94 

group: 10% survival (N=150/1,500) over 40 days at 17-25°C and a maximal survival period of 92 95 

days (Goffredo et al., 2004).  96 

We thus calculated the wi weights based on survival probabilities that had been estimated 97 

in laboratory conditions at 17-25°C. These temperatures matched the average ones recorded in 98 

France in the months when most BT cases were reported in 2007 (July- September). We added a 99 

12°C threshold below which vectors could not complete their EIP (Carpenter et al., 2011), and 100 

accounted for the influence of temperature variations on the dynamics of transmission by adding 101 

a temperature-dependent biting rate.   102 
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Supplement S2: Details on fixed parameters 103 

S2.A. Demography 104 

The size of cattle and sheep population by canton was matched to real data. For cattle, we 105 

updated the number of animals and births per canton every week. For sheep, we only had 106 

information on population sizes per canton in 2010, so that we assumed a constant size in each 107 

canton and applied a weekly renewal proportion µ
s
 (4‰, Institut de l’élevage, 2016, 2017). We 108 

randomly attributed the newborns to the C
sp

 and S
sp

 compartments proportionally to the species-109 

specific seroprevalence in the canton. Animals from the C
sp

 compartment then transitioned 110 

towards the S
sp 

one after the disappearance of colostral antibodies at a rate   
  

. Animals moving 111 

out of the canton were considered as randomly distributed between all compartments, 112 

proportionally to the number of animals in each of them. 113 

S2.B. Detection 114 

Cantons with infected animals could be detected by passive clinical surveillance. We 115 

called Δ the probability that infectious animals could show clinical signs and be detected, so that:  116 

       
                     

           

with        
       , the number of animals detected in canton k at time t;        

       , the number 117 

of ruminants moving from the first to the second infectious stages in canton k at time t. We used 118 

that transition because the incubation period lasts about a week in cattle (Guyot et al., 2008) and 119 

to ensure that each animal would be counted only once. 120 

We used a retrospective serological study conducted in French cattle soon after BTV 121 

introduction to a new area in 2007 to identify the likely order of magnitude of Δ (Durand et al., 122 

2010; Courtejoie et al., 2018). In that area, it was estimated that 40% of all cattle was likely to 123 
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have been infected (i.e. ~120,000 cattle heads), whereas 155 bovine herds (estimated 3,000 124 

animals with clinical signs, Mounaix, B. et al., 2010) had been notified since BTV introduction. 125 

We thus considered as plausible a 2% probability of detection of infected cases upon clinical 126 

suspicion in newly infected areas (Δ), and varied this value between 1 and 5% in a sensitivity 127 

analysis. 128 

S2.C. Proportion of canton surface reachable by Culicoides from neighboring cantons 129 

We combined data on Culicoides flight distances, French cantons surface areas and 130 

pasture network topology to infer plausible values for ΨP. Culicoides dispersal at the farm level is 131 

still poorly understood and often assumed to remain at short distance from the breeding site 132 

(EFSA, 2017). However, recent studies showed that the dispersion of Culicoides may be higher 133 

than originally thought: engorged  females  of C. chiopterus, positive for cattle, were captured in 134 

sheep farms with no cattle less than 2 km away (Garros et al., 2011); a mark-release-recapture 135 

experiment estimated a possible daily dispersal distance of 1.75 km for C. punctatus and C. 136 

pulicaris (Kirkeby et al., 2009). In a similar study conducted in the Obsoletus group, thought to 137 

play a major role in BTV transmission in Europe (Ninio C., 2011), Kluiters et al. (2015) 138 

estimated a mean distance travelled of 2.15 km for female midges and 2.5 km for all midges, in 139 

two and three nights respectively. Here, we thus considered a weekly flight distance of 5 km and 140 

estimated a value of 0.4 for ΨP. as follows:  141 

We approximated cantons by disks of radius Rcanton (= 
       

 
), with Acanton, the average 142 

surface of a canton. We considered the area covered by Culicoides coming from canton k as a 143 

circle of radius Rculi (=Rcanton + dflight), and area Aculi (= π  Rculi
2
- Rcanton

2
)), with dflight, the average 144 

distance that can be covered by Culicoides flight in a week. Hence, the proportion of area of any 145 
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neighbor of canton k on the pasture network, that can be reached every week by Culicoides 146 

coming from canton k is ΨP (= 
     

               
) , with nneigh, the average number of neighbors (i.e. 147 

the average degree) in the pasture network. 148 

Knowing the average canton surface (Acanton=150 km
2
), the average degree of the pasture 149 

network (N=5), and considering a weekly flight distance of 5 km for female Culicoides (Kluiters 150 

et al., 2015), we assumed that ΨP would take the value of 0.4, and varied this value (0.2, 0.3, 0.5 151 

i.e. dispersal of 3, 4 and 6 km) in a sensitivity analysis.  152 
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Supplement S3: ABC-RF for model comparison  153 

To avoid unnecessary complexity, we checked whether model fit would benefit from a 154 

detailed description of BTV transmission processes: we investigated the need for land-cover 155 

variables in the representation of within-canton transmission, and the need for the different 156 

contact networks in the representation of between-canton transmission.  157 

S3A. Model selection by random forest 158 

To assess the required level of complexity, we built separate models including various 159 

combinations of the variables and networks of interest and compared them using random forest 160 

classification methods (Pudlo et al., 2016). We sampled 10,000 sets of parameter values and used 161 

them to simulate surveillance and serological data with each model. We grew a forest of 1,000 162 

trees to train the RF classifier on the simulated data, and applied the results of the RF 163 

computation to the observed surveillance and serological data. We obtained classification votes 164 

for each model, representing the number of times they were selected in the forest. The model 165 

collecting most votes was the one providing the best fit to the observed data. These results 166 

allowed us to choose a model and a set of variables used for all subsequent analyses.  167 

S3.B. Environmental variables included in BTV within-canton transmission 168 

To select the land-cover metrics that should be included in the model, we built five 169 

separate models. One of them did not include any environmental variable (model0). The 170 

proportion of pastures per canton was added to the four remaining ones. Its effect on the force of 171 

infection, as given by the β0 * Env(k) term, could be modulated by both edge densities (modelAF), 172 

by only one of them (βF=0 or βA =0, modelA and modelF respectively), or by none of them 173 

(βA = βF = 0, model1).  174 
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The models differed in the expression of the term Env(k): 175 

- model0: Env(k)
 
= 0 176 

- model1: Env(k) = dPast(k) 177 

- modelA: Env(k) = dPast(k)* (1 + βA *       ) 178 

- modelF:  Env(k) = dPast(k)* (1 + βF*       ) 179 

- modelAF:  Env(k) = dPast(k)* (1 + βA *      )    βF *       )) 180 

with         , the proportion of the surface of canton k covered in pastures;       and       , 181 

the edge densities of pasture vs arable lands and vs forest respectively, in canton k. 182 

The RF classifier was trained on simulated data generated from parameter values sampled 183 

in uniform distributions. For β0 , ΨF,  , we used the prior distribution found in Table S3 and 184 

described in more details in Supplement S4.C. The bounds for the prior distributions of βA, βF, 185 

were chosen from the distributions of edge densities        and       in all cantons, so that the 186 

effect of edge densities would take the minimal value of -1, corresponding a force of infection of 187 

zero. We thus allowed βA and  βF to vary uniformly between -3.5 and 3.5 when only one edge 188 

density was accounted for (modelA, modelF), and between -1.75 and 1.75 when they were 189 

accounted for simultaneously (modelAF).  190 

Table S1: Comparison of the models including various sets of land-cover variables: first of the five 191 

models (left), then of two of them, given the results of the first step (right). 192 

Proportion of votes (/1,000 trees) Proportion of votes (/1,000 trees) 

model0 model1 modelA modelF modelAF model1 modelA 

0.004 0.213 0.291 0.232 0.260 0.444 0.556 

Post probability Post probability 

0.416 0.519 

The results (Table S1) showed that the proportion of pastures was crucial to representing 193 

BTV within-canton transmission. We also compared the simplest model that included the 194 

proportion of pastures, with the one that collected the most scores, to assess whether 195 
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complexifying the model provided a true improvement to model fit. As the two models 196 

performed equally (Table S1), we concluded that there was no additional benefit to model fit with 197 

the inclusion of any of the edge densities. We selected the most parsimonious model (model1), 198 

with the proportion of pastures as only environmental variable, and used it for all subsequent 199 

analyses. 200 

S3.C. Contact networks included in BTV between-canton transmission. 201 

To assess which of the three contact networks was needed to represent BTV spread 202 

between French cantons, we built seven separate models, for all combinations of the three 203 

networks:  204 

- modelpast, modelfarm, modeltrade, for each network independently 205 

- modelpast_farm, modelpast_trade, modelfarm_trade, for all pairs of networks 206 

- modelpft, for all networks together 207 

The distributions used for sampling 10,000 sets of parameter values (β0, ΨF,  ) are the 208 

same as those used in the previous section (Supplement S3.B). The results clearly showed that no 209 

network on its own was enough to represent BTV spread to new areas and that a combination of 210 

the networks was needed (Table S2). The best fit was obtained when all networks were 211 

combined. As the model including only the farm and pasture networks came second, we 212 

compared the two models that collected the most votes to assess whether complexifying the 213 

model provided a true improvement to model fit (Table S2). In the second step of model 214 

comparison, the model including all networks collected >75% of the votes, so that we kept it and 215 

used it for all subsequent analyses.  216 

Table S2: Comparison of the models including various combinations of contact networks: first of the 217 

seven models (top), then of the two ones providing the best model fit (bottom). 218 

Proportion of votes (/1,000 trees) Post 
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modelpast modelfarm modeltrade modelpast_farm modelpast_trade modelfarm_trade modelpft, probability 

0.003 0.003 0.008 0.433 0.035 0.005 0.513 0.52 

 219 

Proportion of votes (/1,000 trees) 
Post probability 

modelfarm_trade modelpft 

0.236 0.764 0.791 

Supplement S4: Details on parameter estimation 220 

S4.A. Adaptive population Monte-Carlo approximate Bayesian computation method 221 

ABC likelihood-free methods only require being able to sample from the likelihood. They 222 

are useful for complex, stochastic models where estimating the full likelihood is difficult or 223 

impossible (Pritchard et al., 1999). They are based on the generation of sets of model parameters 224 

values (particles) initially sampled from the joint prior distribution of each parameter, followed 225 

by the selection of the particles for which the model outputs (summary statistics) satisfy a 226 

proximity criterion with the target data. Posterior distributions for each parameter are then 227 

obtained from the selected particles.  228 

Sampling the whole parameter space is poorly efficient and computationally demanding; 229 

numerous methods have been developed to improve the basic rejection algorithm (Marjoram et 230 

al., 2003; Del Moral et al., 2006; Beaumont MA et al., 2009; Wegmann et al., 2009; Drovandi 231 

and Pettitt, 2011). The required number of simulations can be reduced by spending more time in 232 

the areas of the parameter space for which model outputs are frequently close to the target ones. 233 

The algorithm proposed by Lenormand et al. (2013) starts by the generation of a set of particles, 234 

to which a weight is attributed given their importance for the inference combined with the prior 235 

probabilities, as in Beaumont et al. (2009). In the next estimation steps, the particles are 236 

resampled based on the weights from the previous one and perturbed according to a pre-defined 237 

perturbation kernel and a new set of weights is calculated. The tolerance controlling the matching 238 
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is decreased at each step, and the algorithm proposed by Lenormand et al. (2013) has the 239 

additional advantage of providing automatically computed thresholds, defined as the α-quantile 240 

of the distance between simulated and observed summary statistics in the previous sample set. 241 

This algorithm provides an explicit stopping criterion as computation stops when the proportion 242 

of particles satisfying the tolerance level among the newly generated particles is below a chosen 243 

minimal acceptance value. The final result is the last set of particles generated, with their 244 

associated weights. 245 

S4.B. Summary statistics 246 

The three summary statistics used for inference were built from surveillance and 247 

seroprevalence data from the 2007 epizootic wave. For surveillance data, we attributed a score of 248 

one for departments with reporting cantons by winter 2007/08, zero otherwise. In each 249 

simulation, we extracted the number of departments with a score of zero (FF) and one (TT) in 250 

both simulated and observed data, and we calculated an L2 distance (Surv). For seroprevalence, 251 

we calculated species-specific L2 distances of the number of seropositive animals detected in 252 

each department sampled in the serosurvey conducted in winter 2007/08 (Sero
sp

). The summary 253 

statistics were the following: 254 

Surv =         –                   –         255 

Sero
sp

 =           
           

          256 

With sim and obs for simulated and observed measures respectively; TT, the number of 257 

departments with reporting cantons in both simulated and observed data, FF, in neither simulated 258 



14 

 

nor observed data; dpt
sp

, the seven and four departments where cattle and sheep had been 259 

sampled respectively; NPos
sp

, the number of seropositive animals detected in these departments. 260 

S4.C Prior distributions 261 

We used uniform distributions for all parameters: an uninformative prior for the proportion of 262 

animals moved weekly through the functional network for which we had no previous knowledge, 263 

and informative priors for the other two. The ranges were extrapolated from official outbreak 264 

records or external data, as described here below.  265 

Table S3: Ranges for the uniform prior distribution of the estimated parameters:  266 

Notation Description 
Possible 

range 

Prior range 

distribution 
Source 

β0 Baseline exposure of hosts to vectors [0 - +∞[ [1,000 – 10,000] External data 

ΨF 
Proportion of animals moved weekly 

through the farm network 
[0 - 1] [0 - 1] 

Non informative 

prior 

  

Probability of control measures being 

implemented on movements of cattle 

through the trade network 

[0 - 1] [0.9 – 1] 
Outbreak record 

(Drouet M., 2010) 

The bounds of the prior distribution for β0 were chosen arbitrarily after having verified 267 

that they covered all plausible values of the parameter space. Given the general modelling 268 

assumption that within-canton transmission was the main driver of infection in infected areas, we 269 

focused on a subset of 22 cantons for which we knew the dates of detection and the levels of 270 

seroprevalence in winter 2007/08. We explored the parameter space by simulating infection at 271 

different dates and with various β0 values. We plotted the evolution in time of the proportion of S, 272 

I and R animals in each canton and scenario and concluded that there would hardly be any within-273 

canton transmission for β0 below 1,000, while there would be saturation for β0 above 10,000. 274 

Movement restrictions applied to the trade network had most likely been correctly 275 

implemented (Drouet, 2010). In a preliminary analyses, we simulated 100 outbreaks with   276 
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values comprised between 50 and 100%. We obtained outbreaks that were compatible with those 277 

observed for   values above 90%. Otherwise, there was saturation in the summary statistics as the 278 

whole French territory was infected by winter 2007 in all simulations. We thus limited the prior 279 

distribution for the   parameter to the [0.9-1] interval. 280 

We validated these choice of prior distributions in the assessment of the ability of our 281 

framework to estimate known parameter values (Supplement S6).  282 
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Supplement S5: Network analysis 283 

Introduction  284 

Network-based approaches have been developed to face the many information on 285 

livestock movements now available through the systematic building of exhaustive databases. 286 

They rely on the study of the relationships among farms or livestock operations, and allow the 287 

study of sequences of movements producing paths on which infectious diseases can spread (Dubé 288 

et al., 2009). Networks analyses have proven useful in understanding the implications of long-289 

range host movements by exploring the vulnerability of the French network of cattle movements 290 

to the spread of pathogens (Rautureau et al., 2012), or assessing the risk of a large epidemic of 291 

foot-and-mouth disease in the UK (Kao et al., 2006). More recently, network analyses have been 292 

used to explore the implications of short-range host movements and biosecurity measures on 293 

disease spread in French cattle (Palisson et al., 2017). 294 

Methods  295 

We used three distinct contact networks, in which the nodes were cantons, to represent the 296 

likely movements of hosts and vectors: (i) the pasture network, that represents midges flight from 297 

pastures, located in different cantons but less than one km apart, a distance used by Palisson et al. 298 

(2017) to represent the most likely routes of vector-borne disease transmission across the densely 299 

connected French pastures; (ii) the farm network, that represents the movements of cattle or 300 

sheep between pastures belonging to the same farm, but located in different cantons; (iii) the 301 

trade network, that represents movements of cattle traded between farms located in different 302 

cantons. The links were aggregated at the canton-level, so that a link existed between two 303 

cantons: (i) in the pasture network, if at least two pastures from each canton were close enough 304 

(N=8,009 links); (ii) in the farm network, if at least one farm had pastures in both cantons 305 

(N=22,905 links); (iii) in the trade network, if cattle had been traded between at least two farms 306 
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located in each canton (N=174,702 in the 2
nd

 semester of 2007). The pasture and farm networks 307 

were static with links existing at all times and movements through these links as likely to go 308 

either way. The trade network was temporal and oriented, linking different donors and recipients 309 

every week. The topological analysis of this network was performed on the time period of the 310 

first epizootic wave: by aggregating all links from the second semester of 2007, or by aggregating 311 

all links on each week of this semester. 312 

We computed classical network indicators for all of them to better grasp their specific 313 

topological properties, and understand their likely impact on transmission patterns: the average 314 

degree (i.e. mean number of connections from a node to all others); the average path length (i.e. 315 

the most typical separation of one pair of nodes, an indicator of the effective size of the network); 316 

the clustering coefficient (i.e. proportion of one’s neighbors who are also neighbors of one 317 

another, a measure of how the nodes tend to cluster together). We also studied the fragmentation 318 

of the networks, an indicator of the network vulnerability, by looking for the presence of giant 319 

components, i.e. subnetworks in which all nodes are linked, meaning that if any node is infected, 320 

all other nodes may be subsequently reached (Kao et al., 2006).  321 

Results 322 

The pasture network had an average degree of 5.0, an average path length of 27, and a 323 

clustering coefficient of 37.1%. The farm network had an average degree of 13.9, an average path 324 

length of 9.9 and a clustering coefficient of 43.2%. In addition, with an average path length of the 325 

same magnitude than that of a random network of the same size (3.4), but a clustering coefficient 326 

>100 times bigger, the farm network showed small world properties.  327 

The trade network had the smallest average path length of all three networks: 2.9 if 328 

aggregating all links of the second semester of 2007 (and 6.1 in a week), and an average degree 329 

of 54.8 (8.6 in a week). In addition, the number of connections from each nodes was highly 330 
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variable with a power-law distribution, which gave that network scale-free properties. Its 331 

clustering coefficient was 23.5%. 332 

None of these networks was fragmented: they had big giant components including 96.3% 333 

and 98.3% of the nodes in the pasture and farm networks respectively. All nodes of the trade 334 

network (99.9%) were part of its weakest giant component, and 91.2% of its strongest one.  335 

Discussion 336 

BTV could reach the whole French territory through either one of the three contact 337 

networks, but their different topological properties had different implications in terms of impact 338 

on disease spread (Dubé et al., 2009; Rautureau et al., 2012; Palisson et al., 2017): the pasture 339 

network was basically a grid, with all nodes located at close distance and having few neighbors; 340 

the farm network was a grid with additional small-world properties: most pastures from the same 341 

farm were located at close distance, but some of them were further apart, which introduced 342 

shortcuts in transmission; and the trade network had scale-free properties: there were hubs that, if 343 

reached, spread the infection fast and far. By comparing models in which transmission could 344 

occur through different combinations of networks, we showed that the representation of BTV-8 345 

transmission was significantly improved by combining these networks rather than considering 346 

them individually.  347 
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Figure S1: Alternative strategy for the 2008 emergency vaccination campaign.  348 

A. Vaccination schedule in which the order of priority for the distribution of the limited number of 349 

vaccine doses in cattle and sheep was defined to create a buffer zone beyond the previously affected areas 350 

(“AFFSA scenario, AFSSA, 2008). The order of priority is indicated by the color code, vaccination was 351 

spread out between May and September 2008. We vaccinated all departments by order of priority until 352 

reaching the target coverage of 95% as we considered that about 5% of the population was not eligible for 353 

vaccination (aged<10 weeks, vaccination exemptions). B, C. vaccination coverage achieved by the end of 354 

the campaign (October 2008) in cattle (B) and sheep (C).  355 

 356 

 357 

Supplement S6: Validation of the framework (POC) 358 

To assess the ability of our framework to estimate parameter values using the chosen 359 

summary statistics, we randomly sampled a hundred particles from a subset of prior distributions. 360 

The subsets had been chosen to explore preferentially realistic areas in the parameter space 361 

(2,000<β0<5,000, 0.2<ΨF<0.8,   >0.92). Using these particles, we generated summary statistics, 362 

considered as pseudo-observations. We then used the ABC-APMC procedure and quantified its 363 

reliability. We used uniform prior distributions on the following intervals: [1,000 – 10,000], [0 - 364 

1] and [0,9 - 1] for β0, ΨF and θ respectively.  365 



20 

 

The mean estimated values were close to the input ones for most β0 and ΨF values tested 366 

(Figure S2). However we identified some saturation in the model for extreme values of β0 and ΨF 367 

(β0<3,000, ΨF<0.3, ΨF>0.6), with little variation in the pseudo-observed summary statistics above 368 

–and below- these thresholds and estimated values regressing towards the mean of the prior 369 

distribution.  370 

Figure S2: Validation of the framework in an in-silico analysis.  371 

Posterior distributions and input value obtained for the three estimated parameters: β0 (A), ΨF (B) and   372 

(C).  373 

  374 
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Figure S3: Model fit: comparison of observed vs simulated summary statistics. 375 

Summary statistics generated after sampling 1,000 particles in the joint posterior distributions. A. Simulated and 376 

observed number of samples with detectable antibodies against BTV among those collected in the serosurvey 377 

conducted in winter 2007/08 in cattle and sheep, in seven and four departments respectively; B. Number of French 378 

departments with the same status by winter 2007/08 (i.e. with or without BTV detection based on clinical suspicion) 379 

in both observed and simulated data.  CI95%, 95% confidence intervals; dpts, departments; Nb, number of. 380 

 381 

  382 
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Figure S4: External validation: spatio-temporal pattern of the apparent infection.  383 

Illustration of the ability of the parametrized model to reconstruct the epizootic wave that crossed France 384 

in 2007 and 2008, by reconstructing one possible spatio-temporal pattern of detection, using one of the 385 

particle with the highest weights. Reporting cantons were mapped every six weeks from mid-July 2007 386 

until late October 2008 (A, C) and confronted with observed data (B., D.). A, B. 2007 epizootic wave; C, 387 

D. 2008 epizootic wave. 388 

389 
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Figure S5: Reporting cantons after the 2007/09 outbreak. 390 

Frequency of detection of at least one infected animals from 2010 in each canton in 1,000 simulations. 391 

Almost all cantons had reported infected cases in the 2007/09 outbreak and the last infected case was 392 

detected in 2009. To see whether the simulated levels of infection in 2010 would have been detected in 393 

our setting, we computed a date of first detection after the official end of the outbreak, i.e. from January 394 

2010. We applied the same probability of detection (Δ) and showed that there would have been reporting 395 

cantons in most of the French territory in most simulations. 396 

  397 
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Supplement S7: Sensitivity analyses 398 

S7.A. Sensitivity analysis on parameter estimates 399 

Methods 400 

A sensitivity analysis was performed to evaluate the effect of two key parameters (ΨP, Δ, 401 

Table 1) on the estimated parameter values. We analyzed the first-order effects using 5 different 402 

values (fixed deviation of 25%) for each fixed parameter, i.e. 25 combinations and 25 posterior 403 

distributions per parameter. For ΨP, the baseline value of 0.4 corresponded to weekly flight 404 

distance of 5 km for Culicoides, and we investigated alternative values of 0.2, 0.3, 0.5 and 0.6, 405 

corresponding respectively to flight distances of 3, 4, 6 and 7 km. For Δ, the baseline value was 406 

0.02 and we investigated alternative values of 0.01, 0.03, 0.04 and 0.05. We used three 407 

generalized linear model (GLMs), one per estimated parameter with a full factorial design, to 408 

predict the effect of an increase of 25% of each fixed parameter on the average values of each 409 

estimated parameter. We compared the relative error (RE) induced by a 25% change of fixed 410 

parameters with the coefficient of variation (CV) of the posterior distributions obtained with the 411 

default values.  412 

Results  413 

The ratios RE/CV were always below one, with little effect of a 25% variation of Δ but a 414 

stronger effect of a 25% of variation of ΨP on both ΨF and β0 estimates (Figure S6.A). However, 415 

for each couple of ΨP and associated parameter estimates, we showed little variation of model 416 

predictions (Figure S6.B).  417 

Discussion  418 

We showed in this sensitivity analysis that parameter estimation was impacted by the 419 

fixed proportion of canton surface reachable by midges from the neighboring cantons, a value 420 
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extrapolated from flight distances measured in a capture/recapture assay of Culicoides obsoletus 421 

around farms (Kluiters, 2015). This proportion is applied to the force of infection in neighboring 422 

cantons as a multiplication factor of the baseline exposure of  hosts to vectors (β0), hence the 423 

identifiability issue. Yet, we also showed that even if we had considered slightly smaller or larger 424 

weekly Culicoides flight distances, we would have ended with similar model predictions.  425 
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Figure S6: Results of the sensitivity analysis of parameter estimates and model predictions to 426 

variations of two key parameters which values were fixed: the probability of detection of infectious 427 

animals with clinical signs (Δ) and the proportion of canton surface that can be reached by vectors coming 428 

from neighboring cantons  ΨP). A. Ratios of the coefficient of variation of each parameter estimated with 429 

a 25% increase of Δ and ΨP, and of the coefficient of variation of each parameter estimate in the model 430 

with the default Δ and ΨP values. B. Variation (%) of the average model predictions compared to that 431 

obtained with a +/-25% variation of ΨP and associated parameter estimates. We investigated the variation 432 

from the baseline scenario of: Vacc
sp

,
 
the proportion of vaccine doses administered to already immune 433 

animal in the 2008 emergency vaccination campaign; Scefarm, the proportion of first infections (in canton) 434 

attributed to the farm network; Inf2007-10
sp

, the number of infected animals in each year; c for cattle, s for 435 

sheep. 436 

 437 

S7.B. Sensitivity analysis on model predictions 438 

Methods 439 
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We did not use the same approach for the sensitivity analysis of model predictions to 440 

initial conditions as we could not assume a linear effect of these conditions on the outputs. We 441 

investigated the amplitude of deviation of 11 model predictions from their default value with 442 

deviations of initial conditions around their fixed values (Ninf, pow). These predictions were: the 443 

species-specific proportion of all vaccine doses administered to already immune animals (Vacc
sp

), 444 

the species-specific total number of infected animals per season of circulation (       
  

), and the 445 

proportion of BTV introduction to new areas attributed to the farm network (Scefarm). Ninf, the 446 

number of infected cattle introduced in the cantons where infection was seeded took the baseline 447 

value of 5. We investigated alternative values +/- 4 cattle. The cantons where BTV was 448 

reintroduced in season n+1 were those where BTV was still circulating on the date when 449 

temperatures dropped below the Tmin threshold in pow of the cantons in season n. pow took the 450 

average value of 90% and we investigated alternative values  +/- 5%. 451 

Results  452 

We showed only little effect of variations of initial conditions on the average model 453 

predictions (<2%) (Figure S7), which may be even less if accounting for the standard deviation 454 

around the fixed value in the 1,000 simulations. This confirms that our predictions are robust to 455 

our assumptions on initial conditions, within a reasonable range of variation.  456 
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Figure S7: Sensitivity analysis of model predictions to variations of the initial conditions (Ninf  and 457 

pow). Variation (%) of the default average model predictions compared to that obtained with a variation of 458 

Ninf (A) and a pow (B) in 1,000 simulations. We investigated the variation from the baseline scenario of: 459 

Vacc
sp

,
 
the proportion of vaccine doses administered to already immune animal in the 2008 emergency 460 

vaccination campaign; Scefarm, the proportion of first infections (in canton) attributed to the farm network; 461 

Inf2007-10
sp

, the number of infected animals in each year; c for cattle, s for sheep. 462 

  463 
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