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Abstract

Dengue continues to be the most important vector-borne viral disease globally and in Brazil,

where more than 1.4 million cases and over 500 deaths were reported in 2016. Mosquito

control programmes and other interventions have not stopped the alarming trend of increas-

ingly large epidemics in the past few years. Here, we analyzed monthly dengue cases

reported in Brazil between 2001 and 2016 to better characterise the key drivers of dengue

epidemics. Spatio-temporal analysis revealed recurring travelling waves of disease occur-

rence. Using wavelet methods, we characterised the average seasonal pattern of dengue in

Brazil, which starts in the western states of Acre and Rondônia, then travels eastward to the

coast before reaching the northeast of the country. Only two states in the north of Brazil

(Roraima and Amapá) did not follow the countrywide pattern and had inconsistent timing of

dengue epidemics throughout the study period. We also explored epidemic synchrony and

timing of annual dengue cycles in Brazilian regions. Using gravity style models combined

with climate factors, we showed that both human mobility and vector ecology contribute to

spatial patterns of dengue occurrence. This study offers a characterization of the spatial

dynamics of dengue in Brazil and its drivers, which could inform intervention strategies

against dengue and other arboviruses.

Author summary

In this paper we studied the synchronization of dengue epidemics in Brazilian regions.

We found that a typical dengue season in Brazil can be described as a wave travelling from

the western part of the country towards the east, with the exception of the two most
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northern equatorial states that experienced inconsistent seasonality of dengue epidemics.

We found that the spatial structure of dengue cases is driven by both climate and human

mobility patterns. In particular, precipitation was the most important factor for the sea-

sonality of dengue at finer spatial resolutions. Our findings increase our understanding of

large scale dengue patterns and could be used to enhance national control programs

against dengue and other arboviruses.

Introduction

Dengue fever is a mosquito-borne viral disease that causes serious health and economic bur-

den in tropical and sub-tropical regions [1]. Population growth, urbanisation, international

travel and changes in climate patterns have led to significant geographic expansion and contin-

ued rise in dengue cases [2,3]. In Brazil, dengue is an important public health concern with

worsening societal and economic burden [4–7]. Large territories, various climate types, as well

as heterogeneities in demographics, land use and urban development contribute to complex

epidemic dynamics. In 2016, Brazilian public health authorities reported more than a million

probable cases and over 600 deaths to the World Health Organization (WHO), while the num-

ber of apparent dengue infections was estimated at around 5 million per year [8]. With no

effective dengue treatment, control of the disease is limited but mostly done through vector

control interventions [9]. To design appropriate response strategies, a detailed understanding

of the dynamics of dengue spread at the country level is necessary [10]. Applications of such

knowledge might well expand to other arboviruses transmitted by the same vector [11–13].

Dengue has previously been shown to exhibit ‘travelling wave’ type dynamics [14,15], i.e.

when regional epidemic timing has a distinct spatial structure. However, these studies have

largely focused on Southeast Asian settings. It remains unclear, to which extent pan-national

waves are also observed in South America, where dengue re-emergence occurred more

recently [4]. On a more local scale, it has been shown that in Brazil seasonal waves of dengue

spread from metropolitan areas towards smaller cities in the same region [16]. In addition,

phylodynamic approaches showed that there are repeated introductions of dengue viruses

from northern to southern Brazilian states [17,18].

The reasons why communities may experience a lag in dengue epidemics compared to

their neighbours can be attributed to multiple factors. Synchrony of regional epidemics can be

mediated by climate drivers such as temperature and rainfall, as has previously been observed

between different countries within Southeast Asia [15,19,20]. The movement of infectious peo-

ple between communities might also provide wave-like dynamics across settings [21–23]. The

contributions of climate and human mobility in describing the synchrony in dengue epidemics

between locations have rarely been considered alongside each other.

Here, we analysed 16 years of data on reported dengue cases in Brazil to examine seasonal

travelling waves across the country. We characterised the average seasonal pattern and, using

gravity style models for human mobility combined with climate variables, identified key fac-

tors associated with the observed patterns of dengue occurrence.

Materials and methods

Dengue cases data

Cases data were obtained from the Notifiable Diseases Information System (SINAN, Sistema

de Informação de Agravos de Notificação) via the Health Information Department

Spatio-temporal dynamics of dengue in Brazil
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(DATASUS, Departamento de Informática do Sistema Único de Saúde) run by the Brazilian

Ministry of Health. Monthly dengue data were extracted from January 2001 to August 2016

for each municipality (n = 5570). Cases were confirmed by clinical and epidemiological evi-

dence, and approximately 30% of them were also laboratory-confirmed [24].

Population data

Municipality level human population data were retrieved from the Brazilian Institute of Geog-

raphy and Statistics (IBGE, Instituto Brasileiro de Geografia e Estatı́stica) for the year 2014

(http://www.ibge.gov.br/home/estatistica/populacao/estimativa2014/estimativa_dou.shtm).

Climate data

Precipitation data were obtained from the Climate Prediction Center’s (CPC) rainfall data for

the world (1979 to present, 50 km resolution) via raincpc R package [25] and aggregated for

each Brazilian municipality over the study period. We also retrieved data on mean monthly

surface temperature from Reanalysis CFSR model [26] (reference: CREATE-IP.reanalysis.

NOAA-NCEP.CFSR.atmos.mon, data node: esgf.nccs.nasa.gov).

Vector suitability data

We obtained average monthly estimates of vector suitability for each Brazilian municipality

using the modelling outputs from [27,28]. Mosquito occurrence data were fitted to annual

data and covariates (i.e. time varying temperature-persistence suitability, relative humidity,

precipitation and a static urban vs. rural covariate) and then subsequently re-applied to the

same covariates at a monthly level. Maps were produced at a 5 x 5 kilometre resolution, aggre-

gated to the municipality level and the mean value was used for our model. For consistency,

we rescaled the monthly suitability values, so that the sum of all monthly maps equalled the

annual mean map.

Characterising spatial patterns of dengue: wavelet transform and phase

angles

We used biwavelet package [29] in R with Morlet function as a wavelet base for the analysis of

longitudinal dengue data. Original case series for each state were log-transformed and scaled

to zero mean and unit variance. The outputs of the wavelet transform of each of the time series

consisted of: the local wavelet power spectrum, which allows for inspection of time-frequency

distribution and detection of predominant signal components for particular time periods; and

the corresponding phase angles, which can be used to assess the speed of wave propagation for

a particular period.

The annual signal dominated in state level case series (individual power spectra for each

state can be found S3–S5 Figs), and to explore it further we extracted phase angles for the

annual component. The next step was to obtain pairwise phase angle differences between states

that indicate for each point in time whether a state is ahead or behind another one in terms of

recurrent annual waves. Consequently, for each state we obtained the average phase difference

from the other 26 states. The mean value of this phase difference over time was used to pro-

duce a map of annual phase lags between states. Phase differences were interpreted as time

units as for the regular annual signal phase angle changes from -π to +π in 1 year, which makes

the phase lag of 1 radian equivalent to approximately 2 months. Hence, the map of annual

phase lags represents the average ordering of states in terms of dengue wave arrival times.

Spatio-temporal dynamics of dengue in Brazil
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Epidemic synchrony and annual phase coherence

We considered correlations between regional time series by computing the Pearson correla-

tion coefficient of raw case series (epidemic synchrony) and annual phase angles (annual

phase coherence) for each pair of regions. Then, these measures were summarised by the non-

parametric spline covariance function (implemented in ncf R package [30]) to assess how they

depend on the distance. Normally, they are higher between neighbouring regions that experi-

ence synchronised dengue epidemics and, therefore, could serve as useful descriptors of travel-

ling waves. Phase coherence measures the relative timing of seasonal epidemics while

epidemic synchrony indicates how their relative amplitudes covary [31]. In other words,

annual phase coherence describes lags between annual signals (i.e. seasonality only), while epi-

demic synchrony also accounts for other frequency components as well as their amplitudes

(other synchronised events with various periodicity).

Identifying determinants of dengue synchrony

We developed a set of statistical models to characterise the determinants of epidemic syn-

chrony and annual phase coherence [22]. The models consider covariates such as distance

between regions, their population sizes, human mobility (approximated by a gravity model),

climate factors (surface temperature and precipitation) and disease vector suitability. They are

defined by the following equation:

corr ¼ K
pop1

bpop2
b

dista
corrcov

g;

where corr is the correlation measure (i.e. either epidemic synchrony or phase coherence), K is

the free parameter, pop1 and pop2 are the population sizes of the two regions, dist is the dis-

tance between the two regions, corrcov is the correlation of climate or environmental covari-

ance time series (temperature, precipitation or vector suitability) between the two regions. The

first part of the equation
pop1

bpop2
b

dista is a standard gravity model that captures the contribution of

human mobility [32,33] while the second part corrcov
γ captures the fact that similar climate

profiles may also partly explain synchrony in epidemic time series.

Different model variants were considered by fixing various combinations of parameters α,

β and γ to zero. Starting with the null model (α = 0, β = 0, γ = 0), distance only (β = 0, γ = 0)

and population only (α = 0, γ = 0) models, original gravity model (γ = 0), and for each climate

factor: model without human mobility (α = 0, β = 0) and the full model.

The exponents α, β and γ were estimated using a linear regression of the log-transformed

form of the original equation:

logðcorrÞ ¼ logðKÞ þ b� ðlogðpop1Þ þ logðpop2ÞÞ � a� logðdistÞ þ g� logðcorrcovÞ:

We excluded data on region pairs for which we had negative correlations to allow for log-

transformation (less than 10% of all pairs for state-level, predominantly between distant

regions). We used R2 and Akaike’s Information Criterion (AIC) for model comparison, and

also generated bootstrapped confidence intervals for the parameters by resampling the location

pairs with replacement 500 times.

Spatial resolution

We used different spatial data aggregation levels given that a large number of municipalities

had very few cases for certain seasons. We used three official administrative levels: state level

(n = 27, 26 states and the federal district Brasilia, hereinafter referred to as state), mesoregion

Spatio-temporal dynamics of dengue in Brazil
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level (n = 137) and microregion level (n = 558). In addition, we performed our analysis using

alternative Urban-Regional divisions (https://ww2.ibge.gov.br/home/geociencias/geografia/

default_divisao_urbano_regional.shtm): Urban-1 (n = 14), Urban-2 (n = 161) and Urban-3

(n = 482).

In this paper, we present results of the wavelet analysis on the state level, primarily for better

visual representation. Analyses of epidemic synchrony and annual phase coherence are pre-

sented on the Urban-2 level (n = 161), to allow for sufficient variation in distance between

pairs of regions. The results on all the six available levels can be found in the Supplementary

Material.

Results

Annual patterns of dengue outbreaks

Over the study period from January 2001 to August 2016, there were a total of over 8.5 million

reported dengue cases, with an average of 500,000 cases per year. During the study period, the

highest risk of dengue (i.e. the highest number of total reported cases per capita) was for Acre,

Mato Grosso do Sul and Goiás (Fig 1A). These states had an average of 101, 69 and 66 annual

reported cases per 10,000 inhabitants, respectively. The southern states Santa Catarina and Rio

Grande do Sul had very few dengue cases compared to other states, with an annual average

below one case per 10,000 inhabitants. We observed a strong seasonal pattern with the major-

ity of cases occurring between December and June (Fig 1B and 1C) and that dengue typically

peaks slightly earlier in the western states compared to the eastern ones (Fig 1B–1D).

Average seasonal spatial pattern

We detected a significantly predominant annual component of dengue time series throughout

the whole study period for most of the states (S1 Fig) apart from Roraima and Amapá (two

northern states that are also the least populated in Brazil) that had additional strong compo-

nents with a period of 1.5–2 years, and the southern states of Rio Grande do Sul and Santa

Catarina that had very few dengue cases for several years.

Fig 2A shows, for each state, the median and 95% range of annual phase lags from other

states, which represent delays of individual state dengue waves from the nationwide annual

waves. Average phase lags enabled us to identify the average seasonal pattern of dengue in Bra-

zil (Fig 2B), which starts in the western states, travels to the highly densely populated south-

eastern states of São Paulo and Rio de Janeiro, and then reaches the northeast of the country.

We found that Roraima and Amapá, two states in the north, had inconsistent annual phase

lags over time (S2 Fig) suggesting that they had poor synchrony with the rest of the country

and did not follow the aforementioned wave pattern. We observed similar spatial patterns

when we aggregated data at different spatial resolutions (S3 Fig).

Epidemic synchrony and annual phase coherence

We explored correlations between dengue time series in different regions. Both epidemic syn-

chrony and phase coherence were higher for closer regions and declined with distance (Fig 3).

For the Urban-2 (n = 161) spatial level, epidemic synchrony reached the average countrywide

correlation at approximately 1,260 kilometres (Fig 3A). This synchrony length represents a

substantial part of Brazil’s dimensions as the country extends 4,395 kilometres north to south

and 4,319 kilometres west to east. The coherence length had a higher value of 1,590 kilometres

(Fig 3B), suggesting that agreement in dengue seasonality spreads further than correlations of

epidemic curves.

Spatio-temporal dynamics of dengue in Brazil
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Fig 1. Summary of the spatio-temporal dynamics of dengue in Brazil. (A) Average annual dengue risk per 10,000 inhabitants in 2001–2016 for each state.

Administrative boundaries were obtained from GADM (https://gadm.org). (B) Heat map of log-normalised average number of monthly cases in 2001–2016 for

Brazilian states sorted by longitude: west (top) to east (bottom). (C) Log of monthly dengue cases per 10,000 inhabitants in Brazil. (D) Heat map of log-normalised case

series for Brazilian states sorted by longitude: west (top) to east (bottom). Colours were scaled for each state independently so that yellow indicates the lowest number of

dengue cases and red indicates the maximum.

https://doi.org/10.1371/journal.pntd.0007012.g001

Spatio-temporal dynamics of dengue in Brazil

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007012 April 22, 2019 6 / 13

https://gadm.org/
https://doi.org/10.1371/journal.pntd.0007012.g001
https://doi.org/10.1371/journal.pntd.0007012


We also looked at epidemic synchrony and annual phase coherence at other spatial levels

(S4 and S5 Figs, respectively) and found that both synchrony and coherence lengths tend to

decrease for smaller spatial resolutions and stabilise at 1,240 km and 1,500 km.

Fig 2. Average phase lags of seasonal dengue between Brazilian states. (A) For each state, median and 95% range of annual phase lags from other states over the study

period. States were ordered by their median phase lag. (B) Map of the relative timing of annual dengue waves, which was defined using the average annual phase lag of

each state from every other state. Administrative boundaries were obtained from GADM (https://gadm.org).

https://doi.org/10.1371/journal.pntd.0007012.g002

Fig 3. Epidemic synchrony and annual phase coherence between Brazilian Urban-2 regions. Epidemic synchrony (A) and annual phase coherence (B) summarised

using nonparametric spline covariance function. Solid blue line describes the mean pairwise correlation from the data and the dotted lines represent the 95% envelope

for bootstrapped correlations of case and annual phase angle time series, respectively. Red line indicates global countrywide correlation.

https://doi.org/10.1371/journal.pntd.0007012.g003
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Determinants of dengue epidemic synchrony and annual phase coherence

We built a suite of models investigating potential determinants of dengue epidemic synchrony

(Table 1). The classical gravity model (model 4) that accounted only for distance and the prod-

uct of population sizes of regions captured a part of variation in epidemic synchrony (9.6%)

which was higher than those of vector suitability (1.5%, model 6), precipitation (no variance

explained, model 8: negative R2 indicates that the fit is actually worse than fitting a constant

term) and average temperature (3.8%, model 10). The fit was further improved by combining

the gravity model with correlations of vector suitability (model 5), precipitation (model 7) and

average temperature (model 9), raising the explained variance up to 11%, 14% and 11%,

respectively. We found that estimates of human mobility parameters were consistent between

different models, regardless of additional variables.

The same analysis for annual phase coherence (see Table 2) revealed that while the gravity

model performed even better (14% of variance explained), incorporation of other factors was

still beneficial. The best fit (28% of variance explained) was for model 7 that accounted for

human mobility and precipitation.

Table 1. Gravity style model fitting for epidemic synchrony between Urban-2 regions.

Model K
mean (CI)

α β γ R2 AIC

1 K 0.26 (0.26–0.27) - - - 0 32458

2 K
dista 2.9 (2.5–3.3) 0.71 (0.70–0.73) - - 0.079 31433

3 K(popipopj)
β 0.028 (0.021–0.037) - 1.09 (1.08–1.10) - 0.018 32229

4 K ðpopipopjÞ
b

dista
0.34 (0.24–0.46) 0.72 (0.70–0.73) 1.08 (1.07–1.09) - 0.096 31212

5 K ðpopipopjÞ
b

dista corrsuit
g 0.38 (0.27–0.52) 0.71 (0.69–0.72) 1.08 (1.07–1.09) 1.00 (0.97–1.03) 0.11 28906

6 Kcorrsuit
γ 0.28 (0.27–0.28) - - 1.13 (1.10–1.16) 0.015 30127

7 K ðpopipopjÞ
b

dista corrprecip
g 0.73 (0.51–1) 0.62 (0.61–0.64) 1.08 (1.07–1.10) 0.92 (0.90–0.93) 0.14 23615

8 Kcorrprecip
γ 0.28 (0.28–0.29) - - 1.07 (1.06–1.09) -0.01 25150

9 K ðpopipopjÞ
b

dista corrtemp
g 0.21 (0.15–0.28) 0.76 (0.74–0.77) 1.09 (1.08–1.10) 1.11 (1.08–1.13) 0.11 29425

10 Kcorrtemp
γ 0.31 (0.3–0.32) - - 1.25 (1.22–1.28) 0.038 30276

https://doi.org/10.1371/journal.pntd.0007012.t001

Table 2. Gravity style model fitting for annual phase angle correlation between Urban-2 regions.

Model K
mean (CI)

α β γ R2 AIC

1 K 0.49 (0.49–0.5) - - - 0 22726

2 K
dista 3.9 (3.5–4.3) 0.75 (0.74–0.76) - - 0.13 20964

3 K(popipopj)
β 0.16 (0.13–0.19) - 1.04 (1.04–1.05) - 0.011 22589

4 K ðpopipopjÞ
b

dista
1.3 (1.1–1.6) 0.75 (0.74–0.76) 1.04 (1.03–1.05) - 0.14 20837

5 K ðpopi popjÞ
b

dista corrsuit
g 0.9 (0.72–1.1) 0.78 (0.77–0.79) 1.05 (1.04–1.05) 1.05 (1.04–1.07) 0.22 18375

6 Kcorrsuit
γ 0.54 (0.53–0.55) - - 1.16 (1.14–1.18) 0.11 19935

7 K ðpopipopjÞ
b

dista corrprecip
g 0.84 (0.69–1) 0.78 (0.77–0.80) 1.05 (1.04–1.05) 0.98 (0.97–0.99) 0.28 14510

8 Kcorrprecip
γ 0.57 (0.56–0.58) - - 1.06 (1.05–1.07) 0.18 15694

9 K ðpopipopjÞ
b

dista corrtemp
g 1.2 (1–1.5) 0.75 (0.74–0.76) 1.04 (1.04–1.05) 1.00 (0.98–1.01) 0.18 19050

10 Kcorrtemp
γ 0.54 (0.53–0.55) - - 1.13 (1.11–1.15) 0.065 20680

https://doi.org/10.1371/journal.pntd.0007012.t002
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We explored performance of the statistical models for other spatial levels (see Fig 4) and

found that overall model 7 (gravity model combined with precipitation) was the best in terms

of variance explained. The classical gravity model (compared to climate factors) explained the

majority of variance in epidemic synchrony across most of spatial scales (Fig 4A). However, at

smaller scales, precipitation contributed the most for coherent timing of annual epidemics

(Fig 4B).

Discussion

Here, we analysed longitudinal time series of dengue cases reported in Brazil. We found a con-

sistent seasonal travelling wave type pattern of dengue occurrence and underscored human

mobility in combination with climate variables as the potential determinants of spread.

Our findings revealed the presence of seasonal travelling wave that starts in the western

states, then travels to the east and reaches the northeast at the end of a typical dengue season.

Overall the timing of epidemic peaks between states was largely consistent between seasons.

This provides a level of predictability for public health planning: particularly, in terms of pre-

paredness of health care facilities to allocate enough resources for timely treatment of severe

dengue cases. The epidemics in the more populous states along the coast appeared to peak rela-

tively late compared to other states, potentially providing an opportunity for control programs

to optimise the timing and placement of interventions.

The epidemiology of dengue in the two most northern states of the country (Roraima and

Amapá) appeared different from the rest of the country, as they did not follow the overall sea-

sonal travelling wave pattern. This could be explained by the equatorial climate with favourable

conditions for dengue transmission throughout the year, while epidemics in other regions are

highly restricted by seasonal variation in temperature and precipitation.

Fig 4. Variance explained for models of epidemic synchrony and annual phase coherence. R2 for epidemic synchrony (A) and annual phase coherence (B)

predicted by models 4–10 depending on the spatial scale considered.

https://doi.org/10.1371/journal.pntd.0007012.g004
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We characterised the spatial correlation between dengue cases series of each pair of regions

depending on distance and estimated the extent of synchronised epidemics in terms of timing

(annual phase coherence) and intensity (epidemic synchrony). Our results are in line with pre-

viously published ones that reported the spatial correlation of dengue cases between pairs of

municipalities to decay with distance [34]. Our findings are also similar to a travelling wave of

influenza identified in Brazil: from equatorial regions with low population to highly populous

temperate regions [35].

Gravity models that used distance and population size as markers of human mobility

explained a major part of the correlation in dengue epidemics. However, we found that incor-

porating information on the correlation in climate markers of vector ecology substantially

improved the fit. Future research on relative contributions of vector ecology, human demo-

graphics, population mobility and host immunity could further increase our understanding of

spatial dynamics of dengue and similar arboviruses.

Our findings suggest that precipitation was more important than human mobility for the

seasonality of dengue at the mesoregion and finer spatial levels. Contrastingly, across scales

human mobility better explained season-specific and region-specific features attributed to

non-annual components and epidemic size effects. Contribution of human mobility approxi-

mated via gravity model for both epidemic synchrony and phase coherence was declining with

finer spatial resolution. This might suggest that gravity models are failing to capture fine-scale

human movements as they tend to emphasize larger urban centers as points of attraction while

the importance of hubs may decline in the course of an epidemic [36,37]. We advise that other

competing mobility models such as the radiation model or models based on empirical data

(e.g. mobile phone data) should be used in future analyses.

This study has several other limitations. Firstly, we described the averaged seasonal pattern

but did not consider season-specific features or anomalies (e.g. due to El Niño–Southern Oscil-

lation). Incorporating these elements may further improve model performance. Secondly, in

wavelet analysis we ignored information on amplitudes and considered only annual compo-

nents of dengue case series. This was done considering the timing of seasonal dengue rather

than its epidemic size and severity. Thirdly, our models to estimate epidemic synchrony/phase

coherence were restricted to only include pairs with positive correlations which may bias our

estimates upwards. Lastly, dengue surveillance system in Brazil is not entirely accurate for cap-

turing all dengue cases, there might be regional biases, underestimation and overestimation

issues [38,39]. However, as we mainly focused on the timing of dengue waves and on correla-

tions of case series, these potential flaws in the cases data should not affect the presented

results.

Our approach relied on case count data only and we could not directly explore the viral

flow between locations. Future work incorporating pathogen genetic data will make it possible

to specifically assess whether correlation between the epidemics in two locations is from corre-

lation in suitable conditions or from viral flow [20].

Our findings have potential implications for other circulating arboviruses in Brazil. Since

they share the same vector, they could spread in similar ways, although differences between

the viral characteristics (e.g. transmissibility, virulence, etc.) should be taken into account, as

well as the influence of population immunity.
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were the least consistent while other states had similar phase lags throughout the study period.

(PDF)

S3 Fig. Spatial structure of average phase lags of seasonal dengue in Brazilian regions. (A)

state level, (B,C) meso- and micro-regions, (D,E,F) urban subdivisions. Administrative bound-

aries for Brazilian municipalities were obtained from IBGE (https://www.ibge.gov.br/

geociencias-novoportal/cartas-e-mapas.html), along with shapefiles for Urban-Regional divi-

sions (https://ww2.ibge.gov.br/home/geociencias/geografia/default_divisao_urbano_regional.

shtm).

(PNG)

S4 Fig. Epidemic synchrony of seasonal dengue in Brazilian regions. (A) state level, (B,C)

meso- and micro-regions, (D,E,F) urban subdivisions.

(PNG)

S5 Fig. Phase coherence of seasonal dengue in Brazilian regions. (A) state level, (B,C) meso-

and micro-regions, (D,E,F) urban subdivisions.

(PNG)

Acknowledgments

We would like to acknowledge and thank everyone involved in data collection for this study.

Primarily, Brazilian Ministry of Health and maintainers of the DATASUS database that made

dengue cases data publicly available. Also, we would like to thank creators and contributors of

R packages: biwavelet, ncf and raincpc.

Author Contributions

Conceptualization: Mikhail Churakov, Christian J. Villabona-Arenas, Simon Cauchemez.

Data curation: Mikhail Churakov, Christian J. Villabona-Arenas, Moritz U. G. Kraemer.

Formal analysis: Mikhail Churakov, Christian J. Villabona-Arenas, Henrik Salje, Simon

Cauchemez.

Methodology: Mikhail Churakov, Henrik Salje, Simon Cauchemez.

Software: Mikhail Churakov, Henrik Salje.

Validation: Mikhail Churakov, Simon Cauchemez.

Visualization: Mikhail Churakov.

Writing – original draft: Mikhail Churakov, Christian J. Villabona-Arenas.

Writing – review & editing: Mikhail Churakov, Christian J. Villabona-Arenas, Moritz U. G.

Kraemer, Henrik Salje, Simon Cauchemez.

References
1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and

burden of dengue. Nature. Nature Publishing Group; 2013; 496: 504–507. https://doi.org/10.1038/

nature12060 PMID: 23563266

2. Whitehorn J, Farrar J. Dengue. Br Med Bull. 2010; 95: 161–173. https://doi.org/10.1093/bmb/ldq019

PMID: 20616106

3. Gubler DJ. Dengue, Urbanization and Globalization: The Unholy Trinity of the 21st Century. Trop Med

Health. 2011; 39: S3–S11. https://doi.org/10.2149/tmh.2011-S05 PMID: 22500131

Spatio-temporal dynamics of dengue in Brazil

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007012 April 22, 2019 11 / 13

http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007012.s002
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007012.s003
https://www.ibge.gov.br/geociencias-novoportal/cartas-e-mapas.html
https://www.ibge.gov.br/geociencias-novoportal/cartas-e-mapas.html
https://ww2.ibge.gov.br/home/geociencias/geografia/default_divisao_urbano_regional.shtm
https://ww2.ibge.gov.br/home/geociencias/geografia/default_divisao_urbano_regional.shtm
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007012.s004
http://journals.plos.org/plosntds/article/asset?unique&id=info:doi/10.1371/journal.pntd.0007012.s005
https://doi.org/10.1038/nature12060
https://doi.org/10.1038/nature12060
http://www.ncbi.nlm.nih.gov/pubmed/23563266
https://doi.org/10.1093/bmb/ldq019
http://www.ncbi.nlm.nih.gov/pubmed/20616106
https://doi.org/10.2149/tmh.2011-S05
http://www.ncbi.nlm.nih.gov/pubmed/22500131
https://doi.org/10.1371/journal.pntd.0007012


4. Teixeira MG, Costa M da CN, Barreto F, Barreto ML. Dengue: twenty-five years since reemergence in

Brazil. Cad Saude Publica. 2009; 25 Suppl 1: S7–18. https://doi.org/10.1590/S0102-

311X2009001300002

5. da Silva Augusto LG, Gurgel AM, Costa AM, Diderichsen F, Lacaz FA, Parra-Henao G, et al. Aedes

aegypti control in Brazil. Lancet. 2016; 387: 1052–1053. https://doi.org/10.1016/S0140-6736(16)

00626-7 PMID: 26944024

6. Shepard DS, Undurraga EA, Halasa YA, Stanaway JD. The global economic burden of dengue: a sys-

tematic analysis. Lancet Infect Dis. 2016; 16: 935–941. https://doi.org/10.1016/S1473-3099(16)00146-

8 PMID: 27091092
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