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A B S T R A C T

Accurate estimation of the parameters characterising infectious disease transmission is vital for optimising
control interventions during epidemics. A valuable metric for assessing the current threat posed by an outbreak
is the time-dependent reproduction number, i.e. the expected number of secondary cases caused by each infected
individual. This quantity can be estimated using data on the numbers of observed new cases at successive times
during an epidemic and the distribution of the serial interval (the time between symptomatic cases in a trans-
mission chain). Some methods for estimating the reproduction number rely on pre-existing estimates of the serial
interval distribution and assume that the entire outbreak is driven by local transmission. Here we show that
accurate inference of current transmissibility, and the uncertainty associated with this estimate, requires: (i) up-
to-date observations of the serial interval to be included, and; (ii) cases arising from local transmission to be
distinguished from those imported from elsewhere. We demonstrate how pathogen transmissibility can be in-
ferred appropriately using datasets from outbreaks of H1N1 influenza, Ebola virus disease and Middle-East
Respiratory Syndrome. We present a tool for estimating the reproduction number in real-time during infectious
disease outbreaks accurately, which is available as an R software package (EpiEstim 2.2). It is also accessible as
an interactive, user-friendly online interface (EpiEstim App), permitting its use by non-specialists. Our tool is
easy to apply for assessing the transmission potential, and hence informing control, during future outbreaks of a
wide range of invading pathogens.

1. Introduction

Infectious disease epidemics are a recurring threat worldwide
(Daszak et al., 2000; Taylor et al., 2001; Morens et al., 2004; Jones
et al., 2008; Fisher et al., 2012; Allen et al., 2017; Thompson and

Brooks-Pollock, 2019). A key challenge during outbreaks is designing
appropriate control interventions, and mathematical models are in-
creasingly used to guide this decision-making (Lofgren et al., 2014;
Cunniffe et al., 2016; Cori et al., 2017; Morgan, 2019; Polonsky et al.,
2019). Recent examples of the real-time use of models during outbreaks
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can be drawn from diseases of humans (e.g. the outbreaks of Ebola virus
disease in West Africa in 2013–2016 (WHO Ebola Response Team,
2014) and in the Democratic Republic of the Congo in 2018-19 (The
Ebola Outbreak Epidemiology Team, 2018)), animals (e.g. the epi-
demics of foot-and-mouth disease in 2001 and 2007 in the U.K. (Keeling
et al., 2001; Ferguson et al., 2001; Keeling, 2005; Anderson, 2008)) and
plants (e.g. the invasion of Italy by Xylella fastidiosa in 2013 (EFSA
Panel on Plant Health, 2015; White et al., 2017)).

For control measures to be optimised, the values of the parameters
governing pathogen spread must be estimated from surveillance data,
and temporal changes in these values must be tracked (Merl et al.,
2009; Wallinga et al., 2010; Cunniffe et al., 2015; Thompson et al.,
2018). The time-dependent reproduction number, Rt, is an important
parameter for assessing whether current control efforts are effective or
whether additional interventions are required (Chowell and Nishiura,
2009). The value of Rt represents the expected number of secondary
cases arising from a primary case infected at time t. This value changes
throughout an outbreak. If the value of Rt is and remains below one, the
outbreak will die out. However, while Rt is larger than one, a sustained
outbreak is likely. The aim of control interventions is typically to reduce
the reproduction number below one (Camacho et al., 2015).

Different formal definitions of Rt have been proposed, and a number
of methods are available to estimate reproduction numbers in real-time
during epidemics (Obadia et al., 2012). Fraser (2007) distinguishes
between the case reproduction number and the instantaneous re-
production number. The case reproduction number represents the
average number of secondary cases arising from a primary case infected
at time t; this parameter therefore reflects transmissibility after time t.
In contrast, the instantaneous reproduction number represents the
average number of secondary cases that would arise from a primary
case infected at time t if conditions remained the same after time t. The
latter therefore characterises the “instantaneous” transmissibility at
time t, and is more straightforward to estimate in real-time than the
case reproduction number because it does not require assumptions
about future transmissibility (Cori et al., 2013).

Wallinga and Teunis (2004) developed an approach to estimate the
case reproduction number. They applied their method to data from the
2003 SARS epidemic, showing that the effective reproduction number
decreased after control measures were implemented, with similar
trends in different affected countries. Their approach involves con-
sidering all possible transmission trees consistent with the observed
epidemic data, and generates an estimated value of the case re-
production number at each timestep with observed cases. This method
has been applied to estimate reproduction numbers during epidemics of
diseases including Ebola virus disease (Althaus, 2015; Kelly et al.,
2018), Middle-East Respiratory Syndrome (MERS) (Cauchemez et al.,
2014) and porcine reproductive and respiratory syndrome (Arruda
et al., 2017). It has also been extended to permit inference in different
settings including in populations consisting of multiple host types
(Glass et al., 2011), as well as to allow estimates to be informed by
other types of data (Jombart et al., 2014; Campbell et al., 2019). Be-
cause of the importance of tracking temporal changes in epidemiolo-
gical parameters, software implementing the framework of Wallinga
and Teunis (2004) was developed to allow such analyses to be per-
formed (Obadia et al., 2012). Other methods to estimate reproduction
numbers at the start of an epidemic are also reviewed in Obadia et al.
(2012) and implemented in the same R software package R0.

Recognising that estimates of the instantaneous reproduction
number may provide a superior real-time picture of an outbreak as it is
unfurling, Cori et al. (2013) subsequently developed a method and
software (the EpiEstim R package) for estimating the instantaneous
reproduction number using branching processes. This method has been
used to analyse a number of recent outbreaks (e.g. Ali et al., 2013; WHO
Ebola Response Team, 2014; Ferguson et al., 2016; Kirsch et al., 2016;
Nouvellet et al., 2017). As with the approach of Wallinga and Teunis
(2004), it relies on two inputs: a disease incidence time series (the

numbers of new observed cases at successive times) and an estimate of
the distribution of serial intervals (the times between symptomatic
cases in a chain of transmission).

Although the approach of Cori et al. (2013) has been used fre-
quently, its applicability may have been limited in some contexts be-
cause of two important drawbacks. First, an estimate of the serial in-
terval distribution may not be available early in an outbreak, or may be
associated with significant uncertainty. This is particularly the case for
outbreaks of emerging infections, for which the natural history is not
known or is poorly characterised (Metcalf and Lessler, 2017). Second,
this approach assumes implicitly that all incident cases after the first
time-point arise from local transmission, i.e. it does not account for the
possibility that cases (other than those appearing at the first timestep)
are imported from other locations or derive from alternative host spe-
cies. However, epidemiological investigations throughout outbreaks
often provide valuable data that can inform the serial interval dis-
tribution (Cowling et al., 2008, 2009; Forsberg White and Pagano,
2008; Forsberg White et al., 2009) and the sources of infection of cases
(Paine et al., 2010; Cori et al., 2017).

Here we extend the statistical framework of Cori et al. (2013) for
estimating the time-dependent reproduction number (hereafter, when
we refer to the time-dependent reproduction number in the context of
our method, we are referring to the instantaneous reproduction
number). Rather than relying on previous estimates of the serial in-
terval, our method integrates data on known pairs of index and sec-
ondary cases from which the serial interval is directly estimated, with
corresponding uncertainty in the serial interval fully accounted for. Our
method also allows incorporation of available information on imported
(as opposed to locally infected) cases. We use data from the outbreaks
of H1N1 influenza in the USA in 2009 and Ebola virus disease in West
Africa from 2013 to 2016 to show how directly including the latest
serial interval observations can improve the precision and accuracy of
estimates of the time-dependent reproduction number during an out-
break. We use data on MERS cases in Saudi Arabia from 2014 to 2015 to
illustrate the importance of accounting for imported cases appropriately
when quantifying transmissibility. Our approach is implemented in a
new version (2.2) of the R package EpiEstim (doi: 10.5281/ze-
nodo.3333654), as well as an online interactive user-friendly interface
(EpiEstim App – accessible at https://shiny.dide.imperial.ac.uk/
epiestim – doi: 10.5281/zenodo.3275999) for users that are not fa-
miliar with R statistical software.

2. Methods

We propose a two-step procedure to estimate the time-dependent
reproduction number from data informing the serial interval and from
data on the incidence of cases over time (Fig. 1). The first step uses data
on known pairs of index and secondary cases to estimate the serial
interval distribution; the second step estimates the time-varying re-
production number jointly from incidence data and from the posterior
distribution of the serial interval obtained in the first step.

2.1. Estimating the serial interval distribution

The distribution of serial intervals can be estimated during an on-
going outbreak using interval-censored line list data – namely lower
and upper bounds on timings of symptom onset in index and secondary
cases (Cowling et al., 2009; Lessler et al., 2009) (see Fig. 1a for an
example of such a dataset).

Serial interval data of this form are often collected during outbreaks,
particularly in household studies from which chains of transmission can
be reconstructed (Fine, 2003; Cauchemez et al., 2009; Cowling et al.,
2009). Historical Ebola outbreaks provide a number of examples of this.
For example, in the Ebola virus disease outbreak in the Democratic
Republic of the Congo in 1995, such data were obtained from sources
including hospital records and interviews with members of households
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with cases of Ebola (Dowell et al., 1999). Similarly, during the outbreak
in Uganda in 2000, timings of symptoms were recorded throughout
chains of transmission using contact tracing (Francesconi et al., 2003).
Uncertainty in the reported dates, as well as lack of knowledge of the
precise timings of symptom appearance even if exact dates are known,
leads to interval-censored data.

Following Reich et al. (2009, 2016), we perform Bayesian para-
metric estimation of the serial interval distribution from such data using
data augmentation Markov chain Monte Carlo (MCMC). In most of the
analyses presented here (Figs. 2–4), we use a gamma distributed serial
interval distribution offset by one day, although other distributions are
also implemented in our R package (Fig. 1b) and in principle any
parametric distribution could be used.

The MCMC estimation procedure leads to a joint posterior sample
for the parameters of the chosen distribution – i.e. a list of possible sets
of parameter values, with each parameter set corresponding to a single
step in the MCMC chain. Each parameter set, i, in the posterior sample
is then converted into a discrete probability mass function ws

i( ) (s =
0,1,2,…) as follows: the probability of the serial interval lasting 0
timesteps, w i

0
( ), is set to 0 as in Cori et al. (2013), and the probability ws

i( )

for any other timestep s= 1,2,3,… is obtained by integrating the
probability density function defined by this parameter set between s -
0.5 and s + 0.5. For each i, the function ws

i( ) is then renormalised to sum
to 1. The posterior sample of serial interval distributions,

= …w i n( 1, 2, )s
i( ) (Fig. 1e), is then used along with disease incidence

time series to estimate the time-dependent reproduction number as
described in the next section.

2.2. Estimating the reproduction number

The total number of incident cases arising at timestep t, It , is the sum
of the numbers of incident local (It

local) and imported (It
imported) cases,

= +I I It t t
local imported

We assume that, if imported cases exist, they can be distinguished
from local cases, for instance through epidemiological investigations
(Paine et al., 2010; Cori et al., 2017), so that It

local and It
imported are ob-

served at each timestep (Fig. 1c). We later discuss options for situations
in which differentiation between imported and local cases is challen-
ging.

Following Cori et al. (2013), we define the time-dependent re-
production number, Rt, as the ratio of the number of new locally in-
fected cases at time t, It

local, and the total infection potential across all
infected individuals at time t, t . If there is a single serial interval
distribution ws (s = 1,2,…), representing the probability of a secondary
case arising a time period s after the primary case, each incident case
(either local or imported) that appeared at a previous timestep t-s
contributes to the current infectiousness at a relative level given by ws.
Therefore conditional on ws, t can be computed as

= + == =w I I w I w( ) ( )t s s
t

t s t s s s
t

t s s1
local imported

1 .

Fig. 1. A schematic illustrating how disease incidence time series and data on the serial interval can be combined to generate estimates of the reproduction number.
Step 1. The serial interval distribution is estimated from interval-censored data on timings of symptom onset in index and secondary cases. Step 2. Estimates of the
serial interval distribution are combined with disease incidence data to estimate the time-dependent reproduction number, Rt.
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Given a serial interval distribution ws, data on the total number of
incident cases up to the previous timestep ( …I I I, , , t0 1 1), and the time-
dependent reproduction number (Rt), the expected number of incident
locally infected cases at time t is

… =I I I I w R R wE( | , , , , , ) ( )t t s t t t s
local

0 1 1

Assuming that the number of local cases at timestep t is drawn from
a Poisson distribution, the probability of observing It

local cases at time-
step t is

Fig. 2. Estimation of the time-dependent reproduction number for an outbreak of H1N1 influenza in a New York School (Lessler et al., 2009). (a) Disease incidence
time series (also see Table S1). (b) Posterior sample of serial interval distributions estimated from the interval-censored serial interval data shown in Table S2,
assuming an offset gamma distributed serial interval. (c) Estimates of the reproduction number throughout the outbreak (mean (solid line) and 95% credible interval
(shaded area)) obtained from the incidence data shown in (a) and the serial interval distributions shown in (b). The reproduction number was estimated on sliding
windows of width τ = 6 days.

Fig. 3. Analysis of the time-dependent reproduction number using data from the 2009 H1N1 outbreak in USA. (a) Disease incidence of H1N1 influenza from a school
in Pennsylvania in 2009 (Cauchemez et al., 2011; Cori et al., 2013, see also Table S3). (b) Posterior sample of serial interval distributions (red) estimated from early
serial interval data only collected in San Antonio, Texas (Morgan et al., 2010, see also Table S4), assuming an offset gamma distributed serial interval. (c) Posterior
sample of serial interval distributions (black) estimated from all serial interval data collected in San Antonio, Texas (Morgan et al., 2010, see also Table S4), assuming
an offset gamma distributed serial interval. (d) Estimates of the reproduction number (mean (solid lines) and 95% credible interval (shaded areas)) obtained from the
incidence data shown in (a) and the serial interval distributions shown in (b) (red) and (c) (black) respectively. The reproduction number was estimated on sliding
windows of width τ = 6 days. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article).
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… =I I I I w R R w R w
I

P( | , , , , , ) ( ( )) exp( ( ))
!t t s t

t t s
I

t t s

t

local
0 1 1 local

t
local

As in Cori et al. (2013), we make the assumption that the re-
production number is constant over a time period [t− τ, t], with τ
representing the length of the time window over which Rt is estimated
(Fig. 1d). The probability of observing the local incidence

…+I I I, , , tt
local

t 1
local local during this time period, given the reproduction

number Rt and conditional on the previous incidence data

…I I I, , , t0 1 1, is then

… …

=

+

=

I I I I I w R
R w R w

I

P( , , , | , , , , )
( ( )) exp( ( ))

!

t t t t s t

k t

t
t k s

I
t k s

k

local
1

local local
0 1

local
k
local

Using a Bayesian framework with a gamma distributed prior for Rt
as in Cori et al. (2013), the posterior distribution of Rt given past in-
cidence data and conditional on the serial interval distribution, ws, is

Fig. 4. Estimates of the time-dependent reproduction number, Rt, for the early part of the 2013–2016 Ebola outbreak in Liberia (International Ebola Response Team,
2016). (a) Incidence of new confirmed and probable Ebola cases from 28th May–31st July 2014 (International Ebola Response Team, 2016). (b) Posterior sample of
serial interval distributions estimated from nine pairs of cases between 28th May–31st July 2014 assuming an offset gamma distribution (blue), and a single offset
gamma serial interval distribution with the same mean and standard deviation as these nine serial interval observations (yellow). (c) Estimates of Rt obtained from
the incidence shown in (a) and the serial interval distributions shown in (b) (colours as in (b)). (d) Posterior sample of serial interval distributions estimated from
pairs of cases up to 31st July 2014 (blue) and up until 4th December 2014 (red) respectively, assuming an offset gamma distribution. (e) Estimates of Rt obtained from
the incidence shown in (a) and the serial interval distributions shown in (d) (colours as in (d)). Estimates of Rt were computed over four-weekly sliding windows
(τ = 27 days). For the Rt estimates, the solid lines show the mean estimates and the shaded areas show the 95% credible intervals. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article).
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where a and b are the shape and scale parameters of the gamma dis-
tributed prior for Rt. We use a gamma distributed prior, conjugate to the
Poisson likelihood, to obtain an analytical formulation of the posterior
distribution of Rt. According to the expression above, the posterior
distribution for Rt given the incidence data, conditional on the serial
interval distribution ws, is a gamma distribution with shape parameter

+ =a Ik t
t

k
local and scale parameter

+= w b
1
( ) 1 /k t

t k s
.

In all our analyses here, we choose a and b so that the prior for Rt
has mean and standard deviation equal to 5, as in Cori et al. (2013). The
choice of a large standard deviation ensures that the prior is relatively
uninformative, and the choice of a high mean value for the prior is
conservative; i.e. if posterior estimates of Rt are below one, indicating
that the epidemic is estimated to be under control, then we can be sure
that this does not result from the choice of prior but is a direct result of
the data.

To obtain a sample from the full posterior distribution for Rt given
both the incidence and the serial interval data, we consider each pos-
sible serial interval distribution = …w i n( 1, )s

i( ) obtained in the pre-
vious section when the serial interval was estimated. For each i, we
draw a sample of size m from the gamma posterior distribution of Rt,
given the incidence data and conditional on the serial interval dis-
tribution ws

i( ) . We thereby obtain a sample of size ×n m drawn from the
posterior distribution of Rt given both the incidence and serial interval
data, from which the posterior mean and 95% credible intervals of Rt
can be computed (Fig. 1f).

2.3. Data

We apply our method to analyse disease incidence time series and
serial interval data from a number of past outbreaks, described in this
section and made available, when possible, in Tables S1-S4. These are
also included in our R package EpiEstim 2.2 and in the accompanying
EpiEstim App online application (https://shiny.dide.imperial.ac.uk/
epiestim).

2.3.1. H1N1 influenza in a New York school (2009) – Fig. 2
From 18th April to 1st May 2009, an outbreak of H1N1 influenza

occurred that infected more than 800 students and employees in a New
York high school. The disease incidence data were shown in Fig. 1 of
Lessler et al. (2009) and are reproduced in our Table S1.

Interval-censored serial interval observations were also collected
from 16 pairs of cases during this outbreak, as reported in Table 2 of the
Supplementary Appendix of Lessler et al. (2009), and are reproduced in
Table S2 of our supplementary material.

2.3.2. H1N1 influenza in a school in Pennsylvania (2009) – Fig. 3
Disease incidence data were available describing the numbers of

individuals experiencing onset of acute respiratory illness in a school in
Pennsylvania in April and May 2009 (Cauchemez et al., 2011). These
data were included with the first version of EpiEstim (Cori et al., 2013),
and are also reproduced here in Table S3.

We used these data in combination with serial interval data from the
2009 H1N1 influenza pandemic in USA (Donnelly et al., 2011). Speci-
fically, serial interval data were collected from pairs of cases between
17th April and 8th May 2009, and were reported in Table 1 of Morgan
et al. (2010). We converted the dates of infection of index/secondary
cases into intervals to account for uncertainty in the precise timings of
infection on the days concerned: for example, for an index case on 18th

April and a secondary infection on 25th April, the length of the serial
interval was between 6–8 days (Table S4). We performed analyses in-
cluding cases from early in the outbreak (where the primary case oc-
curred in the range 17th–24th April 2009), as well as using data from the
whole outbreak (17th April–8th May 2009).

2.3.3. Ebola virus disease in Liberia (2014) – Fig. 4
We also analysed data from the West African 2013–2016 Ebola out-

break. We considered the daily incidence of confirmed and probable cases
in Liberia between 28th May and 31st July 2014, computed from the
World Health Organization line-list data as described by the International
Ebola Response Team (International Ebola Response Team, 2016) and
shown in Fig. 4a. In this time interval, 418 symptomatic confirmed and
probable cases were reported. There were 16 confirmed and probable
cases reported before this time, but these occurred sporadically and hence
we conducted our analysis using data from 28th May 2014 onwards.

Line-list serial interval data were available from the World Health
Organization (International Ebola Response Team, 2016). Infected in-
dividuals were asked who their potential infectors might have been. Up
to 31st July 2014, nine such cases (‘early serial interval data’) were
available for which information on exposure to a confirmed, probable
or suspected case could be retrieved in this way. Data from 295 further
pairs of cases up until 4th December 2014 were also available and used
in our analyses (‘all serial interval data’).

2.3.4. MERS in Saudi Arabia (2014–2015) – Fig. 5
A dataset consisting of the daily numbers of laboratory confirmed

human cases of MERS in Saudi Arabia between 11th August 2014 and
the 18th December 2015 was extracted from the EMPRES-I system from
FAO (Global Animal Disease Information System - Food and Agriculture
Organization of the United Nations, 2017). The dataset indicates which
cases were in humans who have regular (potentially infective) contacts
with animals, particularly camels. Since the dromedary camel is con-
sidered as a reservoir species of the MERS-coronavirus (Haagmans
et al., 2014), we interpreted reported regular contact with animals as an
indication of infection from the reservoir. This allowed us to distinguish
between cases arising from human-human transmission, for example
transmission in households or hospitals (Al-Tawfiq and Perl, 2015), and
human cases derived directly from the animal reservoir.

For the serial interval, we assumed an offset gamma distribution
with mean 6.8 days and standard deviation 4.1 days, as estimated by
Cauchemez et al. (2016).

3. Results

3.1. Estimating the reproduction number

We first applied our method to estimate the time-dependent re-
production number Rt throughout an outbreak of H1N1 influenza in a
New York School, for which both incidence and serial interval data
were available. We fitted a gamma distributed serial interval offset by
one day. Results are shown in Fig. 2.

The median reproduction number estimate for the first seven days of
the outbreak (April 18th–April 24th 2009) was 3.3 – with 95% credible
interval (95% CrI) given by (2.1,5.6) – and the mean estimate for this
period was 3.4. These estimates are consistent with a previous estimate of
the reproduction number over this time period of 3.3 from a study by
Lessler et al. (2009). Those authors used a similar approach to quantify
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the serial interval distribution to the method used here, but estimated the
reproduction number based on the initial exponential growth rate of the
outbreak.

3.2. Uncertainty in estimates of Rt

The method for estimating the time-dependent reproduction
number, Rt, by Cori et al. (2013) previously relied on a pre-existing
estimate of the serial interval distribution. In practical applications of
that method, typically single serial interval distributions, estimated
from previous outbreaks or based on early data from the ongoing out-
break, have been used to estimate Rt throughout an epidemic. In our
approach, we propose to integrate the estimation of the serial interval
distribution within the estimation of Rt. This allows Rt to be estimated
directly not only from the most up-to-date incidence data, but also from
up-to-date serial interval data.

As more serial interval data become available during an outbreak,
the uncertainty surrounding the serial interval distribution estimates,
and in turn the reproduction number estimates, typically reduces. To
illustrate this principle, we estimated the changes in the reproduction
number for an outbreak of H1N1 influenza in a school in Pennsylvania
in 2009 (Cauchemez et al., 2011; Donnelly et al., 2011; Cori et al.,
2013). We used serial interval data collected in a household study un-
dertaken early in the 2009 influenza pandemic in San Antonio, Texas
(Morgan et al., 2010). We estimated the reproduction number using
two subsets of these serial interval data: first, only the data that were
available early in the study (for which the primary cases occurred be-
tween 17th–24th April 2009), and; second, all the data from the study
(17th April–8th May 2009). Results are shown in Fig. 3.

The mean Rt estimates using only the early serial interval data were
mostly greater than those using all serial interval data. Moreover, using
only the early serial interval data led to larger uncertainty in the serial
interval distribution estimates, and in turn in the Rt estimates. In par-
ticular, the upper bound of the 95% credible interval obtained using the
early serial interval data was much higher (up to 41% higher) than
when all serial interval data were used. If control strategies were de-
signed based on a pessimistic scenario corresponding to this upper
bound, the Rt estimates based on the early serial interval data could
have led to designing unnecessarily intense interventions. Of course,
intense interventions when based on all available data are justifiable,
but it is important for interventions to continue to be re-evaluated as
new data become available during an outbreak (Merl et al., 2009; Shea
et al., 2014; Thompson et al., 2018).

We also analysed data from the West African 2013–2016 Ebola
outbreak (see Data section in Methods). The incidence data are shown
in Fig. 4a. We computed three estimates of the time-dependent re-
production number using three different assumptions on the serial in-
terval: (i) using a single distribution for the serial interval (yellow line
in Fig. 4b); (ii) using the full posterior distribution of serial intervals
estimated from the nine pairs of cases observed up to 31st July 2014
(blue lines in Fig. 4b and d); and (iii) using the full posterior distribu-
tion of serial intervals estimated from all 304 pairs of cases observed up
to 4th December 2014 (red lines in Fig. 4d). In all analyses of the Ebola
data, we used an offset gamma serial interval distribution. For (i), the
serial interval distribution was constructed to match the mean and
standard deviation of the observed nine pairs of early cases.

Using a single distribution for the serial interval rather than the full
posterior distribution of serial intervals led to similar central estimates
but a large underestimation of the uncertainty in the reproduction
number (Fig. 4c). Furthermore, using the early serial interval data led
to underestimating the mean reproduction number by as much as 26%
compared to using all the serial interval data that were available
(Fig. 4e).

3.3. Imported cases

We used incidence data of MERS cases in Saudi Arabia from 2014 to
2015 (Food and Agriculture Organization of the United Nations, 2017)
– shown in Fig. 5a – to estimate the reproduction number throughout
that outbreak. Data were available describing some cases as being likely

Fig. 5. Estimated reproduction number, Rt, for MERS in Saudi Arabia from
August 2014 to December 2015. (a) MERS incidence over time, with cases
imported from the animal reservoir shown in red and other cases in black (Food
and Agriculture Organization of the United Nations, 2017). (b) Estimates of Rt
obtained from the incidence data shown in (a), assuming an offset Gamma
distribution with mean 6.8 days and standard deviation 4.1 days for the serial
interval (Cauchemez et al., 2016). Solid lines show the mean estimates and the
shaded areas show the 95% credible intervals. Results shown in black ignore
the information on proximity to the animal reservoir and assume all infections
arose from other human cases in the dataset. Results shown in red account for
the cases known to be infected from the animal reservoir. Reproduction number
estimates were generated using four-weekly sliding windows (τ = 27 days). The
time periods shown with shaded blue rectangles correspond to those during
which the mean estimated Rt ignoring importations is above the threshold 1,
whilst the mean estimated Rt accounting for importations is below 1. (c) Re-
lative error in the estimated mean Rt when ignoring importations. (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article).
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importations from the animal reservoir. We assumed all other cases
were due to local human-human transmission. We compared estimates
of the reproduction number obtained when using (results in red in
Fig. 5b) and not using (results in black in Fig. 5b) this information. As
expected, disregarding the information on the imported cases and in-
stead assuming that those cases arose from local human-human trans-
mission led to overestimation of the reproduction number. The blue
shaded time-windows in Fig. 5b highlight times at which the mean
reproduction number estimated assuming only local transmission is
greater than one (so that the epidemic would not be estimated to be
under control) when in fact the reproduction number estimated using
information on imported cases is below one. Fig. 5c shows that the
relative error in the mean Rt estimates when ignoring imported cases
varies over time but is sometimes very large, with relative errors of over
50% in October 2014, and January, May and July 2015.

4. Discussion

Quantifying disease transmissibility during outbreaks is crucial for
designing effective control measures and assessing their effectiveness
once implemented. This assessment forms a critical part of real-time
situational awareness (Cauchemez et al., 2006a; Cowling et al., 2010;
Christaki, 2015; Cori et al., 2017; Polonsky et al., 2019). Indeed, in
circumstances in which the incidence of cases is still increasing, but the
time-dependent reproduction number is dropping, there might be a
very different outlook compared to if the incidence of cases and the
reproduction number are both increasing. Assessment of the re-
production number can also be used for planning future interventions
(Lipsitch and Bergstrom, 2004; Fraser et al., 2009).

We have developed a framework for estimating time-dependent
reproduction numbers in real-time during outbreaks. Our approach
builds on a well-established method (Cori et al., 2013) and addresses
two important limitations of the approach as proposed in that study.
The first important feature of our framework is that data on pairs of
infector/infected individuals can be included in the estimation proce-
dure, so that the serial interval distribution and the time-dependent
reproduction number can be estimated jointly from the latest available
data. This leads to more precise estimates of transmissibility, as well as
accurate quantification of the uncertainty associated with these esti-
mates. Second, our method allows datasets that distinguish between
locally transmitted and imported cases to be analysed appropriately.
We describe these limitations of the previous method in more detail
below. We have shown that these key features lead to improved in-
ference of pathogen transmissibility, with illustrations using datasets
from epidemics of H1N1 influenza (Figs. 2 and 3), Ebola virus disease
(Fig. 4) and MERS (Fig. 5). We have also implemented our modelling
framework in an online tool, allowing it to be used easily in outbreak
response settings by stakeholders.

Various methods exist for estimating the values of reproduction
numbers, particularly the basic reproduction number, from epidemic
data (see Obadia et al. (2012) for an in-depth review). The most com-
monly used approach for estimating time-dependent reproduction
numbers, other than the approach of Cori et al. (2013), is that of
Wallinga and Teunis (2004). As described in the introduction, one ca-
veat of the Wallinga and Teunis method is that it estimates the case
reproduction number, which is not a measure of instantaneous trans-
missibility. If a policy-maker wishes to understand the impacts of
control interventions in real-time, then an estimate of the case re-
production number is less useful than an estimate of the instantaneous
reproduction number because the case reproduction number does not
change immediately after interventions are altered; instead, it changes
more smoothly and in a delayed manner (Fraser, 2007; Cori et al.,
2013). In contrast, the instantaneous reproduction number changes
straight away and is therefore a useful quantity for understanding the
impacts of control strategies in real-time. Furthermore, estimation of
the case reproduction number at any time usually requires incidence

data from later times, although we note that extensions to the Wallinga
and Teunis approach have been developed to relax this assumption of
the original method (Cauchemez et al., 2006b).

Some approaches have been proposed to estimate the serial interval
and reproduction numbers jointly from time series data on the numbers
of new cases (Wallinga and Teunis, 2004; Forsberg White and Pagano,
2008), but it has been shown that it may not be possible to estimate
both these quantities precisely from those data alone in the early stages
of an outbreak (Fraser, 2007; Griffin et al., 2011). Our approach instead
extends the framework of Cori et al. (2013), and relies on observations
of transmission pairs in addition to the time series data to estimate the
serial interval and the time-varying reproduction number in a two-step
estimation process (Fig. 1).

As described above, the first limitation of the approach of Cori et al.
(2013) is that it makes use of pre-existing estimates of the serial interval
distribution as an input. This potentially leads to delays between studies
inferring the serial interval and subsequent analyses estimating trans-
missibility, or means that estimates of transmissibility are based on
estimates of the serial interval from earlier outbreaks. Here, we used
data from the 2013–2016 Ebola outbreak in Liberia to show that failing
to account for full uncertainty in the serial interval distribution may
lead to underestimating the uncertainty surrounding reproduction
number estimates (Fig. 4c). Moreover, ignoring recent data on the serial
interval can dramatically impact estimates of the reproduction number
and the uncertainty associated with those estimates (Figs. 3d, 4e). This
is of practical importance – as an example, a number of studies con-
ducted during and after the 2013-16 West African Ebola outbreak (e.g.
Wiratsudakul et al., 2016; Bakker and Wallinga, 2016; Dalziel et al.,
2018) used the same single serial interval estimate obtained near the
beginning of the outbreak (WHO Ebola Response Team, 2014). Our
results suggest that using the latest available data on pairs of index and
secondary cases, and fully accounting for the corresponding uncertainty
in the serial interval estimates, may lead to very different, but more
robust estimates of the reproduction number. It is worth noting that the
pairs of index/secondary cases included in the estimation should be as
representative as possible; in particular, if too recent index cases are
considered, some of their secondary cases may not have been observed
yet, leading to artificial underestimation of the serial interval.

Although some approaches for estimating reproduction numbers
allow imported cases to be accounted for (Wallinga and Teunis, 2004;
Forsberg White and Pagano, 2008), the second limitation of the ap-
proach of Cori et al. (2013) is that it assumes that all cases in an out-
break (other than those observed at the first timestep) occur from local
transmission, which can be erroneous. For some diseases – e.g. MERS
(Funk et al., 2016) and yellow fever (Wilder-Smith and Monath, 2017)
– transmission from alternative hosts (e.g. camels for MERS and non-
human primates for yellow fever) can be common. Continued im-
portation of cases into a local population from other geographical lo-
cations can also occur. For example, a number of cases of H1N1 influ-
enza in New Zealand in 2009 were known imports from other locations
(Paine et al., 2010). Failing to properly account for such non-locally
transmitted cases can lead to overestimating the reproduction number,
as we illustrated in our application to data on MERS in Saudi Arabia
from 2014 to 2015 (Fig. 5b,c). Epidemiological studies often collect
data on exposure routes for each case (Cowling et al., 2008, 2009;
Forsberg White et al., 2009; Paine et al., 2010; Cori et al., 2017), and
this information on the local or non-local source of incident cases
should be included, when available, in estimates of pathogen trans-
missibility. Of course, such information might not be available directly
from epidemiological data. In this case, one option might be to use
statistical methods along with genetic and epidemiological data to
differentiate between local and imported cases (Ypma et al., 2013; Cori
et al., 2018).

One of the aims of epidemic control is to reduce the reproduction
number below one. Failing to account for full uncertainty in the serial
interval, not including recently available serial interval data, and failing
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to differentiate between local and imported cases might lead to in-
correct assessment of the effectiveness of current control measures.
Throughout most of this article, we discussed disease control in the
context of whether or not the mean estimate of the reproduction
number was less than or greater than one. However, policy-makers may
prefer to choose more risk-averse policies. When the goal of interven-
tions has been to minimise a function describing the cost of an out-
break, the idea of intervening to ensure that percentile estimates of that
cost are minimised has been proposed (Tildesley et al., 2012; Cunniffe
et al., 2016). A similar idea here might be directing control strategies
towards ensuring that a specific percentile estimate of the reproduction
number falls below one. In this context, inadequate quantification of
the uncertainty surrounding reproduction number estimates may be as
important as biases in the central estimates.

As well as in response to interventions, the reproduction number
may change over time due to other factors. Seasonal variations in the
parameters governing disease spread play a significant role in trans-
mission of a number of pathogens (Dietz, 1976; Grassly and Fraser,
2006; Fisman, 2007; van Gaalen et al., 2017). For example, transmis-
sion of vector-borne pathogens varies due to factors including seasonal
temperature variation (Lord, 2004; Obolski et al., 2019), and outbreaks
of childhood diseases such as measles are affected by school term dates
(Earn et al., 2000). These, and indeed any factor resulting in changes in
pathogen transmissibility (e.g. the depletion of the number of suscep-
tible individuals in the population (Thompson et al., 2019a)), will be
reflected in time-dependent reproduction number estimates generated
using our approach, so these estimates need to be interpreted carefully
when assessing the effectiveness of interventions.

As with most previous methods, we propose estimation of the re-
production number based on the incidence of symptomatic cases and
the serial interval distribution, rather than the incidence of infections
and the distribution of the generation time (time between infection of a
case and infection of their infector (Wallinga and Lipsitch, 2007; Park
et al., 2019)). In some circumstances, the serial interval distribution
might not match the generation time distribution. As an extreme ex-
ample, the generation time can only take positive values, however for
diseases for which infectiousness occurs before the onset of symptoms,
negative values of the serial interval might be possible (Vink et al.,
2014; Thompson et al., 2016).

Since the onset of symptoms occurs after the time of infection,
considering the incidence of symptomatic cases instead of the incidence
of infection also leads to delays in estimates of the reproduction
number. This is unavoidable in most cases as surveillance systems ty-
pically do not record the timings of new infections. However, for ana-
lyses carried out retrospectively, if the distribution of the incubation
period (time between infection and onset of symptoms) is known, then
it is possible to eliminate this time lag by back-calculating the likely
infection times from the times at which symptoms were recorded
(Fraser, 2007). The instantaneous reproduction number can then be
inferred from these back-calculated data. We note that this might
contribute uncertainty in reproduction number estimates if there is
significant variability in the time between infection and detection of
symptoms between individuals, as is the case for Ebola (WHO Ebola
Response Team, 2014; Hart et al., 2019).

An important feature of our method, like previous ones, is that, if
the proportion of cases that go unreported remains constant throughout
an outbreak, estimates of the reproduction number are unaffected by
underreporting. However, reporting can vary over time within an out-
break. An interesting future extension of our approach might be ac-
counting for uncertainty in the precise numbers of incident cases at
each timestep. If information is available to quantify changes in re-
porting over time, this would permit correction to allow for temporal
variation in underreporting, which might otherwise be interpreted as
variation in the reproduction number. Underreporting has hindered
estimation of disease burden for a number of diseases including dengue
(Shepard et al., 2013), yellow fever (Garske et al., 2014) and Ebola

(Dalziel et al., 2018; Thompson et al., 2019b). Other additions to our
work might involve allowing for reporting delays (Cowling et al., 2010;
van de Kassteele et al., 2019).

In conclusion, we have extended the commonly used approach of
Cori et al. (2013) for estimating the time-dependent reproduction
number to include important new features. We hope that our improved
modelling framework is sufficiently flexible that it will be used by
epidemiologists and policy-makers in a wide range of future outbreak
response scenarios. This should be facilitated by our R package
(EpiEstim 2.2) and our online interactive user-friendly interface
(EpiEstim App - https://shiny.dide.imperial.ac.uk/epiestim).
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