
HAL Id: pasteur-03325910
https://pasteur.hal.science/pasteur-03325910

Submitted on 25 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Systematic selection between age and household
structure for models aimed at emerging epidemic

predictions
Lorenzo Pellis, Simon Cauchemez, Neil M. Ferguson, Christophe Fraser

To cite this version:
Lorenzo Pellis, Simon Cauchemez, Neil M. Ferguson, Christophe Fraser. Systematic selection between
age and household structure for models aimed at emerging epidemic predictions. Nature Communi-
cations, 2020, 11 (1), pp.906. �10.1038/s41467-019-14229-4�. �pasteur-03325910�

https://pasteur.hal.science/pasteur-03325910
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ARTICLE

Systematic selection between age and household
structure for models aimed at emerging
epidemic predictions
Lorenzo Pellis1,2,3✉, Simon Cauchemez4, Neil M. Ferguson 3 & Christophe Fraser 5

Numerous epidemic models have been developed to capture aspects of human contact

patterns, making model selection challenging when they fit (often-scarce) early epidemic

data equally well but differ in predictions. Here we consider the invasion of a novel directly

transmissible infection and perform an extensive, systematic and transparent comparison of

models with explicit age and/or household structure, to determine the accuracy loss in

predictions in the absence of interventions when ignoring either or both social components.

We conclude that, with heterogeneous and assortative contact patterns relevant to

respiratory infections, the model’s age stratification is crucial for accurate predictions.

Conversely, the household structure is only needed if transmission is highly concentrated in

households, as suggested by an empirical but robust rule of thumb based on household

secondary attack rate. This work serves as a template to guide the simplicity/accuracy trade-

off in designing models aimed at initial, rapid assessment of potential epidemic severity.
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Patterns of interactions and contacts between individuals in
populations are recognised as important factors shaping the
spread of infectious diseases1,2. Mathematical models are

routinely used in analysis of epidemic data and prediction of
epidemic trends3,4. A wealth of different options for how to
describe social interactions in mathematical models is available,
ranging from assuming homogeneous mixing5,6, through analy-
tically tractable models that focus on households, age structure or
other idealised properties of the contact network1,2,7,8, to complex
individual-based stochastic simulations1,9–12. However, few
comparative tools exist to guide the initial choice of structure
when designing a mathematical modelling study. One common
approach is statistical, comparing models by their ability to fit the
data, or seeking a trade-off between the quality of data fitting and
model parsimony. However, when data are limited, like at the
beginning of an emerging epidemic, different models can fit the
same data equally well and nevertheless lead to different predic-
tions. These methods would then favour the simplest model, and
would therefore not highlight whether further data should be
collected to parameterise a more complicated model whose pre-
dictions can be significantly different.

Another comparison approach, rather than ranking models or
selecting the best one, retains them all and combines their pre-
dictions to quantify uncertainty not only owing to stochastic
dynamics and unknown parameters/initial conditions13,14, but
also to lack of knowledge on the correct model structure. Such
multi-model ensemble methods, well established in the field of
numerical weather forecast15, have recently started gaining
momentum in epidemiology16–18, with different modelling groups
sometimes asked to perform predictions of the impact of realistic
control policies based on shared scenarios10,18–21. These com-
parative studies have proven popular with complex models and
policy makers concerned with over-reliance on advice from single
modelling groups, but so far have provided little insight into the
causes of differences between models. In addition, unidentifiability
issues owing to the large number of parameters are sometimes not
discussed, and often dealt with through an informal and difficult-
to-reproduce calibration procedure22. Furthermore, comparing
models by fitting them to the same set of data (or small number of
shared scenarios23) provides results that are useful in that specific
context but often hard to generalise to other settings18,23 or
pathogens.

Therefore, here we take a more mathematical approach and we
compare a few popular and relatively simple models when
varying widely and systematically the constraints they are
required to fit (i.e., the hypothetical data we would observe and fit
them to). Particular attention is devoted to being as transparent as
possible in the details of the process and the unidentifiability
issues encountered, and to understand how the different com-
ponents of model structure interact and cause differences in
predictions. In this sense, our approach is complementary to the
multi-model ensemble studies discussed above.

To make extensive comparison computationally feasible, we
focus on a specific context where numerous analytical results are
available: assuming we are observing the early phase of an
emerging epidemic of a novel, directly transmissible, human
infection, we explore the joint contribution of age stratification
and household structure on its spread in a large and fully sus-
ceptible population. There is an extensive literature on age stra-
tification in epidemic modelling6,24 and an increasing amount of
empirical data on age-specific patterns of mixing25–27. There is an
equally extensive literature on household structure28–30 as well as
empirical data on estimation of household transmission para-
meters31–36. Epidemic models with age and household structure
are among the most analytically tractable, and are thus particu-
larly suited to rapid use in an emerging epidemic situation.

Our aim is to compare four different models: an age- and
household-stratified model (hereafter denoted AH), a pure age-
stratified (A), a pure household-stratified (H) and an unstruc-
tured (U) homogeneously mixing model. We then test the ability
of these different models to predict: the average final size (z), the
average peak daily incidence (π) and the average time to the peak
daily incidence (t) of a single epidemic wave. Given model AH
includes all others as submodels, we compare predictions by
assuming model AH perfectly represents reality and measuring
other models’ deviations from it. More specifically, we extensively
explore the parameter space of model AH and for each parameter
combination we compute, in addition to the outputs of interest,
those quantities that are most likely to be measured or estimated
from early data in the initial phase of the epidemic, namely: the
basic reproduction number R0, i.e., the average number of cases a
typical case generates in a fully susceptible population (this is not
trivial for models with households; see Methods and Supple-
mentary Methods, Sections 1.2.4 and 1.4); the ratio of adults
versus children among new incident cases; and the household
secondary attack rate (SAR), i.e., the average size of a within-
household outbreak. These quantities, hereafter referred to as the
observables, are then used to map (i.e., compute deterministically,
assuming no error or noise) the parameters of the models A, H
and U, the outputs of which are then compared with the
assumed-true ones of model AH and considered inaccurate when
they differ by more than a specified threshold ε in relative terms.
In computing model outputs and observables, we assume per-
manent immunity following infection, as well as constant para-
meter values and no demographic changes, i.e., we have in mind a
relatively fast infection with negligible disease-induced mortality
and no intervention nor behavioural or environmental change. In
addition, despite the models used here being stochastic, for
maximum computational efficiency we only focus on average
values (infinite population limit).

Despite the rather specific scenario and limited range of
models, this work provides a simple rule of thumb that, early on
in an outbreak of a new emerging infection, can help striking the
crucial balance between model simplicity and prediction accuracy
when choosing a model aimed at rapid initial assessment of likely
epidemic severity in the absence of interventions.

Results
Overview. As baseline scenario we consider: age and household
structure of Great Britain, random mixing, R0= 2, adults and
children equally infective (relative infectivity ϕ= 1) and an accu-
racy threshold ε= 5%. We fully explore the models’ behaviour for
a within-household infectious-adult-to-susceptible-adult transmis-
sion probability paa ranging from 0 to 0.95 and for children from
equally to four times as susceptible as adults (relative susceptibility
ψ ranging from 1 to 4) in Fig. 1. We then compare models in Fig. 2.
Other values of R0 (from 1.1 to 4) and ϕ (from 1 to 2), UK-like
contact patterns relevant to respiratory infections and a markedly
different social structure (corresponding to Sierra Leone) are then
explored in Figs. 3 and 4. Further sensitivity analyses, including
intermediate contact patterns and social structures, other thresh-
olds ε (1% and 10%), and the case of children less susceptible/
infective than adults (ϕ, ψ < 1), are reported in the Supplementary
Discussion (Sections 2.3.1, 2.3.4, 2.1.3 and 2.3.3, respectively).

Baseline scenario. We first describe the outputs of each model in
absolute terms in the baseline scenario. Model U predicts a final
size z of 80%, a peak daily incidence π of 5.5% and t= 9.8 gen-
eration times to the peak (we chose the generation time37 as the
time unit to facilitate translation to other infections). These values
are common to all models (Fig. 1, bottom-left corner of all panels)
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when there is no household transmission (within-household
transmission probability paa= 0) and children and adults are
equally susceptible (relative susceptibility ψ= 1). For a fair com-
parison, the parameter explorations for all models are performed
at fixed R0, i.e., larger values of the within-household transmission
probability paa correspond to suitably smaller values of between-
household transmission. Both the final size z (Fig. 1a) and the
peak incidence π (Fig. 1b) appear to decrease when increasing age
difference in susceptibility (i.e., increasing ψ): this result is known
for the final size in the absence of households5,38,39, but appears to
hold also for the peak incidence, and to extend to any amount of
within-household transmission. Conversely, both outputs increase

when transmission is shifted from between to within households
(increasing paa at constant R0). Comparing Fig. 1a, d and g and b,
e and h, it appears that, for both final size z and peak incidence π,
model A is better than model H at mirroring the qualitative
behaviour of model AH (though note that model H has only two
free parameters, whereas model A has four, of which two shared
with model AH: see description of model A in the Methods and
Supplementary Discussion, Section 2.1.2). It also appears that the
joint contribution of age and household structure in model AH
can be roughly decomposed in the separate contribution of the
two social structures (Fig. 1a, b contain elements of d and e for
increasing ψ, and of g and h for increasing paa), but that models A
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Fig. 1 Models’ output under baseline scenario. For models AH (first row: a–c), A (second row: d–f) and H (third row: g–i), the average epidemic final size z
(first column: a, d and g), average peak daily incidence π (second column: b, e and h) and average time to peak daily incidence t (third column: c, f and i;
time expressed in multiples of the generation time TG) are plotted as functions of the within-household transmission probability paa and the relative
susceptibility of children versus adults ψ. The top row (model AH) is assumed to be a perfect representation of reality. The outputs of model U are not
plotted, as they are independent of both variables on the axes (they depend only on R0), but can be read in the bottom-left corner of panels in each column,
where predictions of all models coincide. The baseline scenario assumes: population structure of Great Britain, random mixing (same contact rates for
adults and children in all environments, γg= γh= 1, and global assortativity of children θg= 22.73%—within-household random mixing is always assumed),
R0= 2 and children as infectious as adults (ϕ= 1).
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and H, respectively, underestimate and overestimate both the final
size and the peak incidence. Predictions of time to the peak t
(Fig. 1c) seem to decrease when increasing both paa and ψ, but are
more complex to interpret and overall show limited variation
(much variation would come from stochastic delays in the very
early epidemic phase, but these are minimised on purpose to
detect structural differences in epidemic speed between models).
Results are qualitatively similar for other values of R0 and relative
infectivity ϕ (see Supplementary Discussion, Section 2.1.2).

In Fig. 2a–c, we highlight the regions where either or both
forms of social structure need to be included in the model to
accurately capture each of the three outputs of model AH. Those
regions are then combined in Fig. 2d into an overall simplest-
model-acceptance-region plot, in which a less-structured model is
rejected when at least one of the outputs is too inaccurate. Model
U appears accurate for both the final size z and peak incidence π
in a diagonal region of the parameter space, i.e., when the increase

owing to stronger within-household transmission and the decrease
owing to larger age differences cancel each other out. The graph
for the time to the peak t is more complex, and highlights the
presence of a region where at least one structure, no matter which,
is needed, but not necessarily both (green area in Fig. 2c).

Four different parameter sets are then arbitrarily chosen, one in
each region of the overall plot in Fig. 2d (orange labels e–h). For
each choice, Fig. 2 (respectively, panels e–h) compares the full
incidence and cumulative incidence curves of the models and
suggests that the regions given in Fig. 2d indicate when models U,
A and H approximate well not only the three outputs of interest
but also the full dynamics of model AH.

Sensitivity analysis. Finally, we explore how results depend on
the remaining two parameters of model AH. Figure 3a reports the
overall simplest-model acceptance regions for varying values of
R0 and the relative infectivity of children versus adults ϕ, still
under baseline random mixing. For increasing R0 (left to right),
the household structure becomes less relevant for accurate pre-
dictions, unless within-household transmission is extremely high.
Intuitively, at least for the final size, this is because at large R0
almost all the population ends up infected, leaving very little
room for stronger within-household transmission to increase it
further (Fig. 1a). Despite not being capped, as the final size is by
the total population, the peak incidence shows a similar beha-
viour. Figure 3a confirms the intuition that, under random
mixing, the age structure can be neglected when age classes do
not differ much in susceptibility and that the household structure
can be neglected when not much transmission occurs in house-
holds. Quantifying this intuition, however, is an important result
of this analysis. On the other hand, when realistic UK contact
patterns25 are assumed, as in Fig. 3b, the age structure becomes
absolutely crucial for accurate predictions, whereas the household
structure remains important only at large values of within-
household transmission.

To facilitate intuition about the quantitative meaning of Fig. 3,
we locate points in the parameter space corresponding to some
scenarios inspired by real infections. Scenario 1 is characterised
by parameters in the ballpark of H1N1 2009 pandemic influenza
(points 1): R0 ≈ 1.5, ϕ ≈ 1, ψ ≈ 233 and values of paa from 0.1 to
0.4, corresponding to the wide range of SAR estimates found in
the literature35, from <10%40 up to 40%35. At the low end of this
range, Fig. 3 suggests the household structure can be neglected,
whereas at the high end the household structure should be
retained, at least when mixing is heterogeneous (Fig. 3b, points 1).
Scenario 2 has parameter values closer to those estimated for the
1918 influenza pandemic34, with a higher R0 than in 2009, and
children apparently not more susceptible but potentially more
infectious than adults. We choose R0 ≈ 2, ϕ ≈ 2, ψ ≈ 1 and paa ≈
0.3 (leading to a SAR of ~30%34) and conclude that the household
structure can (just about) be ignored, whereas the age stratifica-
tion is necessary when mixing is heterogeneous (Fig. 3b, point 2).
However, we note that the higher transmissibility seen in the
1918 influenza pandemic compared to the 2009 one might be
partially owing to a different demography and social structure, in
particular with larger households. For Scenario 3, we imagine the
hypothetical invasion in a fully susceptible population of a highly
transmissible infection, with characteristics similar to common
childhood infections like measles or chickenpox: R0 ≈ 4, ϕ ≈ 1 and
a trade-off between ψ and paa owing to the fact that only child-to-
child estimates of transmission probability are available in the
literature (see Supplementary Methods, Section 1.6.5). This leads
to a range of possible points 3 in Fig. 3, all of which suggest the
household structure can be ignored, whereas the age stratification
is essential. Applications to other topical emerging infections
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Fig. 4 Criterion for inclusion of household structure for accurate
predictions. Empirical rule of thumb specifying the level of SAR above
which a household structure is necessary for output predictions within a
5% relative accuracy for the household structure of a Great Britain (fraction
of children = 22.73%, mean household size χ= 2.35) and b Sierra Leone
(fraction of children = 53.81%, mean household size χ= 5.85), both with
UK-like contact patterns and assortative mixing (though of little relevance,
as the same rule of thumb also applies for random mixing: see
Supplementary Discussion, Section 2.4). For each R0, data points represent
the values of the SAR along the borders between the light blue and red
regions in Fig. 3b (more precisely, the values of the SAR at each point of the
5% relative error contour lines, which are not explicitly drawn here to
reduce clutter, but are shown as think black lines in Supplementary Fig. 16B)
for ϕ= 1, 1.5 and 2 and ψ ranging from 1 to 4. Black data points give SAR
values associated with more moderate and realistic differences in
susceptibility and infectivity between adults and children (ψϕ≤ 3) and are
typically less widespread than grey data points, which correspond to
extreme and unrealistic differences (ψϕ > 3). Regression lines (dashed) fit
corresponding-colour data points, excluding R0= 1.1 and 4, where a linear
fit looks unreasonable. The thick black line shows the empirical rule of
thumb, with parameters reported in the figure (η1, regression coefficient;
η0, intercept), and is empirically chosen to: be closer to the dark than the
grey dashed line, reflecting low confidence in extreme differences between
adults and children; and provide an acceptable fit for both the SAR values
obtained assuming UK-like mixing (here) and random mixing (see
Supplementary Discussion, Section 2.4). Note that part of the spread in the
data points is owing to the ruggedness of the borders between regions
(contour lines in Supplementary Fig. 16B): a smaller step in paa and ψ would
reduce the spread but increase the computational cost.
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(e.g., SARS, MERS, Ebola) would also be possible, though data
scarcity and other limitations highlighted in the Discussion
suggest conclusions in these cases would be rather tentative.
Furthermore, parameter values for SARS and Ebola, with their
marked lower susceptibility of children compared with adults41,
would not appear in the range displayed in Fig. 3.

Rule of thumb. Overlaying the contour lines for the SAR onto
Fig. 3b reveals how the SAR can be used directly (i.e., without
estimating paa) to discriminate whether the household structure is
needed or not, somewhat irrespective of the relative infectivity
and susceptibility of children, but strongly depending on the
value of R0. This dependence is explored more extensively in
Fig. 4a, where the values of the SAR along the lines at which
model A differ by 5% in relative terms from model AH (the
borders between the light blue and red regions in Fig. 3b) are
collected for all values of ψ ranging from 1 to 4 and for ϕ= 1,
1.5 and 2, and plotted against R0. The relationship appears
approximately linear (Fig. 4a) for a wide range of values of R0,
except for R0 close to its threshold value of 1 or for a SAR roughly
above 70%. Figures 3b and 4 together allow the formulation of an
approximate but simple empirical rule of thumb:

For accurate predictions of expected epidemic final size, peak
daily incidence and time to peak daily incidence in a developed
country with UK-like contact patterns relevant for respiratory
infections, the age structure should always be included in the
model and the household structure should be present if SAR ≥
(η1 × R0+ η0)%, where R0 can be estimated from the early growth
with standard methods (i.e., in the absence of households), η1=
24 and η0=−10.

The coefficients of this linear relationship have been deter-
mined empirically to carry more weight from values of the SAR
associated to more moderate and realistic differences in
susceptibility and infectivity of children versus adults (see Fig. 4
and Supplementary Discussion, Section 2.4), and to provide
simultaneously a satisfactory fit for both UK-like mixing patterns
(Fig. 4a) and random mixing (Supplementary Fig. 25B). The
term “accurate” refers to predictions with a theoretical relative
accuracy of 5%, given perfect observations and parameter
estimates, and assuming model AH is the truth. The possibility
of using standard methods of estimating R0, e.g., from the
exponential growth rate r, comes from the observation42 that
ignoring age and household structure does not fundamentally
undermine the accuracy of such estimates (see also Supplemen-
tary Methods, Sections 1.1.2 and 1.1.3).

Despite its simplicity, the linear relationship between the SAR
and R0 is surprisingly solid, given the amount of complexity
captured. In particular, it appears not to be significantly affected
by contact patterns (see Supplementary Fig. 25), and is therefore
still informative about whether the household structure is needed
or not even in the case of random mixing or other intermediate
contact patterns, suggesting it can be broadly exported to other
developed countries; and it extends to very different social
structures (e.g., Sierra Leone, Fig. 4b) and to other accuracy
thresholds (Supplementary Fig. 25), though the line coefficients
require suitable modifications investigated in the Supplementary
Discussion (Section 2.4).

Finally, although in the rule of thumb described above for a
developed country with UK-like contact patterns the age
stratification appears essential for almost all parameter values
explored (ϕ= 1, 1.5 and 2, ψ from 1 to 4; R0 from 1.1 to 4), this is
not always the case in general, e.g., with random mixing, a 10%
threshold or other social structures (see Supplementary Discus-
sion, Sections 2.1.2, 2.1.3 and 2.3.4). Although a clear condition
determining when the age structure is needed for accurate

predictions seems less evident to formulate, we deem it also less
essential, given the limited complexity the age structure
component adds to the model and the wide availability of age-
stratified epidemiological data.

Discussion
The main aim of this analysis is to provide a deeper under-
standing of the role played by structural model components on
epidemiological predictions. For this reason, unlike multi-model
ensemble approaches18,23 where models’ outputs are combined
into a median or weighted average43, here outputs are kept
separate44 to highlight disagreements between models (in the
same spirit as structured decision-making17). Furthermore, rather
than only focusing on predictions in a single scenario, models are
compared on a wide region of the space of observables (i.e., R0,
SAR and the ratio of adults and children in the incidence), and
sharp boundaries are identified between regions in this space
where models behave similarly and regions where they differ.

Overall, our analysis suggests that the age structure seems to
be a more rewarding ingredient to add to the model than the
household structure, especially, if measured against the respective
cost in terms of mathematical complexity. In other words, if one is
not interested in the explicit presence of households (details of
local transmission, targeted interventions, etc.), their complex and
antagonistic effects—longer and more frequent local contacts, but
also stronger saturation effects—may often cancel out to a good
approximation. This is more likely to be true for large values of R0.
However, it is worth emphasising that ignoring households sys-
tematically underestimates epidemic severity, predicting a lower
final size, lower peak incidence and a later peak time.

The best retrospective example of how this study could have
guided model design is the case of the H1N1 2009 pandemic,
because of the early availability of data also at the level of house-
holds. With initial parameter estimates33,45 as presented above
(R0 ≈ 1.5, ϕ ≈ 1 and ψ ≈ 2, somehow capturing prior immunity in
the elderly) and average SAR values of the order of 10–13%33, this
study would have strongly discouraged the use of complex
households models in favour of purely age-stratified ones. In fact,
model A would have predicted a final size of 34% (compared
with the 35% of model AH), which is much lower than the 58% of
the homogeneously mixing model. Current estimates of the final
size from retrospective analysis in Italy are even lower (in the range
15–30%12,46), but such discrepancy is easily imputable to inter-
ventions and spontaneous social distancing, and possibly a dif-
ferent demography and more refined age structure of these studies
compared with the simple two-class one presented here. Later
studies reported higher estimates for the SAR35, but even with SAR
values ~40% (corresponding to paa= 0.4), on the high end of the
range displayed in Fig. 3b, model A would predict a final size of
37%, still very close to the 40% of model AH (a relative difference
just above 5%).

These results apply in particular to the case of children being
more susceptible and/or infectious than adults, which is the main
one discussed here. The situation is more complex in the opposite
case, as sometimes we have found the mapping from model AH
to model A to fail (see Supplementary Discussion, Section 2.3.3).
The insight is that, when children are less susceptible or infectious
than adults, sometimes the mixing imposed by the household
structure results in an age-stratified incidence that cannot be
reproduced by an age-stratified model alone (with the same
contact rates), irrespective of the level of assortative mixing
assumed. In this sense, the household structure becomes essential
to reconcile observed disease dynamics and measured contact
rates of adults and children. More research, in particular, on the
implications for public health, is needed in this direction. Except
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in this region of the parameter space, though, the household
structure does appear in general less relevant for accurate pre-
dictions than the age structure (Fig. 3). Throughout, we have
assumed a 5% accuracy threshold, which is probably optimistic in
an emerging epidemic scenario. However, the same result appears
even more strikingly at less-stringent accuracy requirements, as
the need for household structure drops, whereas the age structure,
at least with heterogeneous and assortative mixing patterns,
remains essential (see Supplementary Discussion, Section 2.2.2
and Supplementary Fig. 16).

At a methodological level this work highlights how, even in a
rather simple context, comparing models that are structurally
different—i.e., differing in the number and biological meaning of
parameters—is not a straightforward and unambiguous process,
and requires making choices on which the conclusions may
fundamentally depend, in particular, what to keep fixed across
models (we argue these should be observable or directly estimable
macro-parameters with a model-independent biological inter-
pretation); how model-specific parameters are derived from these
observables (a process that might unravel numerous uni-
dentifiability issues); and how models’ predictions are compared.

The choices we made here, though arguably natural, are not
unique. For example, we decided to focus only on predictions in
terms of the three selected outputs. Despite being chosen for their
public health relevance, other outputs might be of more interest,
depending on the question addressed. We then only presented
results in terms of aggregate outputs (some comments on age-
stratified final size appear in the Supplementary Discussion,
Sections 2.1.2 and 2.2.2). Furthermore, we also exploited the fact
that model AH includes all the others as submodels and we were
therefore able to compare predictions by studying the divergence
of the outputs of simpler models from the assumed truth of
model AH. Alternative choices would be required in the absence
of a full model. Finally, we chose to keep R0 fixed across all model,
whereas another perhaps even more natural choice would have
been to fix the real-time growth rate r. This would have been
feasible in the case of models involving constant transition rates
between compartments (analytical methods for computing r in
the presence of household can be found, e.g., in8), but the lack of
exact results in the case of the time-since-infection modelling
framework assumed here (see Methods and Supplementary
Methods, Sections 1.1.3, 1.2.9 and 1.4) would have caused sig-
nificant loss in computational efficiency. A brief exploration (only
in the baseline scenario: see Supplementary Discussion, Sec-
tion 2.3.2) leads to similar results, with simpler models appearing
even more likely to be accurate than the constant-R0 comparison
suggests. This is in line with previous results42,47 showing that
ignoring the household structure in the time-since-infection
model used here leads to an overestimation of R0: models with
households, therefore, when forced to match the same R0, need to
compensate with a slightly larger overall infectivity, and this leads
to a larger final size and peak incidence, if instead the models are
calibrated on the same r, no compensation in infectivity is needed
and models with no households are likely more accurate on a
larger region of the parameter space (see Supplementary Dis-
cussion, Section 2.3.2). However, not all aspect of the present
study can be captured by the simple comparison of R0 and r42,47,
given past work is restricted to the exponentially growing phase,
whereas the present study investigates also the late epidemic
behaviour.

Numerous limitations can be highlighted. The first and most
obvious one is the lack of uncertainty: despite models being
stochastic, the comparison is performed by deterministically
mapping parameters from one model to another, thus ignoring
the impact of any randomness, noise or estimation bias on
model observables and outputs; in addition, final predictions are

deterministic. It would not be difficult to compare the full dis-
tributions of model outputs, but more complicated results than
binary acceptance/rejection of simpler models based on arbitrary
thresholds would likely be harder to present and interpret. A
more significant step would be to implement uncertainty in the
model-mapping process. However, the choice we made in this
study was to trade proper uncertainty management for the ability
to perform extensive exploration of the space of observables, as
any formal statistical estimation procedure, especially, if Bayesian
in nature, would have been computationally challenging, and
possibly difficult to automatise. Nevertheless, the role of uncer-
tainty could still be roughly quantified by heuristically consider-
ing confidence intervals around each quantity in Fig. 3 (or similar
figures, for values that do not appear there), given that boundaries
appear to be changing monotonically with parameters: for
example, for confidence intervals (1.5, 2) for R0 and (20%, 40%)
for the SAR, from Fig. 3 one can still conclude the clear need for
age, and the need for household structure in the lowest R0 range
only when SAR >30% and with decreasing and ultimately van-
ishing need as R0 increases (ϕ and ψ are almost irrelevant).

A second limitation is that we only distinguished between
adults and children. Stratification to more than two age groups
could lead to some non-trivial unidentifiability problems in
mapping relative infectivities and susceptibilities from age-
stratified incidence, and would require to rely more extensively
on data about age-specific contact patterns25, which has been
here kept to a minimum to facilitate generalisability to different
population structures. Furthermore, with more parameters,
results would be again more difficult to present, so it was
deemed less relevant in the first instance. However, for practical
purposes, for example, in the case of influenza, it would be
relevant to have at least a third age group, i.e., seniors, who make
up a substantial fraction of developed countries’ population and
typically have lower contact rates25, potentially reduced sus-
ceptibility owing to prior immunity33,36,48 and higher risk of
severe symptoms49.

Third, we assumed a fully susceptible population, thus funda-
mentally restricting this framework to emerging infections.
Changes in mixing and transmission parameters could account
for the limiting cases of perfect (i.e., fully protective) prior
immunity distributed uniformly in the population or affecting
entire age classes, but a more general and realistic case would
require to know how prior immunity is distributed in households.
Alternatively, a mechanism to generate such prior immunity (e.g.,
multiannual simulations run prior to the start of the epidemic)
would be needed, but then results would depend on the details of
such a complex approach.

Fourth, the assumption of constant parameter values, though
essential for analytical results, effectively makes model predic-
tions approximately valid only for fast and relatively mild
infections, influenza being the most natural example. Para-
doxically, though, most new infections for which the emerging
epidemic scenario considered here would be relevant are often
highly pathogenic (e.g., SARS41, MERS50, Ebola51), thus elicit-
ing active interventions or spontaneous behavioural change.
Outbreak response would likely reduce contact rates over time,
(as well as time intervals to notification or hospitalisation52),
causing the actual epidemic to deviate from initial forecasts.
Analytical results are unlikely to be available for non-constant
parameters, but we note that inclusion of assumed changes in
parameters over time owing to explored interventions would
not compromise the computational efficiency of this approach
(they would affect only forward predictions, not the mapping
procedure itself—see Methods).

Fundamentally, though, predictions in the presence of inter-
ventions are not the main focus of this analysis for two reasons:
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first, the choice of which interventions to explore would strongly
shape the model selection process; and second, the models con-
sidered here are arguably too simple for most realistic interven-
tions. To study interventions in specific scenarios, more tailored
models and more statistically principled methods for robust
uncertainty quantification should be used. structures on epidemic
predictions in the absence of interventions, and should be viewed
as complementary to these other methods. However, such early
predictions would still be highly informative in assessing the
impact of interventions (or additional impact after estimates
became available) by comparison with the epidemic outcome
actually observed. Finally, note that potential factors playing a
role only under certain intervention scenarios would not be
useful to tease apart models compared in the absence of such
interventions; however, this is not a limitation of the current
methodology, but rather a typical out-of-sample prediction
problem17.

Fifth, the assumption of random mixing within the household
could also be questionable in certain contexts. The data used for
age-specific mixing patterns25 suggest a focus on respiratory
infections, for which within-household random mixing appears
reasonable53, but applications to other directly transmissible
infections might require different assumptions. Extensions to
within-household age-stratified mixing would be possible, but
would require estimates dependent on the household composi-
tion (see Supplementary Methods, Section 1.2.3), or potentially
even disease-specific (e.g., school-age children less at risk to
Ebola54, possibly because less likely to care for sick individuals55)
and hence likely unavailable and hard to collect prospectively. But
even age-stratified mixing would fall short of other potentially
important heterogeneities in within-household contact patterns,
e.g., specific family members taking on the responsibility of caring
for relatives infected with Ebola55.

Sixth, we have focussed on age and households only. Other
forms of social structure exist, which in some cases could be more
relevant and even reasonably well informed by data (e.g., hospi-
tal56 or funeral transmission57). In addition, we have ignored any
network, patch or explicit spatial structure, or other even more
complex models, owing to scarcity in data, analytical results
or both.

Finally, we have assumed the presence of a clearly defined
exponentially growing phase. This was not the case for MERS
and SARS, owing to small outbreak sizes and/or strongly spatial
and localised (hospital-based) spread56, thus questioning the
reliability of estimates of R0 and other parameters used here,
and hence compromising the applicability of our mapping
procedure.

Despite all limitations, though, in the restricted context of an
emerging infection that is fast enough or not too severe (e.g.,
influenza—or Zika, though social mixing patterns are likely less
relevant for vector-borne diseases) our comparison can inform a
useful trade-off between model simplicity and prediction accu-
racy. Improvements are certainly possible, but we believe the
general approach proposed here should be adopted for comparing
models and shed light on how structural model components
affect predictions. In the particular case of age and household
structure, substantial information is still needed early on in an
outbreak of a new emerging infection for an appropriate, scien-
tifically driven model choice. Nevertheless, the present analysis
suggests that, in many real-world scenarios, households give
limited additional accuracy in overall descriptors of epidemic
severity for high cost in terms of model complexity and, despite
the risk of slightly underestimating the epidemic severity, are
probably worth neglecting in the first instance, when limited
information is available and rapid predictions are needed.

Methods
Aspects common to all models. All models share the same stochastic, time-since-
infection transmission process8,58: each infected individual makes infectious con-
tacts at a rate described by a function βω(τ), where the total infectivity β depends
on the ages of the infector and the other contacted person, as well as on the
environment (i.e., within or outside the household), and the infectious contact
interval distribution ω(τ)59 is a function of the time since infection τ, normalised to
integrate to 1, with mean TG (often referred to as the generation time37) and is the
same between every pair of individuals, irrespective of age and environment (see
Supplementary Methods, Section 1.1.2). After infection, individuals cannot be
infected again.

The dynamics of this model, at least in its deterministic form and in the absence
of household structure, could be described in terms of a renewal-type integral
equation8,58, with β= R0, but we do not present it here because no dynamical
equations are solved in this work. Instead, for all models, the observables defined
during the exponentially growing phase and used for the mapping (i.e., R0, the
incidence ratio of adults and children and the SAR), as well as the final size z, are
computed directly using available mathematical results, whereas the peak incidence
π and time to the peak t are computed as the average of 100 individual-based
stochastic simulations in a population of 100,000 individuals. The epidemics are
started with n0= 50 initial cases, to avoid stochastic extinction and minimise the
effect of random delays at the start of the epidemic, and are synchronised at
the peak.

Inspired by influenza, we choose a Γ-shaped infectious contact interval
distribution ω(τ) with mean TG= 2.85 days and shape parameter α= 98,32.
However, this particular choice does not affect the quantities calculated analytically
(observables and final size), which are all time-integrated quantities, and hence
bears no influence on the mapping procedure, although it does affect the peak
incidence π and the time to the peak t. However, to allow generalisations to other
infections, the time to the peak is rescaled by a factor TG, thus approximately
measuring the average number of generations to the peak.

Although the stochastic simulations are computationally intensive, the forward
problem of computing observables and outputs for each model is relatively
inexpensive even in the absence of analytical results, as it needs to be performed
once for each combination of basic model parameters. Instead, the inverse problem
of exploring parameter spaces at fixed observables is in general computationally
expensive. In the presence of explicit expressions for the observables, which is
rarely the case, one could simply invert them to map parameters directly from one
model to another42. In the absence of explicit expressions, iterative methods must
be used (see Supplementary Methods, Section 1.1.1), which require solving the
forward problem multiple times and might become prohibitive for computationally
costly simulations. The efficiency of our approach stems from the fact that the
context we have focussed on, though rather specific, is rich in analytical results: in
particular, thanks to the latest methodological advances in the computation of R0
for households models47,60, the observables of all models can be obtained without
having to integrate the system dynamics. Therefore, the mapping procedure could
be performed on all points of a regular grid in the parameter space of model AH
(Figs. 1, 2a and 3) that is fine enough to suggest our conclusions, though numerical
in nature, hold throughout the explored portion of space.

Model AH (age and households). Model AH is parameterised as follows. The
infection spread between adults (a) and children (c) in each environment x (in the
community, x= g for “global”; or in the household, x= h) is parameterised in
terms of a next-generation matrix (NGM) of the form

Kx ¼
kxaa kxac
kxca kxcc

� �
¼ βx

γx � Nx
c

Nx
a

1� θxð Þϕ
ψ 1� θxð Þ Nx

c
Nx

a
ψθxϕ

0
@

1
A ð1Þ

(derivation in Supplementary Methods, Sections 1.1.4 and 1.1.5), where kxij gives the
average number of infectious contacts an individual in age-class j makes with
individuals in age-class i in environment x. In the initial phase of the epidemic all
the infectious contacts kgij in the community lead to real infections. In a household,

instead, some of the khij infectious contacts hit previously infected or immune cases.
The NGM Kx incorporates simultaneously both contact and transmission

elements. The contact patterns are given by: γx, the ratio of the numbers of daily
contacts an adult and a child have in environment x; Nx

a and Nx
c , the numbers of

adults and children in environment x, respectively; and θx, the assortativity of
children in x, defined somewhat non-standardly as the fraction of contacts that a
child makes with other children in x and ranging from 0 (fully antiassortative
mixing) to 1 (fully assortative mixing). Random mixing is achieved for θx equal to
the fraction of other children in the environment. Within-household mixing is
always assumed to be random (note that this requires θh to depend on the
household composition). We assume frequency-dependent contact patterns in the
households, so that the infectious contacts khij are distributed among all (other)
cases of age-class i; that is, in the simple case of all identical individuals, the person-
to-person contact rate in a household of size n scales as 1 ∕(n− 1)—see
Supplementary Methods, Section 1.2.3, for precise age-stratified details.
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The transmission component of the model is parameterised in terms of ψ and ϕ,
which represent respectively the relative susceptibility and infectivity of children
versus adults, and total infectivities βx. In practice, the within-household total
infectivity βh is re-parameterised in terms of paa, defined as the probability that a
randomly selected susceptible would be infected directly by a single initial
household case, in a randomly selected household with at least two individuals,
when adults and children have the same susceptibility and infectivity (ψ= ϕ= 1). In
other words, paa is obtained by first computing pn= 1− exp(−βh ∕(n− 1)) and then
averaging pn over the size distribution of a randomly selected household with at least
two members. Other similar choices would have been possible, as long as they do
not depend on other parameters we are exploring independently, like ψ or ϕ. In the
Supplementary Discussion (Sections 2.1.1 and 2.2.1) we comment on more
aggregate, but more intuitive epidemiological quantities, such as the SAR or the
fraction of total transmission occurring in households. The latter is measured as
R0 � Rg

0

� �
=R0, where R

g
0 is the dominant eigenvalue of Kg, and reveals that, at least

for the H1N1 2009 pandemic influenza in Great Britain, approximately a third of
the total transmission occurs in household (a rule of thumb suggested before8,9,32;
see Supplementary Discussion, Sections 2.1.1 and 2.2.1).

Numerical values are as follows. At baseline, the population structure is that of
Great Britain61, with a fraction Fc= 22.73% of the population consisting of
children and a mean household size χ= 2.35 (see Supplementary Methods,
Section 1.6.1, and Supplementary Tables 1–4). Other social structures (South
Africa: Fc = 45.92%, χ = 4.27; Sierra Leone: Fc = 53.81%, χ = 5.85) are explored in
the Supplementary Methods, Section 1.6.2, Supplementary Tables 4–7 and
Supplementary Discussion, Section 2.3.4. At baseline, contact patterns assume
random mixing: γh= γg= 1 (adults and children have the same contact rates
everywhere) and θg= Fc= 22.73%, the fraction of children in the population.
Parameters for UK-like contact patterns, characterised by strongly assortative
mixing, are estimated from the POLYMOD study25 to be γh= γg= 0.75 and θg=
58% (see Supplementary Methods, Section 1.6.3, and Supplementary Table 8), and
are used also for other social structures (in the absence of contact pattern data for
South Africa and Sierra Leone). Intermediate contact patterns are explored in the
Supplementary Discussion (Section 2.3.1).

The observables for model AH are derived as follows. The basic reproduction
number R0 is computed using a multitype extension of the technique developed
in60 that leads to the construction of a suitable matrix M (details in the
Supplementary Methods, Section 1.2.4), the dominant eigenvalue of which is R0.

FromM it is also possible to reconstruct the vector vAH ¼ va; vcð Þ> (superscript ⊤

denotes transposition, to give a column vector), whose components are the
fractions of adults and children in each generation (vAH is constant during the
exponentially growing phase), correctly computed by taking into account both
household and global transmission (Supplementary Methods, Section 1.2.5).
Primary cases in households are infected globally, so arise in proportions given by

the components of the vector vAHh ¼ vah; v
c
h

� �>
, obtained by renormalizing KgvAH

so that its components sum to 1.
The SAR is defined as the fraction of initial susceptibles that are infected in a

within-household outbreak started by a single individual in a typical household
infected during the exponentially growing phase. Its computation is not trivial,
because the distribution of infected households during the exponentially growing
phase is affected by the age-dependent between-household transmission: if children
are more likely to be infected in the population, larger households are also more
likely to be infected because they tend to contain more children. We denote by
πan

� �
and πcn

� �
the size distributions of the household of a randomly selected adult

and child, respectively, and by μa and μc the average epidemic sizes in the
household of a randomly chosen initial adult or child case, respectively. Then the
average size of a household epidemic during the exponentially growing phase is
μAH ¼ vahμ

a þ vchμ
c. The household SAR is then computed as (μAH− 1)∕(χv− 1),

where χv is the average size of a household infected in that phase (see
Supplementary Methods, Section 1.2.6).

Finally, the outputs for model AH are derived as follows. The average final size
z, in the asymptotic limit of an infinite number of households, is computed using
the methodology described in ref. 30 (Supplementary Methods, Section 1.2.7).
The peak incidence and the time to the peak are obtained from individual-based
stochastic simulations in a synthetic population with the required social structure
and contact patterns (Supplementary Methods, Sections 1.2.8 and 1.5). To
minimise the convergence time from the initial conditions to the stable proportions
of cases of each type during the exponentially growing phase, the n0 initial cases are
all chosen as primary cases in different households and consist of adults and
children in proportions given by vAHh .

Further details about model AH can be found in the Supplementary Methods,
Section 1.2.

Model A (age). Model A is parameterised as follows. The spread between adults
and children in model A is described by KA, a NGM of the same form as the one in
Eq. (1), but with elements indexed by A (there is only one environment). The
contact patterns are given by γA, the ratio of the overall number of contacts an
adult and a child have, and the assortativity of children θA. The transmission
component of the model is parameterised in terms of an overall transmission
parameter βA and the relative susceptibility and infectivity of children versus

adults, ψ and ϕ, which are thought of as biological parameters ideally accurately
measured via detailed household studies, and are therefore assumed to be the same
as in model AH. The presence of four parameters, two of which coincide by
construction with those of model AH, makes model A both more flexible and more
tightly linked to model AH than to model H (two parameters only). This partly
explains why model A is better than model H at mirroring the outputs of model
AH in Fig. 1.

Numerical values are inherited by the social structure and mixing patterns of
model AH. At baseline (Great Britain61) the fraction of children is 22.73% and
adults and children have the same contact rate (γA= 1). UK-like contact patterns
are given by γA= 0.75. The assortativity θA is estimated in the mapping procedure
(see below).

In terms of observables, the basic reproduction number R0 in model A is
computed as the dominant eigenvalue of the NGM KA, and the corresponding
eigenvector vA, normalised to have components summing to 1, represents the
fraction of adults and children in each generation58.

In terms of outputs, the final size is computed using standard methods5

(Supplementary Methods, Section 1.3). The peak incidence and the time to the
peak are again computed using the individual-based stochastic simulation, with no
household structure and starting with n0 initially cases, consisting of adults and
children in proportions given by the components of the vector vA (to start as close
as possible to the stable proportions of adults and children during the exponentially
growing phase).

Further details about model A can be found in the Supplementary Methods,
Section 1.3.

Model H (households). The pure households model is parameterised in terms of a
global total infectivity βHg and a within-household total infectivity βHh , representing,
respectively, the average number of infectious contacts an infective makes in the
community and in their household, during their entire infection period. Early on in
the epidemic, every infectious contact in the community leads to a new infection.
Frequency-dependent contact patterns are assumed within the household, so that
the number of infectious contacts toward a single member of a household of size n
is βHh =ðn� 1Þ.

Numerical values are again inherited by the household structure of model AH.
At baseline, the household size distribution is that of Great Britain, with a mean
household size χ= 2.35 (see Supplementary Tables 1–3). Other social structures are
also considered (South Africa: χ= 4.27; Sierra Leone: χ= 5.85).

The computation of R0 for model H follows the method of47,60

(Supplementary Methods, Section 1.4). Similarly to model AH, the SAR is
computed as (μH− 1)∕(χ− 1), where μH is the average size of a within-household
epidemic, computed using standard methods for small populations5,62 and χ is
the average household size. However, care needs to be taken in the choice of the
correct household size distribution (see below).

The final size is computed using standard analytical techniques28, and the peak
incidence and time to the peak are obtained from stochastic simulations starting
with n0 cases, all primary cases in different households, divided in adults and
children according to the components of vAHh (to start as close as possible to the
stable household size distribution of the exponentially growing phase).

Further details about model H can be found in the Supplementary Methods,
Section 1.4.

Model U (unstructured). Given the temporal details of the infection process are
fixed by the infectious contact interval distribution ω(τ), the model with pure
homogeneous mixing has only one parameter β= R0. The final size is computed
standardly as the only positive solution z of 1� z ¼ e�R0z 5, whereas the peak
incidence and the time to the peak are obtained via simulations starting with n0
initial cases.

Model-mapping procedure. For each combination of basic parameters for the
assumed-true model AH (ψ, ϕ, paa, from which βh is derived, and βg—as well as
fixed θg, γg, and γh—we calculate the true epidemic observables R0, vAH, and SAR,
as described above. In practice, the parameter space in all figures is explored at
constant R0, so that for each choice of paa, ψ, and ϕ we compute the value of βg
required to achieve a desired R0. These observables are then used to map the
parameters for the other models as follows.

We start by mapping model AH to model A. Parameters ψ and ϕ in model A
are assumed to be known and the same as in model AH. Then θA is ideally chosen
to match vAH. Unfortunately, there are parameter values for which no suitable
value of θA ∈ [0, 1] can be found (see Supplementary Methods, Section 1.3). This is
often the case for ψ < 1 (Supplementary Discussion, Section 2.3.3). The overall
infectivity βA is then chosen to match R0. There are no households in model A, so
the SAR is not used.

To map model AH to model H, first βHh is computed to match the observed
household SAR. The correct household size distribution to use cannot be computed
from model H alone, because the distribution of infected households during the
exponentially growing phase is affected by the age-dependent transmission as
described for model AH. In real scenarios, the within-household infectivity is
measured from household studies. In such surveys, the recruitment of households
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is subject to many constraints, but it ideally monitors a representative portion of
the population of infected households. If model AH were an exact description of
reality, then households would be recruited with size distribution πvn

� �
, where, for

each n, πvn ¼ vahπ
a
n þ vchπ

c
n. In practice, instead of matching the same SAR as in

model AH, we equivalently compute βHh by imposing μH = μAH, with household
size distribution πvn

� �
(and hence χ= χv). The global infectivity βHg is then

computed to match R0. Apart from appearing in the computation of the correct
household size distribution for matching the SAR (rather than obtaining such a
distribution from a random sample of infected households), vAH is not
explicitly used.

Finally, the mapping from model AH to model U is trivial, as model U is only
parameterised in terms of R0 and the other observables are not used.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Household data for Great Britain (England, Wales and Scotland) are available from 2001
UK census data, table number C084461; source: Office for National Statistics licensed
under the Open Government Licence v.1.0. The table can be downloaded from https://
doi.org/10.5281/zenodo.3629873 or https://github.com/lorenzo-pellis/model-mapping,
or can be requested directly from the Office for National Statistics. UK social contact data
are obtained from the POLYMOD study25 (raw data available from the authors upon
request). Household data for Sierra Leone are available from the 2008 Sierra Leone
Demographic and Health Survey63 and household data for South Africa from the 1998
South Africa Demographic and Health Survey64. Both can be requested from the
Demographic and Health Surveys Program65 (free registration). Raw data are only used
to generate Supplementary Tables 1, 4, 6 and 8 (see Supplementary Information), from
which all other tables, analyses and figures are generated.

Code availability
Numerical codes, output files and figures have been archived at the time of publication
with https://doi.org/10.5281/zenodo.3629873. Potential improvements or corrections will
be made available at https://github.com/lorenzo-pellis/model-mapping. The main code to
perform the model mapping is written in MATLAB and has been tested on both R2016a
on Mac OSX El Capitan and R2019a on Microsoft Windows 7 Professional (Service Pack
1). The individual-based stochastic simulation is written in C++ and source codes are
freely available.

Received: 1 May 2018; Accepted: 20 December 2019;

References
1. Ferguson, N. M. et al. Planning for smallpox outbreaks. Nature 425, 681–685

(2003).
2. Riley, S. Large-scale spatial-transmission models of infectious disease. Science

316, 1298–1301 (2007).
3. Baguelin, M. et al. Vaccination against pandemic influenza A/H1N1v

in England: a real-time economic evaluation. Vaccine 28, 2370–2384
(2010).

4. Flasche, S. et al. Different transmission patterns in the early stages of the
influenza A(H1N1)v pandemic: a comparative analysis of 12 European
countries. Epidemics 3, 125–133 (2011).

5. Andersson, H. & Britton, T. Stochastic epidemic models and their statistical
analysis (Springer, 2000).

6. Keeling, M.J. & Rohani, P.Modeling infectious diseases in humans and animals
(Princeton University Press, 2008).

7. Danon, L. et al. Networks and the epidemiology of infectious disease.
Interdiscip. Perspect. Infect. Dis. 2011, 284909 (2011).

8. Pellis, L., Ferguson, N. M. & Fraser, C. Epidemic growth rate and household
reproduction number in communities of households, schools and workplaces.
J. Math. Biol. 63, 691–734 (2010).

9. Ferguson, N. M. et al. Strategies for mitigating an influenza pandemic. Nature
442, 448–452 (2006).

10. Halloran, M. E. et al. Modeling targeted layered containment of an influenza
pandemic in the United States. Proc. Natl. Acad. Sci. USA 105, 4639–4644
(2008).

11. Ajelli, M. et al. Comparing large-scale computational approaches to epidemic
modeling: agent-based versus structured metapopulation models. BMC Infect.
Dis. 10, 1 (2010).

12. Ajelli, M., Merler, S., Pugliese, A. & Rizzo, C. Model predictions and
evaluation of possible control strategies for the 2009 A/H1N1v influenza
pandemic in Italy. Epidemiol. Infect. 139, 68–79 (2011).

13. Shaman, J. & Karspeck, A. Forecasting seasonal outbreaks of influenza.
Proceed. Natl. Acad. Sci. 109, 20425–20430 (2012).

14. Shaman, J., Karspeck, A., Yang, W., Tamerius, J. & Lipsitch, M. Real-time
influenza forecasts during the 2012 - 2013 season. Nat. Commun. 4, 2837
(2013).

15. Tebaldi, C. & Knutti, R. The use of the multi-model ensemble in probabilistic
climate projections. Philos. Trans. R. Soc. A 365, 2053–2075 (2007).

16. Lindström, T., Tildesley, M. & Webb, C. A Bayesian ensemble approach for
epidemiological projections. PLoS Comput. Biol. 11, 1–30 (2015).

17. Webb, C. T. et al. Ensemble modelling and structured decision-making to
support emergency disease management. Prev. Vet. Med. 138, 124–133 (2017).

18. Hollingsworth, T. D. & Medley, G. F. Learning from multi-model comparisons:
collaboration leads to insights, but limitations remain. Epidemics 18, 1–3 (2017).

19. Eaton, J. W. et al. HIV treatment as prevention: systematic comparison of
mathematical models of the potential impact of antiretroviral therapy on HIV
incidence in South Africa. PLoS Med. 9, e1001245 (2012).

20. Smith, T. et al. Ensemble modeling of the likely public health impact of a pre-
erythrocytic malaria vaccine. PLoS Med. 9, e1001157 (2012).

21. Malaria Policy Advisory Committee Meeting. Consensus modelling evidence
to support the design of mass drug administration programmes.World Health
Organization 1–20 (2015).

22. Gerberry, D. J. An exact approach to calibrating infectious disease models to
surveillance data: the case of hiv and hsv-2. Math. Biosci. Eng. 15, 153–179
(2018).

23. Smith, M. E. et al. Predicting lymphatic filariasis transmission and elimination
dynamics using a multi-model ensemble framework. Epidemics 18, 16–28 (2017).

24. Wallinga, J., Teunis, P. & Kretzschmar, M. Using data on social contacts to
estimate age-specific transmission parameters for respiratory-spread
infectious agents. Am. J. Epidemiol. 164, 936–944 (2006).

25. Mossong, J. et al. Social contacts and mixing patterns relevant to the spread of
infectious diseases. PLoS Med. 5, e74 (2008).

26. Gregson, S. et al. Sexual mixing patterns and sex-differentials in teenage
exposure to HIV infection in rural Zimbabwe. Lancet 359, 1896–1903 (2002).

27. Eames, K. T. D., Tilston, N. L., Brooks-Pollock, E. & Edmunds, W. J.
Measured dynamic social contact patterns explain the spread of H1N1v
influenza. PLoS Comput, Biol. 8, 1–8 (2012).

28. Ball, F. G. & Neal, P. A general model for stochastic SIR epidemics with two
levels of mixing. Math. Biosci. 180, 73–102 (2002).

29. House, T. & Keeling, M. J. Deterministic epidemic models with explicit
household structure. Math. Biosci. 213, 29–39 (2008).

30. Ball, F., Britton, T. & Sirl, D. Household epidemic models with varying
infection response. J. Math. Biol. 63, 309–337 (2010).

31. Simpson, R. E. H. Infectiousness of communicable diseases in the household
(measles, chickenpox, and mumps). Lancet 2, 549–554 (1952).

32. Fraser, C. Estimating individual and household reproduction numbers in an
emerging epidemic. PLoS ONE 2, e758 (2007).

33. Cauchemez, S. et al. Household transmission of 2009 pandemic influenza A
(H1N1) virus in the United States. N. Engl. J. Med. 361, 2619–2627 (2009).

34. Fraser, C., Cummings, D. a. T., Klinkenberg, D., Burke, D. S. & Ferguson, N.
M. Influenza transmission in households during the 1918 pandemic. Am. J.
Epidemiol. 174, 505–514 (2011).

35. House, T. et al. Estimation of outbreak severity and transmissibility: influenza
A (H1N1) pdm09 in households. BMC Med. 10, 117 (2012).

36. Lau, L. L. et al. Household transmission of 2009 pandemic influenza A
(H1N1): a systematic review and meta-analysis. Epidemiology 23, 531 (2012).

37. Svensson, A. A note on generation times in epidemic models. Math. Biosci.
208, 300–311 (2007).

38. Andreasen, V. The final size of an epidemic and its relation to the basic
reproduction number. Bull. Math. Biol. 73, 2305–2321 (2011).

39. Miller, J. Epidemic size and probability in populations with heterogeneous
infectivity and susceptibility. Phys. Rev. E 76, 1–4 (2007).

40. Cowling, B. J. et al. Comparative epidemiology of pandemic and seasonal
influenza A in households. N. Engl. J. Med. 362, 2175–2184 (2010).

41. World Health Organization et al. Consensus document on the epidemiology
of severe acute respiratory syndrome (SARS). (World Health Organization,
2003).

42. Trapman, P. et al. Inferring R0 in emerging epidemics - the effect of common
population structure is small. J. R. Soc. Interface 13, 20160288 (2016).

43. Knutti, R., Furrer, R., Tebaldi, C., Cermak, J. & Meehl, G. A. Challenges in
combining projections from multiple climate models. J. Climate 23,
2739–2758 (2010).

44. Probert, W. J. et al. Decision-making for foot-and-mouth disease control:
objectives matter. Epidemics 15, 10–19 (2016).

45. Fraser, C. et al. Pandemic potential of a strain of influenza A (H1N1): early
findings. Science 324, 1557–1561 (2009).

46. Dorigatti, I., Cauchemez, S., Pugliese, A. & Ferguson, N. M. A new approach
to characterising infectious disease transmission dynamics from sentinel
surveillance: application to the Italian 2009–2010 A/H1N1 influenza
pandemic. Epidemics 4, 9–21 (2012).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14229-4

10 NATURE COMMUNICATIONS |          (2020) 11:906 | https://doi.org/10.1038/s41467-019-14229-4 | www.nature.com/naturecommunications

https://doi.org/10.5281/zenodo.3629873
https://doi.org/10.5281/zenodo.3629873
https://github.com/lorenzo-pellis/model-mapping
https://doi.org/10.5281/zenodo.3629873
https://github.com/lorenzo-pellis/model-mapping
www.nature.com/naturecommunications


47. Ball, F., Pellis, L. & Trapman, P. Reproduction numbers for epidemic models
with households and other social structures II: comparisons and implications
for vaccination. Math. Biosci. 274, 108–139 (2016).

48. Yang, W., Lipsitch, M. & Shaman, J. Inference of seasonal and pandemic
influenza transmission dynamics. Proceed. Natl. Acad. Sci. 112, 201415012 (2015).

49. Public Health England. Flu Plan Winter 2017/18 (2017).
50. World Health Organization et al. WHO MERS-CoV global summary and risk

assessment. Technical Report (2016).
51. Van Kerkhove, M. D., Bento, A. I., Mills, H. L., Ferguson, N. M. & Donnelly,

C. A. A review of epidemiological parameters from Ebola outbreaks to inform
early public health decision-making. Sci. Data 2, 1–10 (2015).

52. Ebola, W. H. O., Team, R., March, O. & August, O. Ebola Virus disease in
West Africa - the first 9 months of the epidemic and forward projections. N.
Engl. J. Med. 371, 1481–1495 (2014).

53. Goeyvaerts, N. et al. Household members do not contact each other at random:
implications for infectious disease modelling. BioRxiv 285, 220202 (2017).

54. Bower, H. et al. Exposure-specific and age-specific attack rates for Ebola virus
disease in Ebola-affected households, Sierra Leone. Emerg. Infect. Dis. 22,
1403–1411 (2016).

55. Dowell, S. F. et al. Transmission of Ebola hemorrhagic fever: a study of risk
factors in family members, Kikwit, Democratic Republic of the Congo, 1995. J.
Infect. Dis. 179, 87–91 (1999).

56. Riley, S. et al. Transmission dynamics of the etiological agent of SARS in Hong
Kong: impact of public health interventions. Science 300, 1961–1966 (2003).

57. Agua-Agum, J. et al. Exposure patterns driving Ebola transmission in West
Africa: a retrospective observational study. PLoS Med. 13, 1–23 (2016).

58. Diekmann, O., Heesterbeek, H. & Britton, T. Mathematical tools for
understanding infectious disease dynamics (Princeton University Press, 2012).

59. Kenah, E. Contact intervals, survival analysis of epidemic data, and estimation
of R0. Biostatistics 12, 548–566 (2011).

60. Pellis, L., Ball, F. G. & Trapman, P. Reproduction numbers for epidemic
models with households and other social structures. I. Definition and
calculation of R0. Math. Biosci. 235, 85–97 (2012).

61. Office for National Statistics. Table C0844, UK census (2001). Available at:
https://github.com/lorenzo-pellis/model-mapping.

62. House, T., Ross, J. V. & Sirl, D. How big is an outbreak likely to be? Methods
for epidemic final-size calculation. Proc. R. Soc. A Math. Phys. Eng. Sci. 469,
20120436 (2013).

63. Statistics Sierra Leone (SSL) and ICF Macro. Sierra Leone Demographic and
Health Survey 2008 [Dataset]. SLPR51FL.SAV. Calverton, Maryland, USA:
SSL and ICF Macro [Producers]. ICF [Distributor] (2009).

64. Department of Health/South Africa and Macro International. South Africa
De- mographic and Health Survey 1998 [Dataset]. ZAPR31FL.SAV. Pretoria,
South Africa: Department of Health/South Africa [Producer]. ICF
[Distributor] (2002).

65. ICF. The DHS Program. Funded by USAID. https://dhsprogram.com/
[Accessed January, 22, 2020].

Acknowledgements
We acknowledge the MRC Methodology Grant G0800596. L.P. acknowledges the EPSRC
(grant EP/J002437/1) and the Wellcome Trust and Royal Society (grant 202562/Z/16/Z);

S.C. acknowledges funding from the NIGMS MIDAS initiative, the French Government’s
Investissement d’Avenir program, Laboratoire d’Excellence “Integrative Biology of
Emerging Infectious Diseases” (grant number ANR-10-LABX-62-IBEID), the AXA
Research Fund and Grand Prix Robert Debré; and N.M.F. acknowledges Centre funding
from the MRC and DFID, Health Protection Research Unit funding from NIHR,
Institute funding from Community Jameel and grant funding from the Bill and Melinda
Gates Foundation. We also thank Niel Hens for support with the analysis of the
POLYMOD data, the members of the Zeeman Institute at the University of Warwick for
useful discussions, and the anonymous reviewers for their insightful and constructive
comments.

Author contributions
L.P., S.C., N.M.F., C.F. designed the study. L.P. developed the mathematical methods and
numerical codes, performed the analyses and wrote the paper and supplementary
material. S.C., N.M.F. and C.F. commented on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
019-14229-4.

Correspondence and requests for materials should be addressed to L.P.

Peer review information Nature Communications thanks Tom Britton and Matthew
Ferrari for their contribution to the peer review of this work. Peer reviewer reports are
available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-14229-4 ARTICLE

NATURE COMMUNICATIONS |          (2020) 11:906 | https://doi.org/10.1038/s41467-019-14229-4 | www.nature.com/naturecommunications 11

https://github.com/lorenzo-pellis/model-mapping
https://dhsprogram.com/
https://doi.org/10.1038/s41467-019-14229-4
https://doi.org/10.1038/s41467-019-14229-4
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Systematic selection between age and household structure for models aimed at emerging epidemic�predictions
	Results
	Overview
	Baseline scenario
	Sensitivity analysis
	Rule of thumb

	Discussion
	Methods
	Aspects common to all models
	Model AH (age and households)
	Model A (age)
	Model H (households)
	Model U (unstructured)
	Model-mapping procedure
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




