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Abstract
Autism is a complex neurodevelopmental condition with substantial phenotypic, biological, and etiologic
heterogeneity. It remains a challenge to identify biomarkers to stratify autism into replicable cognitive or biological
subtypes. Here, we aim to introduce a novel methodological framework for parsing neuroanatomical subtypes within
a large cohort of individuals with autism. We used cortical thickness (CT) in a large and well-characterized sample of
316 participants with autism (88 female, age mean: 17.2 ± 5.7) and 206 with neurotypical development (79 female, age
mean: 17.5 ± 6.1) aged 6–31 years across six sites from the EU-AIMS multi-center Longitudinal European Autism
Project. Five biologically based putative subtypes were derived using normative modeling of CT and spectral
clustering. Three of these clusters showed relatively widespread decreased CT and two showed relatively increased CT.
These subtypes showed morphometric differences from one another, providing a potential explanation for
inconsistent case–control findings in autism, and loaded differentially and more strongly onto symptoms and
polygenic risk, indicating a dilution of clinical effects across heterogeneous cohorts. Our results provide an important
step towards parsing the heterogeneous neurobiology of autism.

Introduction
Autism is a neurodevelopmental condition marked by

impairments in social communication and interaction,
alongside restricted and repetitive behaviors and sensory
atypicalities1. It is still diagnosed based on behavioral
observations and no validated biomarkers are available
which could support diagnosis, stratification, or clinical
management2. Efforts to identify replicable cognitive
and biological substrates of the condition have been
hampered by the pronounced biological, developmental,
and clinical heterogeneity of individuals with autism3–7.
Standard case–control analytical approaches ignore such

heterogeneity and assume homogeneous diagnostic enti-
ties8. Therefore, case–control findings have been highly
inconsistent for most neuroimaging derived measures9–13,
for instance, with some studies reporting increases in
cortical thickness (CT)14,15, others decreases16 and others
no significant findings, even within the same brain
regions. Moreover, the size of reported case–control
effects has decreased over time as diagnostic procedures
have become more inclusive thereby sampling a broader
range of the clinical phenotype17,18, causing some to
question the notion of biological heterogeneity in aut-
ism18. Case–control approaches are useful when there are
consistent and well-defined alterations in the clinical
population. However, the case–control paradigm cannot
by definition unravel autism-related heterogeneity in the
absence of such consistent alterations. In other words,
inconclusive neuroimaging findings are likely the result
of such case–control comparisons diluting consistent
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alterations within more biologically homogenous sub-
groups of individuals with autism. Thus, the identification
of meaningful subtypes within autism is of utmost
importance to facilitate biomarker discovery.
Despite considerable efforts in identifying biologically

significant subtypes in autism19–28, no consensus has been
reached, again due to the high phenotypic and neuro-
biological variation in autism. Most approaches to strati-
fying autism have employed clustering algorithms for
symptomatology29–38. However, there is no guarantee that
such behaviorally-defined clusters will map cleanly onto
distinct biological mechanisms or outcomes. Moreover,
the biologically-defined clustering approaches mostly
follow the description of the condition on the group level
and recapitulate the case–control paradigm, which often
fails to fully capture the complexity of inter-individual
alterations5,27,39. Thus, the first step towards subtyping
autism is to chart the heterogeneity by moving away from
the “average patient”, permitting inferences at the indivi-
dual level. Normative modeling is one data-driven
approach that provides a means to achieve this. We
have previously applied normative modeling to autism to
map neuroanatomical variability at the level of the indi-
vidual40. This analysis showed highly individualized pat-
terns of atypicality across nearly the entire cortex in
different individuals. However, in order to better under-
stand the nature of the underlying alterations and to move
toward clinically useful stratifications of individuals with
autism, it is necessary to go further. Specifically, it is
necessary to summarize these complex and highly indi-
vidualized patterns of deviation into a small number of
interpretable neurobiological subtypes. To do so, we build
on our previous work that used normative modeling40

further to find subtypes within the cohort. Here, we
achieve this objective by combining normative modeling
with clustering, which is appealing for three reasons: first,
since the normative range is defined with respect to a
supervised mapping between biology and covariates
relevant to the disorder (while also accounting for nui-
sance variation), this allows the clustering algorithm to
focus on clinically relevant variation. In contrast, clus-
tering algorithms that operate in a purely unsupervised
manner will likely just detect nuisance variation, which is
usually of a larger magnitude than clinically relevant
effects. Second, the normative model rescales different
variables to a common (normative) reference range,
yielding clusters that are more interpretable since they are
defined with respect to a neurotypical reference group.
Third, since the normative model can be learned on very
large samples, this allows us to capitalize on big data
cohorts to better capture the heterogeneity within clinical
cohorts.
We apply this approach to a large and comprehensively

characterized autism cohort recruited as part of the

EU-AIMS Longitudinal European Autism Project
(LEAP)41, which captures a broad range of the autism
phenotype, along with extensive clinical phenotyping,
multiple neurobiological assessments, and genetics. While
normative modeling can predict various brain measures,
here we focused on cortical thickness (CT) because firstly,
alterations in CT have been extensively reported in dif-
ferent autism studies and secondly, it is a reliable measure
of cortical morphology in autism14,16,42–47. Similar to
other applications in neuroimaging48–50, we extensively
validate the derived clusters. Specifically, we evaluate their
stability, out-of-sample prediction capability, and test for
associations with clinical, demographic, and genetic
measures. We show that with the right analytical
approaches, biological heterogeneity is quantifiable and
can be used to derive a stratification of individuals where
heterogeneity in the clinical presentation is reduced.

Methods
We included 206 neurotypical (NT) (79 female, aged

17.5 ± 6.1 years) and 316 participants with autism (88
female, aged 17.2 ± 5.7) including mild intellectual dis-
ability participants across 6 sites from the EU-AIMS
LEAP sample41. All participants were scanned with a T1-
weighted imaging protocol, and FreeSurfer (v5.3)51 was
used to estimate measures of regional CT. This sample
has been described in detail previously41 as have the
normative models that form the basis for this work40.
However, we briefly summarize the clinical recruitment
procedures, sample characteristics, processing steps, and
procedures for normative modeling in the Supplementary
Methods and Supplementary Table S1.
A methodological overview of our approach is shown in

Supplementary Fig. S1 and full details are provided in the
Supplementary Methods. Briefly, for each participant, we
estimated normative models to predict vertex-wise cor-
tical thickness as a function of age and sex plus nuisance
covariates including full-scale IQ, plus dummy coded site
variables and the Freesurfer Euler number (a proxy for
scan quality) using Gaussian process regression. Then, we
estimated normative probability maps (NPMs), which
quantify the deviation from normative CT, by subtracting
the predicted from true CT, divided by the estimated
variance at each vertex to construct a subject- and vertex-
specific Z-score.
In order to partition the autism cohort into sub-clusters

on the basis of the normative model estimated on the NT
participants, we first applied spectral clustering with a
cosine similarity affinity matrix52,53 to the un-thresholded
NPMs from the participants with autism.
Next, we applied a multi-class (one-vs-all) linear sup-

port vector machine (SVM) to quantify cluster separ-
ability within the autism cohort on the basis of the NPMs
and perform model order selection (see Supplementary
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Methods for full details). The number of clusters was
determined using the pairwise Area Under the Receiver
Operating Characteristic Curve (AUROC) for model
orders K= 2 to 10. Moreover, we tested the stability of the
model using a leave-one-out procedure we have proposed
previously54.
Next, to evaluate the clinical separability of the clusters,

we trained an identical linear SVM to discriminate the
clusters using 10 demographic and clinical measures: sex,
IQ (verbal, performance and full-scale IQ (VIQ/PIQ/
FIQ)), Autism Diagnostic Interview-Revised (ADI-R)55

and Autism Diagnostic Observation Schedule (ADOS)-2
calibrated severity scores56. Due to the differential avail-
ability of measures, we only included participants with
data for all clinical measures. This resulted in a decreased
sample size of 243 individuals with autism. However, we
repeated the analysis with imputed measures, which led to
identical conclusions (see Supplementary Methods and
Supplementary Table S2). To highlight the important
regions for discriminating each cluster we calculated
structure coefficients for each class separately57,58.
We then assessed associations of each cluster with

behavioral measures on the basis of the deviations from
the normative model. We first summarized each NPM
into a single global measure of deviation—an “atypicality
index” for each participant by taking a trimmed mean of
1% of the top absolute deviations across all vertices
(Supplementary Methods)40,59 and calculated Spearman’s
correlation between the atypicality index with ADOS-2
and ADI-R scores, Social Responsiveness Scale-2 (SRS-
2)60, Repetitive Behavioral Scale-Revised (RBS-R)61 and
Short Sensory Profile (SSP)62, along with the DSM-5
parent-rated scale for attention deficit hyperactivity dis-
order (ADHD) symptoms (inattention and hyper-impul-
sivity), both across the whole cohort and within each
cluster. To assess the spatial distribution of relevant
effects, we also computed atypicality indices for each
region after parcellating the cortex using the
Desikan–Killiany atlas63 and computed correlations with
the same measures. See the Supplementary Information
for details.
Last, to evaluate the correspondence of the clusters with

underlying genetic profiles, we computed the association
of the overall atypicality index with polygenic scores (PS)
for seven traits (autism, ADHD, epilepsy, FIQ, neuroti-
cism, schizophrenia, and cross disorder risk for psychia-
tric disorders) using Spearman’s correlation. See the
Supplementary Methods for details.

Results
The average AUROC per model order is shown in

Supplementary Fig. S2A indicating that K= 5 yielded the
highest cluster separability and also was highly stable
(Supplementary Fig. S2B).

Table 1 provides the distribution of the clusters in terms
of age, sex, and clinical measures. The clusters are evenly
distributed across sites, with no obvious evidence for site-
related bias (Supplementary Figs. S3 and S4A, B). Cluster
1 contained slightly more females and were slightly
younger than the other classes (Table 1). Cluster 2 con-
tained subjects with higher impairment relative to the
other clusters, having lower IQ and—relative to some of
the other clusters—more severe core autism symptoms
across diagnostic instruments (early childhood social
symptoms based on ADI-R and current RRB symptoms
based on ADOS-2) and ADHD symptoms. None of the
other clusters differed in terms of any considered
measures.
In terms of anatomical separability, the average pairwise

AUROC scores across clusters were above 90% for all
clusters (P < 0.0001, permutation test). See Supplementary
results and Supplementary Fig. S5A, B for more details of
anatomical separability performance. Figure 1a shows the
structure coefficients indicating the regional differences,
which correspond with the mean CT in each cluster
shown in Fig. 1b. See Supplementary Fig. S6 for more
details. Figure 1a shows striking differences between
subtypes: clusters 1, 2, and 3 have reduced CT relative to
the expected neurotypical pattern whereas clusters 4 and
5 have increased CT relative to the expected pattern.
Clusters also varied in terms of spatial distribution. For
instance, clusters 5 and 4 had increased CT in the pre-
frontal and posterior parietal cortex, respectively, while
cluster 3 had reduced CT in temporal gyrus and cluster
1 shows decreasing CT in the anterior premotor cortex.
Figure 2 shows the correlation of behavioral measures

with the atypicality index across the cohort and per
cluster, corrected within symptom domains and across
clusters. While the top panel indicates only moderate
correlations of several behavioral measures with the aty-
picality index across the cohort, the magnitude of corre-
lations increased for nearly all measures when considering
them by cluster and additional associations reached sig-
nificance for some measures (e.g., ADI-RRB). This pro-
vides evidence that clinical associations are diluted across
the cohort. The only exception to this pattern was the
association with ADI-social, which reached nominal sig-
nificance across the entire sample but not in any subtypes.
Moreover, the classifier trained on the clinical and

behavioral scores also discriminated the clusters above
chance level under cross-validation (accuracy= 0.32
chance= 0.20, AUROC scores= 0.58, P < 0.05, permuta-
tion test). See Supplementary Results and Supplementary
Fig. S7A, B.
The regional associations with symptoms are shown in

Fig. 3. These show a similar pattern in that the different
clusters are associated with similar symptoms and in
nearly all cases associations become stronger for each
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cluster relative to across the cohort. This again indicates
that clinical effects are diluted across the whole cohort
relative to within clusters: for parent-reported measures
of ADHD, social-communicative symptoms (SRS-2) and
restricted and repetitive behaviors (RBS-R), the correla-
tion becomes stronger within the cluster and the asso-
ciation with early childhood repetitive behaviors and
social symptoms (ADI-R RRB and social) exclusively
appears within the clusters. Finally, cluster 1 also shows
focal associations with sensory atypicalities and early
childhood repetitive behaviors, which were not evident at
the whole-brain level.
Finally, the association of the atypicality index with

polygenic scores ( Supplementary Fig. S8) shows a simi-
lar pattern, namely that associations become stronger

within the clusters, but in this case, the only cluster 3
was associated with polygenic risk for autism and
schizophrenia.

Discussion
In this study, we aimed to understand the biological

heterogeneity of autism by identifying potential neuroa-
natomical subtypes within a large and well-phenotyped
cohort. To do so, we employed spectral clustering on the
individual-level deviations from a normative model of CT
development. Normative modeling learns supervised
mappings that describe cortical development, also
accounting for sex and nuisance variation. This allows the
clustering algorithm to focus upon clinically relevant
variation better than by clustering the data directly and

Table 1 Age, sex, and clinical and behavioral scores distribution across clusters.

Measure Total Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 P-value Post-hoc test

Number of participants [F%] 316 [28%] 60 [43%] 55 [24%] 65 [26%] 55 [25%] 81 [22%] 0.06 (ns)

Age: mean ± std 17.2 ± 5.7 14.1 ± 5.5 17.3 ± 5.7 17.1 ± 5.7 18.9 ± 5.7 18.2 ± 5.1 <0.001* 1 < 2,3,4,5

IQ

Verbal IQ 99.6 ± 18.5 106.6 ± 14.7 83.7 ± 16.7 107.4 ± 13.6 96.1 ± 15.9 101.6 ± 19.9 <0.001* 1 > 2,4; 2 < 3,4,5; 3 > 4

Performance IQ 101.7 ± 20.1 104.8 ± 17.7 84.9 ± 19.2 112.3 ± 15.5 100.5 ± 20.4 103.4 ± 18.0 <0.001* 2 < 1,3,4,5; 3 > 4,5

Full-Scale IQ 100.9 ± 18.5 105.9 ± 15.7 83.4 ± 17.1 110.1 ± 13.4 98.2 ± 15.7 103.5 ± 18.3 <0.001* 2 < 1,3,4,5; 3 > 4

ADI-R

Social 16.2 ± 6.7 15.3 ± 6.4 18.9 ± 6.6 15.4 ± 6.9 15.6 ± 6.4 16.3 ± 6.6 0.03* 2 > 3,1

Communication 13.2 ± 5.7 13.0 ± 4.9 15.3 ± 5.5 12.6 ± 5.8 12.9 ± 6.1 12.6 ± 5.6 0.06 (ns)

Repetitive behavior 4.3 ± 2.7 4.0 ± 2.8 5.1 ± 2.6 4.5 ± 2.6 3.8 ± 2.1 4.2 ± 2.8 0.09 (ns)

ADOS-2

Total 5.2 ± 2.8 4.9 ± 2.8 5.9 ± 3.0 4.7 ± 2.8 4.7 ± 2.3 5.6 ± 2.7 0.08 (ns)

Social affect 5.8 ± 2.6 5.5 ± 2.7 6.2 ± 2.7 5.6 ± 2.6 5.7 ± 2.4 6.2 ± 2.6 0.52 (ns)

Repetitive behavior 4.7 ± 2.7 4.7 ± 2.6 5.7 ± 3.1 4.1 ± 2.5 4.0 ± 2.4 5.0 ± 2.6 0.01* 2 > 3,4

SRS-2l

Score 70.9 ± 11.9 71.8 ± 12.4 72.5 ± 11.1 69.9 ± 11.8 70.1 ± 11.8 70.6 ± 12.0 0.81 (ns)

SRS-2 self-report

Score 63.1 ± 10.0 65.8 ± 8.2 68.0 ± 12.0 61.4 ± 9.9 60.2 ± 8.9 62.4 ± 9.3 0.02* 2 > 4

RBS-R

Score 15.4 ± 13.0 15.5 ± 14.9 20.4 ± 15.7 14.5 ± 10.4 13.1 ± 10.7 14.8 ± 12.1 0.12 (ns) –

SSP

Score 140.0 ± 26.2 142.2 ± 25.7 134.2 ± 28.9 144.4 ± 24.7 136.9 ± 25.6 140.1 ± 25.7 0.59 (ns) –

ADHD

Hyperactivity/-impulsivity 2.5 ± 2.7 3.1 ± 2.8 3.6 ± 3.0 2.1 ± 2.7 2.3 ± 2.4 2.0 ± 2.4 0.01* 2 > 5

Inattention 4.2 ± 3.1 4.3 ± 3.2 5.2 ± 3.1 3.6 ± 2.9 4.4 ± 3.2 4.0 ± 3.0 0.15 (ns) –

Cluster differences were assessed via one-way ANOVAs, followed by post-hoc tests to quantify main effects (Tukey Honest Significant Differences). Only for sex
distribution across clusters, we used Chi-square statistic. See text for a description of the measures.
ADI-R Autism Diagnostic Interview—Revised, ADOS Autism Diagnostic Observation Schedule, RBS-R Repetitive Behavioral Scale-Revised, SRS Social Responsiveness
Scale, SSP Short Sensory Profile.
*P < 0.05.
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therefore more precisely dissect biological hetero-
geneity40,64. Through this, we identify five putative neu-
roanatomical subtypes within the cohort that: (i) show
striking differences in that some subtypes have reduced
cortical thickness relative to the neurotypical pattern and
others have increased thickness; (ii) could be accurately
classified from one another out of sample; (iii) predict
differential symptom profiles; (iv) load differentially onto
underlying genetic risk and most importantly, (v) are
more strongly associated with symptoms than associa-
tions across the whole cohort. Taken together, our results
show that aggregating effects across individuals dilutes the
strength of clinically relevant associations and by strati-
fying individuals according to their underlying biological
signature it is possible to reduce the heterogeneity in
clinical presentation.
Among the five subtypes, three showed widespread

decreased CT, and two showing increased cortical thick-
ness reflecting ~57% and 43% of the cohort, respectively.
These distinct and opposing expressions of CT atypi-
calities across different individuals with autism provide an
explanation of why classical case–control analyses provide
inconsistent findings and why they often reveal no or only
modest group differences42,46.
Sub-dividing individuals with autism into more homo-

genous subtypes has important clinical implications.
Specifically, even though clusters of different CT profiles
are solely based on imaging phenotypes, they can still be
discriminated based on clinical profiles. Only cluster (1)
was weakly associated with age and there were moderate

differences in IQ between clusters but no strong asso-
ciation with symptoms. Together this suggests that sub-
types reflect distinct cortical fingerprints rather than
different neurodevelopment stages or simply different
symptom groups. It is increasingly well recognized that
there is no reason to believe that distinct biological sub-
types will map cleanly onto different symptom groups
because distinct pathophysiological pathways likely con-
verge on the same symptoms5,21. Therefore, we consider
that comparing the strength of associations between
biological readouts and clinically relevant variables within
clusters rather than across the cohort provides a better
evaluation of whether the clusters explain clinically rele-
vant mechanisms than testing for mean differences in
clinical variables between clusters. More specifically,
because there is no one-to-one mapping between biology
and symptoms, the increased homogeneity within a
cluster does not necessarily translate into increased
homogeneity of the clinical profile. Also, it should be
remembered that the patterns of deviation are complex
and for the purposes of computing clinical associations,
we summarize these patterns in an atypicality index,
which is a single number describing maximum overall
deviation. Other indices are also possible, which may
reflect different features of the underlying patterns of
deviation. In addition, and in contrast with recent sug-
gestions that the heterogeneity underlying autism is not a
biological fact of nature18,65, our results suggest that with
the right analytical approach, biological heterogeneity is
not only quantifiable but also leads to a stratification of
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individuals having more consistent biological profiles than
can be detected by case–control comparisons. Our results
indicate those inconclusive findings in the autism litera-
ture may be the result of the approaches that assume the
autism cohort is well-defined and homogeneous.
Among the clusters we have reported, three (clusters 2,

3, and 4) demonstrated specific patterns of alterations
relevant to symptoms at the whole-brain level and cluster
1 additionally showed regionally specific associations.
Among core autism symptoms, the associations were
most prominent with repetitive behaviors.

Cluster 3 (~21% of individuals with autism), was the
only cluster that showed associations with core autism
symptoms (i.e., RBS, SRS, and ADOS-2-RRB) plus
hyperactivity-impulsivity and was also the only cluster to
show associations with polygenic risk. Neuroanatomically,
cluster 3 involves dorsal frontal eye fields plus anterior
cingulate, premotor, auditory, and temporal cortices
(Fig. 1). Taken together, this suggests this cluster repre-
sents patients with a broad clinical phenotype who were
impaired across multiple domains combined with pro-
minent alterations in patterns of CT.
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Cluster 2 (17% of individuals with autism), was associated
with comorbid ADHD symptoms and neuroanatomically
widespread cortical thinning prominently in the dorso-
lateral and anterior prefrontal cortex, orbitofrontal area,
dorsal anterior cingulate cortices, primary somatosensory

cortex, superior parietal lobule, primary motor cortex,
temporal gyrus, and Broca’s area (Fig. 1). Alterations in
similar brain regions have previously been reported in
individuals with ADHD66,67. This points to overlap of the
pathophysiological pathways underlying autism and ADHD.

ASD cohort

N=259

Cluster 3

N=53

Cluster 4

N=48

Correla�on of atypically index with SRS

0.15 0.50

ASD cohort

N=249
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N=51

Short Sensory Profile (SSP)
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N=50

Correla�on of atypically index with RBS

0.15 0.65

Correla�on of atypically index with RBS

-0.55 -0.15
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N=40
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0.15 0.60

A D H D _ I n a � e n � o n
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Fig. 3 Regional atypicality index associations with symptoms. Only regions surviving FDR correction (q < 0.05) are shown. Note that ADHD
scores are parent-reported scores.
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Cluster 4 (17% of participants with autism), was also
most strongly associated with inattention and hyper-
impulsivity but also showed nominally significant asso-
ciations with SRS and ADI-R-RRB, although these did not
survive multiple comparison correction. The anatomical
profile of cluster 4 exhibits cortical thickening mainly in
the primary somatosensory and motor cortex, superior
parietal lobule, associative visual cortex and, frontal eye
fields. Associations with ADI-social scores (even though
weak) only emerged across the entire sample (i.e., that was
not also significant for some of the subtypes), potentially
implying that social deficits are a unifying feature across
all individuals with autism.
Many studies have focused on finding subtypes based

on behavioral and clinical measures22,29–31. As an exam-
ple, Fountain et al.32 reported six subtypes on the basis of
social, communication, and repetitive behavior function-
ing scores. While this is intuitively appealing, there is no
guarantee that such subtypes map onto neurobiologically
distinct phenotypes. Indeed, our results show that highly
different patterns of atypicality are associated with
symptoms across the cohort, which illustrates why clus-
tering on the basis of symptoms may not yield biologically
relevant stratifications. In contrast, Hong et al.24 devel-
oped an approach to multidimensional neuroimaging
data. Other approaches23–26,32,33, similarly aimed to bio-
logically stratify autism using raw data features (i.e.,
without considering individualized alterations from a
normative pattern). We consider that the approach we
have employed (i.e., finding consistent patterns of indivi-
dualized variation from a normative pattern) leads to
more interpretable clusters than clustering the data
directly since it accounts for multiple sources of variation.
Another feature of our approach is that it capitalizes upon
both dimensional and categorical aspects of the neuro-
biology of autism. Specifically, the normative model cap-
tures dimensional variation to provide an optimal
representation for finding categorical differences (i.e.,
clusters). This is complimentary to a recent study27, which
also adopted a dimensional approach by estimating
potentially overlapping autism-related latent factors
learned from functional connectivity data. While a direct
comparison of these different analytical approaches is
beyond the scope of the present work, in our data, it is
salient that in our data the clusters had very low overlap
with one another. More generally, finding latent factors is
well suited to finding latent profiles that overlap across
subjects, whereas clustering is suited for finding subjects
that share a common profile. Despite strong anatomical
separability and behavioral associations within the clus-
ters we report, we are cautious about claiming that there
are definitively five subtypes of autism because we con-
sider that requires further validation than was undertaken
here. For example, it will be important to validate these

findings across additional cohorts and in terms of the
ability to predict the clinical outcomes or additional bio-
logical or phenotypic measures. Rather, we are using
clustering as a tool to fractionate the clinical phenotype of
autism on the basis of the underlying biology and to
understand variation across clinically realistic cohorts. An
additional important consideration that we have identified
previously is to test against the ‘null’ distribution of no
clusters in the data54. This was not feasible in this study
because of the high dimensionality of the clustering pro-
blem (i.e., making it difficult to sample realistic ‘null’
biological patterns). However, the fact that we have
stronger associations with behavior in many distinct
clinical measures, as well as polygenic scores relative to
across the whole cohort strongly suggests that the clus-
tering is more meaningful than a simple continuum.
Assessment of other LEAP data modalities (e.g., EEG, eye-
tracking, diffusion-weighted imaging) will be the subject
of future studies.
There is a number of limitations associated with the

current study. Firstly, there was a large number of missing
clinical and behavioral data, which complicated analyses
and led to a reduction of power in follow-up analyses.
Most importantly, for the genetic analysis, the inter-
pretation of the results should be made in the context of
relatively low statistical power for each class and should
be considered illustrative until our findings can be vali-
dated in larger cohorts. It is also possible that data were
not missing at random. Secondly, regarding the anato-
mical data, we did not perform any manual edits on the
cortical surface reconstructions. While this eliminates one
potential source of operator bias, the quality of the surface
reconstructions could be improved in some cases by
performing manual edits.
In conclusion, we identified several putative autism

subtypes across a highly heterogeneous cohort. These
were highly anatomically distinct and showed stronger
clinical, behavioral, and genetic associations than across
the whole cohort. This is a promising step towards stra-
tification tools and a better understanding of the hetero-
geneous neurobiology of autism.
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