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Abstract 24 

The International Committee on Taxonomy of Viruses (ICTV) has recently adopted a 25 

comprehensive, hierarchical system of virus taxa. The highest rank in this hierarchy are 26 

realms, each of which is considered monophyletic but apparently originated independently 27 

of other realms. Here we announce the creation of a new realm, Adnaviria, which unifies 28 

archaeal filamentous viruses with linear A-form double-stranded DNA genomes and 29 

characteristic major capsid proteins unrelated to those encoded by other known viruses.  30 

 31 

Text 32 

In 2018, the International Committee on Taxonomy of Viruses (ICTV) expanded the number of 33 

taxonomic ranks available for virus classification from 5 to 15 (1, 2). This development enabled 34 

formal recognition of the evolutionary kinships among distantly related viruses and led to 35 

creation of four realms—virus taxa that are roughly equivalent to the domain rank in cellular 36 

taxonomy (3): The realm Riboviria encompasses all RNA viruses and reverse-transcribing 37 

viruses that encode homologous RNA-directed RNA polymerases and reverse transcriptases, 38 

respectively; Monodnaviria comprises viruses with predominantly single-stranded (ss) DNA 39 

genomes and encoding rolling-circle replication initiation endonucleases of the HUH 40 

superfamily; Duplodnaviria unifies viruses with double-stranded DNA genomes that produce 41 

virions with icosahedral capsids formed by major capsid proteins (MCPs) with the HK97 fold; 42 

and Varidnaviria comprises dsDNA viruses with icosahedral capsids built from MCPs with 43 

double-jelly roll fold (4). However, many virus families remained unassigned to higher taxa due 44 

to the lack of demonstrable evolutionary relationships to viruses assigned to the four realms. 45 
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Here we announce the creation, and recent official acceptance by the ICTV 46 

(https://talk.ictvonline.org/taxonomy/), of a new realm, Adnaviria, which encompasses 47 

structurally related archaeal filamentous viruses with dsDNA genomes that adopt the A-form 48 

conformation within their virions. 49 

Filamentous viruses infect hosts of all cellular domains but, despite overall similar morphology, 50 

virions of eukaryotic, bacterial, and archaeal filamentous viruses are built from capsid proteins 51 

with different structural folds (5). Furthermore, the types of the viral genomes that are protected 52 

by the corresponding capsid proteins are radically different among viruses infecting hosts from 53 

the different domains of life (6-11): All known eukaryotic filamentous viruses have linear ssRNA 54 

genomes and are classified in realm Riboviria (4); all known bacterial filamentous viruses have 55 

circular ssDNA genomes and belong to realm Monodnaviria (4, 12); and all known archaeal 56 

filamentous viruses have dsDNA genomes and, until recently, have remained unassigned to taxa 57 

ranked higher than order.  58 

Archaeal viruses that form filamentous virions are currently classified into four families: 59 

Clavaviridae, Lipothrixviridae, Rudiviridae, and Tristromaviridae (13). Based on the shared 60 

gene content, structural similarity of their virions, and homology of the MCPs, families 61 

Lipothrixviridae and Rudiviridae were included in order Ligamenvirales (14). In virions of both 62 

families, the nucleoprotein helix is composed of asymmetric units containing two MCP 63 

molecules, a homodimer in the case of rudivirids and a heterodimer of paralogous MCPs in the 64 

case of lipothrixvirids (Figure 1) (11, 15). The MCPs of ligamenviral particles have a unique α-65 

helical fold first found in the MCP of rudivirid Sulfolobus islandicus rod-shaped virus 2 (SIRV2) 66 

(16). Lipothrixvirids and rudivirids share a characteristic feature in that the interaction between 67 
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the MCP dimer and the linear dsDNA genome maintains the DNA in the A form. Consequently, 68 

the entire genome adopts the A-form in virions (15-18). 69 

Clavavirids (19, 20) and tristromavirids (21) do not encode proteins with recognizable sequence 70 

similarity to proteins of ligamenvirals (22). Hence, the two families were not included in 71 

Ligamenvirales. Recently, the structure of particles produced by tristromavirid Pyrobaculum 72 

filamentous virus 2 (PFV2) has been characterized by cryogenic electron microscopy (cryo-EM) 73 

(23). Unexpectedly, the two nucleocapsid proteins of tristromavirids were found to be 74 

structurally related to those of ligamenvirals, and the virion organizations were discovered to be 75 

remarkably similar, including the A-form conformation of the genomic dsDNA (23) (Figure 1). 76 

Similar to lipothrixvirids, virions of tristromavirids are enveloped by a lipid membrane (24). 77 

Based on the structural similarity between members of Ligamenvirales and Tristromaviridae, we 78 

inferred that they share a common origin (23). To formalize this evolutionary relationship, 79 

Tristromaviridae was assigned to a new order, Primavirales, which, along with Ligamenvirales, 80 

was included in a new class, Tokiviricetes. 81 

Members of the Tokiviricetes represent one of the most commonly detected virus groups in 82 

terrestrial hot springs and are globally distributed (25-27). Rudivirids have been extensively 83 

studied in particular, and many aspects of their life cycles are understood in considerable detail 84 

(28). Notably, the mechanisms of genome replication do not appear to be conserved among 85 

tokiviricetes. It has been proposed that rudivirus SIRV2 uses a combination of strand-86 

displacement, rolling-circle, and strand-coupled genome replication mechanisms, which generate 87 

multimeric, highly branched, “brush-like” intermediates reaching lengths of >1,200 kb (∼34 88 

genome units) (29). The latter are then processed into unit-length, linear genomes with 89 

covalently linked hairpin ends. The genome replication of the lipothixvirid Acidianus 90 
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filamentous virus 1 has been suggested to start by the formation of a D loop and to progress by 91 

the strand displacement replication mechanism, whereas termination relies on recombination 92 

events through the formation of terminal loop-like structures, though the genes involved in this 93 

unique mechanism of replication remain unknown (30). Similar to rudivirid genomes, 94 

tristromavirid genomes have terminal inverted repeats (21), but the replication mechanism of 95 

these viruses has not been investigated. 96 

High-resolution structures are now available for virions of six distinct tokiviricetes (11, 15). Like 97 

many structurally related viruses in the two other realms of dsDNA viruses (Duplodnaviria and 98 

Varidnaviria), there is no detectable sequence similarity among the capsid proteins of viruses 99 

from different tokiviricete families, suggesting a vast undescribed diversity of viruses in this part 100 

of the virosphere. Indeed, it has been suggested that tokiviricetes were present in the last archaeal 101 

common ancestor, and possibly even in the last universal cellular ancestor (LUCA) (31). 102 

Regardless, the available data unequivocally show that archaeal filamentous viruses do not fall 103 

into any of the four established realms. Thus, given the lack of detectable relationship with other 104 

viruses and officially acknowledging the uniqueness of the three families of archaeal filamentous 105 

viruses that contain A-form DNA in their virions, a new taxon of the highest rank, realm 106 

Adnaviria, was created for their classification. To bridge the gap between the class and realm 107 

taxa, intermediate kingdom and phylum taxa, named Zilligvirae and Taleaviricota, respectively, 108 

were established.  109 

In contrast, structural characterization of clavavirid Aeropyrum pernix bacilliform virus 1 110 

(APBV1) particles by cryo-EM confirmed that the fold of its MCP and its overall virion 111 

organization are unrelated to that of ligamenviral, tristromavirid, or other characterized virus 112 
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particles (32). Therefore, notwithstanding their filamentous virions, clavavirids are not included 113 

in realm Adnaviria and likely represent another realm to be established in the future.  114 

 115 

Etymology of new taxa recently accepted by the ICTV: 116 

 Adnaviria; from A-form DNA characteristic of viruses in this realm and suffix -viria for 117 

realm taxa. 118 

 Zilligvirae; after Wolfram Zillig (1925–2005), a pioneer of research on 119 

hyperthermophilic archaeal viruses, and the suffix -virae for kingdom taxa. 120 

 Taleaviricota; from Latin talea, meaning “rod” (referring to the virion morphology), and 121 

suffix -viricota for phylum taxa. 122 

 Tokiviricetes; from Georgian თოკი (toki), meaning “thread”, and suffix -viricetes for 123 

class taxa.  124 

 Primavirales; from Latin prima, meaning “first”, referring to the fact that Thermoproteus 125 

tenax virus 1, classified in this order, was the first hyperthermophilic archaeal virus to be 126 

isolated in 1983 (33). 127 

 128 
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Figure legend 146 

Figure 1. Taxonomic organization of realm Adnaviria. A. Taxonomic ranks from family to 147 

realm are rendered with different colors. B-D. Cryogenic electron microscopy shows structures 148 

of the major capsid protein (MCP) homodimer (characteristic of rudivirids) and heterodimer 149 

(characteristic of lipothrixvirids and tristromavirids) (B), MCPs bound to viral double-stranded 150 

(ds) DNA genome in A-form conformation (C), and side views of the viral nucleocapsid are 151 

shown for each constituent family (D). Rudivirdae, Lipothrixviridae, and Tristromaviridae are 152 

represented by structures of Sulfolobus islandicus rod-shaped virus 2 (PDB entry: 3J9X), 153 

Acidianus filamentous virus 1 (PDB entry: 5WTG), and Pyrobaculum filamentous virus 2 (PDB 154 

entry: 6VTB), respectively. The figure is modified from ref (11).  155 
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