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Genetic diversity of Plasmodium falciparum 
populations in three malaria transmission 
settings in Madagascar
Fanomezantsoa Ralinoro1,2*† , Tovonahary Angelo Rakotomanga1,2, Rianasoambolanoro Rakotosaona3, 
Danielle A. Doll Rakoto2, Didier Menard4, Victor Jeannoda2 and Arsene Ratsimbasoa1,5*† 

Abstract 

Background: Assessment of the genetic diversity of Plasmodium falciparum parasites from various malaria transmis-
sion settings could help to define tailored local strategies for malaria control and elimination. Such assessments are 
currently scarce in Madagascar. The study presented here aimed to bridge this gap by investigating the genetic diver-
sity of P. falciparum populations in three epidemiological strata (Equatorial, Tropical and Fringes) in Madagascar.

Methods: Two-hundred and sixty-six P. falciparum isolates were obtained from patients with uncomplicated malaria 
enrolled in clinical drug efficacy studies conducted at health centres in Tsaratanana (Equatorial stratum), Antanimbary 
(Tropical stratum) and Anjoma Ramartina (Fringes) in 2013 and 2016. Parasite DNA was extracted from blood samples 
collected before anti-malarial treatment. Plasmodium species were identified by nested PCR targeting the 18 S rRNA 
gene. The genetic profiles of P. falciparum parasites were defined by allele-specific nested PCR on the polymorphic 
regions of the msp-1 and msp-2 genes.

Results: Fifty-eight alleles were detected in the P. falciparum samples tested: 18 alleles for msp-1 and 40 for msp-2. 
K1 (62.9%, 139/221) and FC27 (69.5%, 114/164) were the principal msp-1 and msp-2 allele families detected, although 
the proportions of the msp-1 and msp-2 alleles varied significantly between sites. Polyclonal infections were more fre-
quent at sites in the Equatorial stratum (69.8%) than at sites in the Tropical stratum (60.5%) or Fringes (58.1%). Popula-
tion genetics analyses showed that genetic diversity was similar between sites and that parasite flow within sites was 
limited.

Conclusions: This study provides recent information about the genetic diversity of P. falciparum populations in three 
transmission strata in Madagascar, and valuable baseline data for further evaluation of the impact of the control meas-
ures implemented in Madagascar.
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Background
 Falciparum malaria remains a major infectious disease 
in humans, affecting millions of people in tropical areas, 
despite the progress of the last decade, achieved prin-
cipally by scaling up key interventions (vector control 
measures and better management of malaria cases) [1]. In 
2019, the World Health Organization (WHO) recorded 
229  million malaria cases, leading to 409,000 deaths, 
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mostly in pregnant women and children under the age of 
five years living in sub-Saharan Africa (94%) [1].

In Madagascar (total population: 26,969,306 in 2019), 
malaria is a major public health issue, the fourth leading 
cause of morbidity in health centres and of mortality in 
hospitals. In 2019, the incidence of malaria was estimated 
at 76.1/1,000 inhabitants, with a mean of 2,052,071 cases 
of malaria (range 1,535,000–2,642,000) and 5,073 deaths 
from the disease (range 180–9580) annually [1]. These 
worryingly high figures were due mostly to a significant 
increase in the number of cases in districts located in 
high-transmission areas, several malaria outbreaks in the 
south, and exceptional climatic conditions (cyclones and 
floods) in recent years [2].

One of the major challenges facing policy makers is the 
tremendous variability of malaria transmission across 
Madagascar, depending on regional variations in rain-
fall, temperature and elevation. The country is typically 
divided into five epidemiological strata: (i) the Equatorial 
stratum on the east coast, where malaria transmission is 
highest and perennial; (ii) the Tropical stratum on the 
west coast, with seasonal transmission spanning around 
6 months (October–April); (iii) the Sub-desert stratum in 
the south, characterized by a dry and hot climate prone 
to episodic outbreaks; (iv) the Highland; and, (v) Fringes 
stratum in the centre of the country, where malaria trans-
mission rates are low and unstable between January and 
April [3, 4].

The malaria control interventions recommended by the 
WHO are currently performed free of charge throughout 
the country by the Malagasy Malaria Control Programme 
(MMCP). These interventions are based on vector con-
trol measures (long-lasting insecticide-treated nets and 
the indoor spraying of insecticides) and the prompt and 
effective management of malaria cases detected in health 
facilities and in the community (i.e., use of rapid diag-
nostic tests (RDT) for malaria and artemisinin-based 
combined therapy (ACT) for treatment). No specific 
strategies for malaria control tailored to the epidemiolog-
ical context have been designed and implemented locally 
or regionally. Furthermore, the impact of strategies has 
been assessed only on the basis of the estimated number 
of malaria cases recorded by hospital and health centre 
staff and community workers [4].

The genotyping of Plasmodium falciparum parasites 
has been shown to be a useful tool for exploring genetic 
diversity (i.e., the complexity and size of the parasite 
populations) and multiplicity of infection (MOI), i.e., 
the number of clones per sample, which is generally 
considered to be strongly correlated with transmis-
sion intensity [5–8]. Indeed, parasite genetic diversity 
and MOI are high in areas with high rates of malaria 

transmission, whereas they tend to be markedly lower 
in regions implementing effective malaria control strat-
egies [7, 9]. One of the most widely used techniques for 
assessing the genetic diversity and MOI of P. falciparum 
is based on the detection, by PCR, of polymorphisms 
in genes encoding merozoite surface proteins, such as 
MSP-1 and MSP-2 [10–13]. For MSP-1 (encoded by the 
msp-1 gene located on chromosome 9), block 2 is the 
most polymorphic region, and three families of alleles 
with polymorphisms of this region have been described 
(K1, MAD20 and RO33). For MSP-2 (encoded by the 
msp-2 gene located on chromosome 2), block 3 is the 
most polymorphic region, and two families of alleles 
have been defined on the basis of polymorphisms of 
this region (FC27 and IC/3D7).

In Madagascar, where malaria transmission rates vary 
considerably, the routine monitoring of P. falciparum 
genotypes and of the genetic diversity of parasite pop-
ulations would probably be very useful [14]. However, 
very little is currently known about the genetic diver-
sity of P. falciparum in Madagascar. In this context, the 
study presented here aimed to provide new data con-
cerning the genetic diversity of P. falciparum popu-
lations and MOI for malaria parasites isolated from 
patients with symptomatic malaria in three areas of the 
island in which the disease is endemic.

Methods
Study sites and blood sample collection
 Blood samples containing P. falciparum were obtained 
from symptomatic patients presenting at local health 
centres and enrolled in therapeutic studies evaluating 
the efficacy of artesunate-amodiaquine treatment in 
2013 and 2016 [15]. The patients included were at least 
six months old, presented uncomplicated falciparum 
malaria (defined as a positive smear for P. falciparum 
and fever, with body temperature ≥ 37.5  °C) and were 
resident in one of three zones of endemic malaria in 
Madagascar: Anjoma Ramartina, a city located in the 
Fringes, Tsaratanana on the eastern coast (Equatorial 
stratum) and Antanimbary on the western coast (Trop-
ical stratum) (Fig.  1). Informed consent was obtained 
from the participants or their parents (for children). 
Finger-prick blood samples were collected on the day 
of enrolment, before treatment. The blood samples (100 
µL) were used to generate blood films and were spotted 
onto 3-MM Whatman 903 filter paper (Merck KGaA, 
Darmstadt, Germany), which were then air-dried and 
placed individually in plastic bags with desiccant, for 
transportation to the Malaria Research Laboratory (lab-
oratory of the NMCP) where they were stored at 4  °C 
until DNA extraction for a maximum of six months.
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Microscopy and parasite counts
Thick and thin blood film slides were stained by incuba-
tion with 10% Giemsa solution for 30  min. The stained 
slides were examined under a light microscope (× 100) 
for the detection and identification of Plasmodium 
species and for parasite counts by two experienced 

microscopists. Parasite densities were recorded as the 
average of the two counts, calculated per 500 white blood 
cells (WBC), and expressed as the number of parasites/
µL of blood, assuming a mean WBC count of 8000/µL of 
blood. Blood smears with discordant results (differences 
between the two microscopists in species diagnosis, in 

Fig. 1 Location of the study sites, according to epidemiological stratum, in Madagascar
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parasite density of > 50% or in the presence of parasites) 
were re-examined by a third, independent microscopist, 
and parasite density was calculated by averaging the two 
closest counts [16].

DNA extraction
Genomic DNA was extracted from the dried blood spots 
using the QIAamp DNA Blood Mini Kit as per the manu-
facturer’s instructions (Qiagen, CA, USA) and stored at 
– 20 °C for further use.

Plasmodium species identification and msp‑1/msp‑2 
genotyping
Genus- and species-specific nested PCRs targeting the 
18 S rRNA gene were performed, as described by Snou-
nou et al. [10, 17]. The polymorphic regions of the mero-
zoite surface protein genes msp-1 (block 2), msp-2 (block 
3) were amplified by nested PCR. In the first round of 
PCR, oligonucleotide primers were used to target con-
served genomic regions within msp-1 (block 2) msp-2 
(block 3). In the second round of PCR, the polymorphic 
families of msp-1 (K1, MAD20, and RO33) and msp-2 
(FC27 and 3D7) alleles were amplified with specific prim-
ers. The primers and conditions used for first and second 
rounds of PCR were as described by Oyebola et al. [18]. 
The PCR products were separated by electrophoresis 
on a 2% agarose gel, with visualization of the fragments 
under a gel imager (Gel Doc XR, Biorad) after ethidium 
bromide staining. The sizes of the alleles (± 20 bp) were 
determined with molecular weight standards (100  bp 
DNA Ladder, Invitrogen). DNA from reference P. falci-
parum strains (3D7, Dd2 and 7G8) was included in each 
run as a control.

Multiplicity of infection
The MOI or number of genotypes per infection was 
calculated by dividing the total number of fragments 

detected for one antigenic marker by the number of 
samples positive for the marker concerned. The mean 
MOI was calculated by dividing the total number of 
fragments detected for both the msp-1 and msp-2 loci 
by the number of samples positive for both markers. 
Isolates carrying more than one family of alleles were 
considered to correspond to polyclonal infections, 
whereas the presence of a single allele family was con-
sidered to indicate a monoclonal infection [19].

Statistical analyses
Statistical analyses were performed with MedCalc ver-
sion 12 (Mariakerke, Belgium). Mann-Whitney tests 
were used for non-parametric comparisons and Stu-
dent’s t tests or one-way ANOVA were used for para-
metric comparisons. For proportions (expressed as 
percentages), χ2 or Fisher’s exact tests were used. p 
values below 0.05 were considered significant. Genetic 
diversity was assessed by calculating Nei’s unbiased 
expected heterozygosity (He) from haploid data as fol-
lows: He = [n/(n – 1)][1 – pi] (n = the number of iso-
lates sampled; pi = the frequency of the itch allele [20]. 
Population genetic differentiation was assessed with 
Wright’s F statistic [21]. Population genetic parameters 
were computed with FSTAT software, v2. 9. 4 [22].

Results
Study populations
Two-hundred and sixty-six P. falciparum isolates were 
obtained from patients with uncomplicated malaria 
seeking anti-malarial treatment at health centres in 
Anjoma Ramartina (n = 85), Tsaratanana (n = 79) and 
Antanimbary (n = 102) (Fig.  1). The characteristics of 
the study populations are described in Table 1.

Table 1 Characteristics of the patients enrolled in Anjoma Ramartina, Tsaratanana and Antanimbary

NS not significant

*ANOVA, **Chi-squared test

Characteristic Anjoma Ramartina
(Fringes)

Antanimbary (Tropical) Tsaratanana
(Equatorial)

P-value

Population size 85 102 79

Age, years (mean ± SD) 14.2 (10.4) 15.4 (12.8) 6.2 (3.9)  < 0.001*

  < 5 years 15 18 32  < 0.001**

 5–15 years 39 45 47

  > 15 years 31 39 –

Gender ratio (male/female) 37/48 41/61 48/31 0.01**

Axillary temperature, °C (mean ± SD) – 38.2 (1.4) 38.4 (1.0) NS*

Geometric mean parasitaemia/μL 7,297 16,740 26,282 0.003*
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Frequency and genetic diversity of the msp‑1 and msp‑2 
allele families
Two-hundred and sixty six isolates were genotyped: for 
245 isolates (92.1%), amplification was successful for at 
least one of the two genes, whereas for 138 (56.3%), the 
targeted regions of both msp-1 and msp-2 were ampli-
fied. For msp-1, 18 alleles were observed (10 K1-types, 
7 MAD20-types and one RO33-type) with band sizes of 
130–270  bp. The number of alleles detected for msp-2 
was higher. In total, 40 different msp-2 alleles were found, 
23 belonging to the 3D7 family and 17 to the FC27 family 
(fragment sizes of 280–700 bp). The proportions of each 
allele, by allelic family, are presented in Fig. 2.

msp‑1 genotyping
The RO33 allelic family was found to be monomor-
phic (with an amplified fragment size of 160  bp), and 
accounted for 36.7% (81/221) of all msp-1 genotypes. The 
K1-type alleles predominated, at a frequency of 62.9% 
(139/221). The most frequent alleles were 200 bp (24%), 
180 bp (19%), 220 bp (14%), and 160 bp (11%) long. Two 
K1-type alleles were present in 15.8% (22/139) of the 
isolates. MAD20-type alleles were less frequent (53.4%, 
118/221). The 200-bp allele was the most frequent (64%), 
followed by the 180-bp allele (17%) (Fig. 2). The presence 
of two MAD20 alleles was also observed, but at a low fre-
quency (2.5%, 3/118).

msp‑2 genotyping
The 3D7 and FC27 alleles were detected in 49.4% 
(81/164) and 69.5% (114/164) of P. falciparum isolates, 
respectively. Most of the msp-2 alleles were observed 
at low frequency, but seven alleles were more frequent 
(3D7 allelic family: 400  bp, 15%; 350  bp, 13%; 500  bp, 

10%; and, FC27 allelic family: 500 bp, 24%; 520 bp, 13%; 
460 bp, 11%; 480 bp, 11%). Several alleles from the same 
allelic family were present in 13.6% of isolates for the 
3D7 family (two alleles in 10/81 and three alleles in 1/81 
samples) and in 11.4% for the FC37 family (two alleles). 
The distribution of the msp-1 and msp-2 allelic families 
is presented in Fig. 3. The proportions of the msp-1 and 
msp-2 alleles varied significantly between the three sites, 
as shown in Table 2.

Monoclonal versus polyclonal infections
The proportion of monoclonal infections, as defined by 
msp-1 genotyping, was estimated at 55.6% (123/221). The 
presence of a single allele was most frequent for the K1 
allelic family (29.4%), followed by MAD20 (17.2%) and 
RO33 (9.0%). Combinations of alleles from the RO33, 
MAD20 and K1 allelic families were detected in 98/221 
samples (44.4%). The most frequent combination was 
K1/MAD20 (16.7%). The proportion of polyclonal infec-
tions was significantly higher in Tsaratanana (Equato-
rial stratum) (60.8%. p = 0.02, Chi-squared test) than at 
the other two sites (40.3 and 42.5%). According to msp-
2 genotyping results, most isolates carried a single allele 
(monoclonal infection; 81.1%. 133/164). The presence 
of a single allele was most frequent for the FC27 family 
(50.6%. 83/164). A combination of alleles from the 3D7 
and FC27 allelic families was detected in 31/164 samples 
(18.9%) (Table 3).

Population genetic measures: multiplicity of infection, 
expected heterozygosity and genetic differentiation 
between sites
The estimated MOI at the three sites is summarized in 
Table 4. The number of msp-1 and msp-2 genotypes per 

Allele size (bp)

)
%(ycneuqerF

Fig. 2 Distribution and proportions of msp-1 and msp-2 alleles
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isolate ranged from 1 to 4 and 1 to 3, respectively. The 
mean MOI per msp-1 or combined msp-1 and msp-2 
genotype was significantly higher for isolates from Tsara-
tanana (Equatorial stratum) (1.92, p = 0.001 and 2.52, 
p = 0.04, respectively) than for isolates from the other 
two sites (1.50 and 1.51 and 2.02 and 2.25, for Antanim-
bary (Tropical stratum) and Anjoma Ramartina (Fringes), 
respectively). These trends were confirmed in the analy-
sis by age group: the mean MOI (msp-1 and combined 

msp-1/msp-2) for isolates obtained from patients aged 
5–15 years was higher in Tsaratanana (Equatorial stra-
tum) than in Anjoma Ramartina (Fringes) (p = 0.004 and 
p = 0.007, Mann-Whitney test) and Antanimbary (Tropi-
cal stratum) (p = 0.02 for msp-1, Mann-Whitney test).

The expected heterozygosity (He) of isolates from the 
three sites is presented in Table  5. At all sites, He was 
higher for msp-2 genotypes (0.823–0.892) than for msp-
1 genotypes (0.413–0.489). However, He was similar 

Fig. 3 Overall distribution of msp-1 and msp-2 genotypes

Table 2 Distribution of msp-1 and msp-2 allelic families by study site

N = population size

*Chi-squared test

Gene Allelic family Study site P-value

Overall Anjoma Ramartina 
(Fringes)

Antanimbary 
(Tropical)

Tsaratanana 
(Equatorial)

msp-1 N 221 67 80 74 –

K1 29.4% 34.3% 32.5% 21.6%  < 0.0001*

MAD20 17.2% 7.5% 26.3% 17.6%

RO33 9.0% 17.9% 3.8% 6.8%

K1 + MAD20 16.7% 1.5% 8.8% 20.3%

K1 + RO33 8.1% 7.5% 25.0% 8.1%

MAD20 + RO33 10.9% 22.4% 0.0% 12.2%

K1 + MAD20 + RO33 8.6% 9.0% 3.8% 13.5%

msp-2 N 164 50 31 83 –

3D7 30.5% 20.0% 40.7% 30.9% 0.0006*

FC27 50.6% 67.3% 27.8% 56.4%

3D7 + FC27 18.9% 12.7% 31.5% 12.7%
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between study sites, age groups and parasite density 
groups.

The estimated fixation index (Fst), measuring the popu-
lation differentiation due to genetic structure at each site, 
was not significant (Table  6). This finding is consistent 
with the proportion of genotypes common to the vari-
ous study sites, as shown in the Table 7. The highest pro-
portion of genotype sharing (6%) was observed between 
Anjoma Ramartina and Tsaratanana.

Discussion
Little is currently known about the genetic diversity of P. 
falciparum populations in Madagascar. PCR genotyping 
analysis with the polymorphic markers msp-1 and msp-
2 were performed to gain insight into the genetic diver-
sity of the populations of this parasite species in three 
regions with different patterns of malaria transmission 
in Madagascar. Excluding genotyping data from clinical 
trials assessing drug efficacy (performed to distinguish 
between recrudescence and re-infections in enrolled 
patients presenting recurrences during follow-up), only 
two studies, performed in 2000 and 2008, have reported 
similar analyses [14, 23].

The total number of different msp-1 and msp-2 alleles 
at the three sites (18 and 40, respectively) confirms 
the high level of malaria transmission in Madagascar. 
These numbers are similar to those reported in African 
countries, such as Nigeria, the Republic of Congo, the 

Central African Republic, Equatorial Guinea and Senegal 
[24–28].

The predominant alleles were K1-type alleles for msp-1 
and FC27-type alleles for msp-2. These findings are con-
sistent with previous reports for Madagascar [14] and 
other settings in Africa (Nigeria [18, 26], Congo Braz-
zaville [29], Mauritania [30], Benin [31], Gabon [32, 33], 
Ivory Coast [34], Cameroon, [35], Ethiopia [36–39]), 
India [40], and Southeast Asia [41]. However, they con-
trast with recent reports from Myanmar [42], where 
MAD20 and 3D7 were the most prevalent alleles.

The distribution of the msp-1 and msp-2 allelic families 
differed significantly between sites (Table  2). Genotyp-
ing revealed that half the individuals had P. falciparum 
isolates with a single msp-1 allele. The proportion of iso-
lates with more than one msp-1 allele was significantly 
higher in patients living in the Equatorial stratum, prob-
ably reflecting the higher rates of malaria transmission in 
this setting. This association was confirmed by the sig-
nificantly higher proportion of polyclonal infections at 
Tsaratanana (Equatorial stratum, 60.8%) than at the other 
two sites (40.3 and 42.5%) (Table 3). msp-2 allelic diver-
sity contrasted more strongly between sites: FC27-type 
alleles were much more frequent than 3D7-type alleles 
in the Tropical zone, whereas 3D7-type alleles predomi-
nated in the Equatorial and Fringes stratum.

The number of msp-1 and msp-2 genotypes per iso-
late ranged from 1 to 4 and 1–3, respectively. Again, the 
mean MOI values per msp-1 or combined msp-1 and 

Table 3 Proportion of multiclonal infections defined on the basis of msp-1 and msp-2 genotyping, by study site, age group and 
parasite density group

Significant P-value is shown in bold typeface

*Chi-squared test

NS not significant

Variable Multiclonal infections

msp-1 P-value* msp-2 P-value* Combined msp-1 
and msp-2

P-value*

Overall 106/221 (48.0%) – 48/164 (29.3%) – 87/138 (63.0%) –

By site

 Anjoma Ramartina (Fringes) 27/67 (40.3%) 0.02 15/55 (27.3%) NS 25/43 (58.1%) NS

 Antanimbary (Tropical) 34/80 (42.5%) 21/54 (38.9%) 26/43 (60.5%)

 Tsaratanana (Equatorial) 45/74 (60.8%) 12/55 (21.8%) 36/52 (69.2%)

By age group

  < 5 years 31/58 (53.4%) NS 10/41 (24.4%) NS 24/38 (63.2%) NS

 5–15 years 53/108 (49.1%) 24/86 (27.9%) 44/71 (62.0%)

  > 15 years 22/55 (40.0%) 14/37 (37.8%) 19/29 (65.5%)

By parasite density group

  < 5000 20/48 (41.7%) NS 9/39 (23.1%) NS 19/31 (61.3%) NS

 5000–50,000 54/115 (47.0%) 26/84 (31.0%) 44/70 (62.9%)

  > 50,000 31/57 (54.4%) 12/39 (30.8%) 23/36 (63.9%)
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msp-2 genotype were significantly higher for isolates 
from patients living in Tsaratanana (Equatorial stratum) 
(1.92 and 2.52) than for isolates from patients living at 
the other two sites (1.51 and 2.02, respectively, at Anjoma 
Ramartina; 1.50 and 2.25, respectively at Antanimbary). 
These values are similar to those reported in some Afri-
can countries, such as Ghana [43], Congo Brazzaville 
[28], and Ethiopia [36–39], but are lower than those 
reported in Nigeria [26] and Gabon [44]. A similar asso-
ciation was found if the analysis was performed by age 
group. The mean MOI (msp-1 and combined msp-1/
msp-2) of isolates obtained from patients aged 5–15 years 
was higher for Tsaratanana (Equatorial stratum) than for 
Anjoma Ramartina (Fringes) and Antanimbary (Tropical 
stratum). However, no association was found between 
mean MOI and parasite density, contrary to the findings 
of several other reports [45].

These data confirm that MOI assessments provide a 
good assessment of malaria transmission intensity and 
this metric may be considered a useful tool for evaluating 
the impact of the vector control measures (long-lasting 
insecticide-treated bed nets and indoor spraying with 
insecticides) currently implemented throughout Mada-
gascar. Population genetics analyses revealed no signifi-
cant difference between sites, age groups and parasite 
density groups. Furthermore, Fst estimates and the low 

proportion of genotypes common to different study sites 
indicated that the circulation of the parasite population 
between sites remained limited.

This study provides recent data for the genetic diversity 
of P. falciparum. It is, however, subject to several limita-
tions. The principal limitation was the use of the msp-1 
and msp-2 markers for genotyping, which, like other 
markers based on DNA fragment size, may decrease 
estimates of genetic diversity. Nevertheless, msp-1 and 
msp-2 are generally considered to be robust polymor-
phic markers for which genotyping is straightforward in 
poorly equipped laboratories, such as those available in 
Madagascar. A second limitation is that the sample col-
lection sites were not selected specifically for this study, 
but for a clinical trial assessing the efficacy of artesu-
nate-amodiaquine. This limits the opportunities for data 
extrapolation. Finally, as no direct measurements of 
malaria transmission, such as the entomological inocula-
tion rate (EIR), were available for the selected sites, it was 
not possible to investigate the association between these 
metrics and genetic diversity.

Conclusions
Despite several limitations, this study provides recent 
genetic diversity data for P. falciparum isolates collected 
in three regions with different transmission patterns. The 
information obtained is valuable for guiding the deci-
sions of policy-makers to improve anti-malaria strategies. 
The continuous evaluation of these metrics would facili-
tate evaluations of the control measures implemented in 
Madagascar. Furthermore, the two markers studied here 
can be used in investigations of malaria outbreaks, which 
have been frequent in recent years [46] in the southern 

Table 5 Expected heterozygosity (He) estimated by msp-1, msp-2 and combined msp-1/msp-2 genotyping, by study site

Site He (SD)

msp-1 msp-2 Combined msp-1/msp-2

Anjoma Ramartina (Fringes) 0.489 (0.425) 0.892 (0.010) 0.629 (0.363)

Antanimbary (Tropical) 0.440 (0.434) 0.823 (0.129) 0.612 (0.367)

Tsaratanana (Equatorial) 0.413 (0.400) 0.859 (0.04) 0.579 (0.379)

Table 6 Estimation of the fixation index (Fst) between study 
sites

Fst Anjoma Ramartina 
(Fringes)

Antanimbary 
(Tropical)

Tsaratanana (Equatorial) 0.04755 0.05824

Anjoma Ramartina (Fringes) 0.05036

Table 7 Estimated proportions of msp-1/-2 genotypes common to different study sites

Sites Anjoma Ramartina (Fringes) (%) Antanimbary (Tropical) (%) Tsaratanana 
(Equatorial) 
(%)

Anjoma Ramartina (Fringes) 91 3 6

Antanimbary (Tropical) 3 95 2

Tsaratanana (Equatorial) 6 2 92
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areas of the country, which generally have low transmis-
sion rates. This approach could be used to determine 
whether outbreaks are due to the clonal expansion of 
local or imported P. falciparum clones and for the design 
of more appropriate strategies for preventing outbreaks.
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