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Abstract 

Background: Artesunate-amodiaquine (ASAQ) and artemether-lumefantrine (AL) are the currently recommended 
first- and second-line therapies for uncomplicated Plasmodium falciparum infections in Equatorial Guinea. This study 
was designed to evaluate the efficacy of these artemisinin-based combinations and detect mutations in P. falciparum 
kelch13-propeller domain gene (Pfkelch13).

Methods: A single-arm prospective study evaluating the efficacy of ASAQ and AL at three sites: Malabo, Bata and 
Ebebiyin was conducted between August 2017 and July 2018. Febrile children aged six months to 10 years with 
confirmed uncomplicated P. falciparum infection and other inclusion criteria were sequentially enrolled first in ASAQ 
and then in AL at each site, and followed up for 28 days. Clinical and parasitological parameters were assessed. The 
primary endpoint was PCR-adjusted adequate clinical and parasitological response (ACPR). Samples on day-0 were 
analysed for mutations in Pfkelch13 gene.

Results: A total 264 and 226 patients were enrolled in the ASAQ and AL treatment groups, respectively. Based on 
per-protocol analysis, PCR-adjusted cure rates of 98.6% to 100% and 92.4% to 100% were observed in patients treated 
with ASAQ and AL, respectively. All study children in both treatment groups were free of parasitaemia by day-3. Of the 
476 samples with interpretable results, only three samples carried non-synonymous Pfkelch13 mutations (E433D and 
A578S), and none of them is the known markers associated with artemisinin resistance.

Conclusion: The study confirmed high efficacy of ASAQ and AL for the treatment of uncomplicated falciparum 
infections as well as the absence of delayed parasite clearance and Pfkelch13 mutations associated with artemisinin 
resistance. Continued monitoring of the efficacy of these artemisinin-based combinations, at least every two years, 
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Background
Countries in the World Health Organization (WHO) 
African Region bear most of the malaria burden and 
account for 94% of the estimated global malaria cases 
(213 million cases) and deaths (380,000) in 2019 [1]. 
Providing effective treatment to patients suffering from 
uncomplicated falciparum malaria prevents progression 
of the disease to a severe form or death and consequently 
reduces mortality and disease burden. Plasmodium falci-
parum resistance to anti-malarial drugs poses a constant 
threat to the successful treatment of malaria infections. 
The emergence and spread of chloroquine and sulfadox-
ine/pyrimethamine resistances have led the WHO to rec-
ommend artemisinin-based combination therapy (ACT) 
for the treatment of uncomplicated falciparum infection 
[2]. ACT combines potent and fast-acting artemisinin 
derivatives with a long and slow-acting partner drug 
able to clear residual parasitemias. The currently recom-
mended artemisinin-based combinations are artemether-
lumefantrine (AL), artesunate-amodiaquine (ASAQ), 
artesunate-sulfadoxine/pyrimethamine (ASSP), artesu-
nate-mefloquine (ASMQ), and dihydroartemisinin-pipe-
raquine (DHAPPQ) and artesunate-pyronaridine (ASPY) 
[3].

Improved access to effective antimalarial treatments 
has contributed significantly to a marked reduction in 
the burden of malaria in recent years [1]. AL followed by 
ASAQ are the most commonly recommended first and/
or second line anti-malarial drugs in malaria endemic 
countries in Africa [1] and they remain efficacious after 
more than a decade of use [3]. However, the efficacy of 
ACT is threatened by the recent emergence of parasites 
resistant to artemisinin and partner drugs. Point muta-
tions in the P. falciparum kelch 13 (Pfkelch13) propel-
ler domain gene have been found to confer artemisinin 
partial resistance expressed by delayed parasite clear-
ance [4, 5]. Since 2012, resistance to both artemisinin and 
partner drugs has been observed in several countries in 
Southeast Asia [5–9] leading to treatment failure with 
artemisinin-based combinations, such as DHA-PPQ [10–
13]. Moreover, and more worryingly, mutants Pfkelch13 
parasites (R561H) confering artemisinin partial resist-
ance has been shown to emerge in 2014–2015 in one 
site in Rwanda followed by its expansion in another site 
located apart 100  km, several months later [14]. These 
findings pose a real threat to malaria case management, 

a fundamental component of current malaria interven-
tion, and make regular monitoring of the efficacy of ACT, 
as recommended by the WHO [3], essential to support 
timely review of malaria treatment guidelines and ensure 
that malaria patients receive efficacious treatment [3].

In Equatorial Guinea, malaria is a major health prob-
lem for the entire population (1,355,982) with an 
estimated 321,438 (186,000–524,000) cases and 652 
(440–1000) deaths in 2019 [1]. The majority of the dis-
ease burden occurs on the mainland, where children 
bear the brunt of the disease [15]. Equatorial Guinea 
recommended ASAQ as first-line drug in 2008 and AL 
as second-line drug in 2010 for the treatment of uncom-
plicated falciparum infection [16]. Since the introduction 
of these artemisinin-based combinations in the country, 
only one study (unpublished) has been conducted to eva-
lute the efficacy of ASAQ, which showed PCR corrected 
cure rate > 96.6% [17]. Recently, PfK13 nonsynonimous 
mutation (M579I), associated with delayed parasite 
clearance and increased in vitro parasite survival rate as 
measured by the Ring-stage Survival Assay [18] has been 
detected in a Chinese traveller returning from Equatorial 
Guinea [19]. The current study evaluated the efficacy of 
ASAQ and AL as well as the detection of mutations in 
the Pfkelch13 gene to inform national malaria treatment 
policy.

Methods
Study area, design and population
Equatorial Guinea is located in Central Africa and is 
divided into two regions: the mainland area, which lies 
between Cameroon and Gabon, and the island region 
(Bioko, Annobo’n and Corisco Bay). About 75% of the 
country’s population lives in the mainland. The study was 
conducted in selected health facilities in three study sites: 
Malabo in Bioko Island and Bata and Ebebiyin in Litoral 
and Kié-Ntem provinces in the mainland, respectively 
(Fig.  1). The health facilities in the study were Regional 
Hospital in Malabo, Provincial Hospital and Angokong 
Health Centre in Ebebiyin, Regional Hospital, Maria 
Rafols Health Centre and Maria Gay Health Centre in 
Bata. The study was a single arm cohort study that inves-
tigated the clinical therapeutic efficacy of ASAQ and 
AL in the treatment of uncomplicated falciparum infec-
tion. Children with uncomplicated falciparum malaria 
who met the study inclusion criteria were enrolled 

along with molecular markers associated with artemisinin and partner drug resistance is imperative to inform national 
malaria treatment policy and detect resistant parasites early.

Trial registration ACTRN12617000456358, Registered 28 March 2017; http:// www. anzctr. org. au/ trial/ MyTri al. aspx
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sequentially, first to ASAQ until sample size was reached 
and then to AL in each site, and assessed clinically and 
parasitologically for 28  days, based on the 2009 WHO 
protocol [20].

Recruitment procedure and treatment
Potential study children attending study health facili-
ties from August 2017 to July 2018 were screened and 
enrolled if they met the following eligibility criteria: 
age between 6  months and 10  years, axillary tempera-
ture ≥ 37.5  °C and/or history of fever in the past 24  h, 
P. falciparum monoinfection, parasitaemia of 500 to 

200,000 asexual parasites/µl, willingness to comply with 
the study visit schedule, and informed consent from par-
ents or guardians (Fig.  2). Children with exclusion cri-
teria, including the presence of general danger signs or 
evidence of severe falciparum malaria, mixed or mono-
infection with non-falciparum species, severe malnutri-
tion, febrile conditions due to diseases other than malaria 
(measles, acute lower respiratory tract infection, severe 
diarrhea with dehydration), or known underlying chronic 
diseases (e.g., cardiac, renal, or liver disease, HIV/AIDS), 
received appropriate care and treatment according to 
national guidelines. In addition, children on regular 

Fig. 1 Map of Equatorial Guinea showing the study sites
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medication that could have affected the pharmacokinet-
ics of the study ACT and those with a history of hyper-
sensitivity reactions to the medications were excluded.

Children in the ASAQ group received daily dose of 
ASAQ for three consecutive days based on recom-
mended weight ranges: one tablet and two tablets of 

Reinfection

Enrolled
Malabo: 88

Bata: 88
Ebibeyin:88

Enrolled
Malabo:50
Bata: 88

Ebibeyin:88

•9 lost to follow-up
•12 withdrawals

Malabo:
• 408 no parasite
• 3 low/high Pf parasitaemia 
• 3 low haemoglobin levels
• 8 mixed infections
• 1 severe illness
• 2 not consented

Bata:
• 129 no parasite 
• 189 low/high Pf parasitaemia 
• 18 low haemoglobin levels
• 5 not consented
Ebibeyin:
• 35 no parasite 
• 60 low/high Pf parasitaemia 
• 5 low haemoglobin levels
• 3 not consented

Malabo:
• 43 no parasite
• 2 low/high Pf parasitaemia 
• 1 low haemoglobin level
• 1 not consented

Bata:
• 115 no parasite
• 77 low/high Pf parasitaemia 
• 5 low haemoglobin levels
• 4 not consented

Ebibeyin:
• 55 no parasite
• 53 low/high Pf parasitaemia 
• 8 low haemoglobin levels
• 2 not consented

Assessed on day 21
Malabo: 70

Bata: 81
Ebibeyin: 80

Assessed on day 21
Malabo: 42

Bata: 85
Ebibeyin:82

Assessed on day 14
Malabo: 73

Bata: 81
Ebibeyin: 81

Assessed on day 14
Malabo: 45

Bata: 85
Ebibeyin: 82

Assessed on day 7
Malabo: 76

Bata: 82
Ebibeyin:85

Assessed on day 7
Malabo: 45

Bata: 85
Ebibeyin: 83

Assessed on day 28
Malabo: 67

Bata:78
Ebibeyin: 77

Assessed on day 28
Malabo: 41

Bata: 82
Ebibeyin:73

•4 Lost to follow-up
•4 withdrawals

•3 lost to follow-up
•1 withdrawal

Screened for ASAQ
Malabo: 513

Bata: 429
Ebibeyin:191

Screened for AL
Malabo: 97
Bata: 289

Ebibeyin: 206

•3 lost to follow-up
•6 reinfections

•5 reinfections

Per-protocol analysis
Malabo: 67

Bata: 78
Ebibeyin: 72

Per-protocol analysis
Malabo: 41

Bata: 81
Ebibeyin: 66

•5 lost to follow-up
•8 withdrawals

•3 withdrawals

•13 reinfections

8 reinfections

•1 reinfection

Fig. 2 Study profile: enrolment and follow-up. ASAQ artesunate-amodiaquine, AL artemether-lumefantrine,  Pf Plasmodium falciparum 
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25  mg artesunate/67.5  mg for children weighing ≥ 4.5 
to < 9 kg and 9 to < 18 kg, respectively; one tablet and two 
tablets of 100  mg artesunate/270  mg amodiaquine for 
children weighing 18 to < 36 kg and ≥ 36 kg, respectively. 
For children treated et al. doses of AL were administered 
twice daily for 3 days according to recommended weight: 
one tablet for children weighing 5–14 kg, two tablets for 
15–24 kg, and three tablets for 25–34 kg. All treatment 
doses were administered under direct observation by the 
study team and patients were observed for 30 min. If the 
first dose was vomited, the treatment dose was admin-
istered again. If vomited again, the patient received an 
artesunate injection according to national guidelines and 
the patient was withdrawn from the study. Study drugs 
were obtained from the WHO.

Enrolled children were followed for up to 28  days at 
scheduled visits on days 1, 2, 3, 7, 14, 21, and 28, and at 
unscheduled visits if symptoms worsened or recurred. 
Clinical and parasitological examinations were per-
formed at each visit. If the parents/caregivers did not 
show up for the scheduled visit, a team member visited 
them at home.

Sample size estimation
A minimum sample of 73 children per drug per site was 
estimated, based on the assumption of a 5% treatment 
failure rate for each drug ASAQ and AL with a 95% con-
fidence level and 5% precision. An additional 20% was 
added to allow for "lost to follow-up" and withdrawal 
during the 28-day follow-up period. The target sample 
size was 88 patients per drug per site.

Malaria microscopy
Thick and thin blood slides were stained with Giemsa 
and examined microscopically to detect malaria parasites 
and determine level of parasitaemia based on the WHO 
procedure [20]. The number of asexual parasites was 
counted against 200 white blood cells (or per 500 if the 
count was < 100 parasites/200 white blood cells). A blood 
slide was confirmed negative if no parasite was seen after 
counting 1000 white blood cells. Parasite density, defined 
as parasites per µl, was calculated assuming a leukocyte 
count of 6000/µl of blood. All blood slides were examined 
by two independent microscopists. A third microscopist 
re-examined the slides with discordant results in terms of 
species diagnosis, parasite density of > 50% or presence of 
parasites. Final parasite density was calculated by averag-
ing the two closest counts.

Genotyping of malaria parasite
Filter paper blood samples were collected from each 
patient on day-0 and in case of recurrence, on the day 
of parasite recurrence (from day-7). Samples were dried 

and stored in individual plastic bags containing desic-
cant. Each dried blood spot was punched out with a 
sterile puncher, and the spots were placed in numeri-
cal order in a 96-well plate. Parasite DNA was extracted 
using QIAamp DNA Blood Mini Kit (Qiagen). The DNA 
samples (day-0 and day of recurrence) were analysed 
for genotyping of the highly polymorphic regions msp1, 
msp2 (merozoite surface proteins 1 and 2) and glurp (glu-
tamate-rich protein) loci, as described elsewhere [21]. 
The genotypic profiles of the parasites at day-0 and day 
of recurrence were compared to determine whether the 
recurent infections were a recrudescence (same strain) 
or a new infection (different strain), according to the cur-
rent WHO-recommended algorithm [22]. As an explana-
tory endpoint, reinfection and recrudescence were also 
determined by the newly proposed two out of three (2/3) 
algorithm [23]. In this strategy, the classification of recur-
rent failures is based on a consensus result of msp1 and 
msp2 and disparate results are resolved by glurp. Such 
an analysis demands concommittant results from at least 
two markers for classification of reinfection or recrudes-
cence compared to three with the standard WHO meth-
odology. If results for only 2 markers were available and 
results for a third marker were missing, the PCR correc-
tion was classified as undertermined. Samples were ana-
lysed at Institut Pasteur in Paris, France.

Molecular markers of artemisinin resistance
DNA extracted from day-0 dried blood spots were ana-
lysed to detect the presence of mutations in the propeller 
domain of Pfkelch13 gene (PF3D7_1343700) previously 
described to be associated with artemisinin resistance 
[4]. PCR amplification (codons 440–680, 720  bp) was 
performed using the method described by Ariey et  al. 
[4]. For the inner round, five μl DNA was amplified with 
0.25  μM each primer, 0.2  mM dNTP, 2.5  mM MgCl2, 
and 1.25 U Taq DNA polymerase (Solis Biodyne, Esto-
nia), in 25 μl volume using the following cycling program: 
15 min at 95 °C, then 35 cycles of 30 s at 95 °C, 2 min at 
58 °C, 2 min at 72 °C, and final extension 10 min at 72 °C. 
For the outer PCR round, 5 μl of primary PCR products 
were amplified under the same conditions, except for 
annealing and extension (1  min). PCR products were 
detected using capillary gel electrophoresis (Fragment 
Analyzer, Agilent, France). Double strand sequencing of 
PCR products was performed by Eurofins (Germany). 
Sequence polymorphisms were identified with the CLC 
Main Workbench 20 software (Qiagen) by using the 
3D7 strain of P. falciparum (PF3D7_1343700) as a refer-
ence sequence. Electropherograms with mixed alleles 
were considered as mutant for the purpose of mutation 
frequency estimation. The quality control was assessed 
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by including three blinded quality-control samples (wild 
type, C580Y and R539T) in each 96-well sequencing 
plate.

Treatment response measure
Treatment response was classified as early treatment fail-
ure (ETF), late clinical failure (LCF), late parasitological 
failure (LPF) and adequate clinical and parasitological 
response (ACPR) before and after PCR correction using 
the WHO protocol [18]. The primary study endpoint 
was PCR-corrected adequate clinical and parasitological 
response. Secondary endpoints included parasitaemia at 
day-3 and PCR-uncorrected treatment failure.

Ethical considerations
The study was approved by the Ministry of Health and 
Social Welfare of Equatorial Guinea (No. 731–150), the 
Ethics Committee of Spanish National Health Institute, 
Carlos III (CEI PI 57_2016-v3) and the WHO Research 
Ethics Review Committee (ERC.000286). Parents or 
guardians were informed about the study procedure, its 
benefits and potential risks, and their consent to enroll 
their children was obtained in writing before enrollment. 
They gave their written consent before enrolling their 
children in the study. If a patient, parent, or guardian was 
illiterate, he or she chose a witness to co-sign the consent 
form.

Data analysis
Data were double entered, cleaned, and analysed using 
the software programme WHO excel (http:// www. 
who. int/ malar ia/ publi catio ns/ atoz/ 97892 41597 531/ 
en/). Enrolled patients who were lost to follow-up or 
withdrawn from the study, had recurrent parasitaemia 
with new infection, or unknown PCR (indeterminate 
or missing) were excluded from per-protocol analy-
sis. However, these cases were included in the Kaplan–
Meier analysis up to the day of loss or withdrawal from 
the study. Descriptive statistics including percentages, 

mean, standard deviation, and range were used. Stu-
dent’s t-test was used for analysis of continuous variables 
(parasite density and age) and Fisher’s exact test was used 
for categorical data. A p-value of < 0.05 was considered 
significant.

Results
Baseline characteristics of enrolled children
Of the 1725 children screened, 490 were enrolled in 
the study: 264 were treated with ASAQ (88 in Malabo, 
88 in Bata and 88 in Ebibeyin) and 226 with AL (50 in 
Malabo, 88 in Bata and 88 in Ebibeyin). The target sample 
size per drug and per site (n  =  88) was achieved except 
for the group treated with AL in Malabo site due to low 
malaria transmission. Baseline characteristics (age, axil-
lary temperature, parasitaemia) of the study children in 
the different sites and treatment groups were comparable 
(Table 1).

Treatment responses
Table  2 shows the treatment outcomes as per-proto-
col and Kaplan Meier analysis before PCR correction. 
For patients treated on ASAQ, per-protocol analysis 
of uncorrected PCR data showed ACPR of 100% (95% 
CI 94.6–100%), 96.3% (95% CI 89.6–99.2%) and 88.8% 
(95% CI 79.7–94.7%) in Malabo, Bata and Ebebiyin sites, 
respectively. Among patients treated with AL, per-proto-
col analysis of uncorrected PCR data revealed ACPR of 
92.9% (95% CI 80.5–98.5%), 95.3% (95% CI 88.4–98.7%) 
and 73.5% (95% CI 62.7–82.6%) in Malabo, Bata and 
Ebebiyin, respectively. For the 41 paired samples, msp1, 
msp2 and glurp results were available for 95.1%, 93.9% 
and 95.1%, respectively. Per-protocol analysis of PCR cor-
rected data (using the WHO protocol) showed ACPR of 
100% (95% CI 94.6–100%), 100% (95% CI 95.4–100%) and 
98.6% (95% CI 92.5–100%) in patients treated with ASAQ 
in Malabo, Bata and Ebebiyin, respectively (Table  3). In 
children treated with AL, PCR corrected ACPR of 95.1% 
(95% CI 83.5–99.4%), 100% (95% CI 95.5–100%) and 

Table 1. Baseline characteristics of the study children treated with artesunate-amodiaquine (ASAQ) or artemether-lumefantrine (AL)

Characteristic Artesunate-amodiaquine Artemether-lumefantrine

Malabo (N = 88) Bata (N = 88) Ebibeyin (N = 88) Malabo (N = 50) Bata (N = 88) Ebibeyin (N = 88)

Males, n (%) 48 (54.5) 43 (48.9) 57 (64.8) 25 (50) 49 (55.7) 44 (50)

Mean age years (SD)† 4.8 (2.6) 4.2 (2.8) 2.6 (1.9)* 4 (2.1) 4.5 (2.9) 4.1 (2.4)

Axillary temperature (°C)

 Mean (SD) 37.5 (1.3) 37.3 (1) 38.1 (1.0) 38.1 (1) 38.0 (1.2) 38.3 (1.2)

Parasitaemia (per µl)

 Geometric mean 29357 38373 29240 37411 45528 40691

 Range 500–200000 1770–200000 821–200000 1850–200000 3572–190500 4493–200000

http://www.who.int/malaria/publications/atoz/9789241597531/en/
http://www.who.int/malaria/publications/atoz/9789241597531/en/
http://www.who.int/malaria/publications/atoz/9789241597531/en/
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92.4% (95% CI 83.2–97.5%) were in Malabo, Bata and 
Ebebiyin, respectively. Based on Kaplan Meier survival 
analysis, PCR-corrected cumulative cure rates varied 
from 98.7% to 100% for ASAQ and from 93.7% to 100% 
for AL (Table 3). Study children at the Ebebiyin site had 
a higher rate of new infections (9.1% and 19.3% in the 
ASAQ and AL groups, respectively), compared to less 
than 5% at the other sites (Table  3). However, the dif-
ference was significant only for the Ebebiyin group AL 
(Fisher’s exact test: p  =  0.01). Children in both treatment 
groups were parasite free on day-2 except one case in the 
ASAQ group in Bata (1.2%), and all of them cleared para-
sitaemia by day-3.

Using the 2/3 algorythm, PCR correction remained the 
same in 22/41 (53.7%) recurrences, changed to recrudes-
cence in 12/41 (29.2%) recurrences, and was underter-
mined for 7/41 (17.1%) recurrences (Table 3). The failure 
rate increased significantly in Ebibeyin for both treat-
ment arms (5.2% for ASAQ and 8.8% for AL). No signifi-
cant changes were observed for the other two sites.

Artemisinin partial resistance marker
Among the 490 patients, three samples were missing and 
11 gave non-interpretable results. Most of the samples 
with interpretable results (98.1%), carried Pfkelch13 wild 
type allele and only three (0.6%) had non-synonymous 

Table 2. PCR-unadjusted treatment response of study patients treated with artesunate-amodiaquine (ASAQ) or artemether-
lumefantrine (AL)

LCF: late clinical failure; LPF: late parasitological failure; ACPR: adequate clinical and parasitological response

PCR-unadjusted
Treatment responses

Artesunate-amodiaquine Artemether-lumefantrine

Malabo (N = 88)
n (%)

Bata (N = 88)
n (%)

Ebibeyin (N = 88)
n (%)

Malabo (N = 50)
n (%)

Bata (N = 88)
n (%)

Ebibeyin (N = 88)
n (%)

LCF 0 1 (1.2) 2 (2.5) 0 0 0

LPF 0 2 (2.5) 7 (8.8) 3 (7.1) 4 (4.7) 22 (26.5)

ACPR 67 (100) 78 (96.3) 71 (88.8) 39 (92.9) 81 (95.3) 61 (73.5)

Total per-protocol 67 81 80 42 85 83

Lost follow-up/withdrawn 21 (23.9) 7 (8) 8 (9.1) 8 (16) 3 (3.4) 5 (5.7)

Kaplan Meier: cure rate 67 (100) 78 (96.3) 71 (88.8) 39 (92.9) 81 (95.3) 61 (73.5)

Table 3. PCR-adjusted treatment response of study patients treated with artesunate-amodiaquine (ASAQ) or artemether-
lumefantrine (AL)

Treatment responses Artesunate-amodiaquine Artemether-lumefantrine

Malabo (N = 88)
n (%)

Bata (N = 88)
n (%)

Ebibeyin (N = 88)
n (%)

Malabo (N = 50)
n (%)

Bata (N = 88)
n (%)

Ebibeyin (N = 88)
n (%)

PCR-adjusted WHO methodology

 LCF 0 0 0 0 0 0

 LPF 0 0 1 (1.4) 2 (4.9) 0 5 (7.6)

 ACPR 67 (100) 78 (100) 71 (98.6) 39 (95.1) 81 (100) 61 (92.4)

Total per-protocol 67 78 72 41 81 66

Lost follow-up/withdrawn 21 (23.9) 7 (8) 8 (9.1) 8 (16) 3 (3.4) 5 (5.7)

New infection 0 3 (3.4) 8 (9.1) 1 (2) 4 (4.5) 17 (19.3)

Kaplan Meier: cure rate 67 (100) 78 (100) 71 (98.7) 39 (95.2) 81 (100) 61 (93.7)

PCR-adjusted 2/3 algorithm

 LCF 0 0 1 (1.3) 0 0 12 (16.4)

 LPF 0 0 4 (5.3) 3 (4.9) 0 5 (7.6)

 ACPR 67 (100) 78 (100) 71 (93.4) 39 (92.9) 81 (100) 61 (83.6)

Total per-protocol 67 78 76 42 81 73

Lost follow-up/withdrawn 21 (23.9) 7 (8) 8 (9.1) 8 (16) 3 (3.4) 5 (5.7)

New infection 0 2 (2.3) 2 (2.6) 0 2 (2.3) 7 (7.9)

Undetermined 0 1 (1.1) 2 (2.6) 0 2 (2.3) 3 (3.4)

Kaplan Meier: cure rate 100 100 93.6 92.9 100 84.5
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mutations (two carried A578S and one with E433D, 
Table  4). None were previously linked with artemisinin 
resistance. Of the 8 patients with recrudescent parasite, 
only four samples were successfully sequenced, and all 
carried Pfkelch13 wild type allele.

Discussion
Previous studies evaluating the efficacy of ASAQ in 
Equatorial Guinea reported a high cure rate with 97.3% 
ACPR in 2006 before the recommendation of ACT [24] 
and 96.6% ACPR four years later in 2010 [17]. The find-
ings of the current study showed that patients treated 
with ASAQ achieved a high cure rate (PCR-adjusted 
ACPR), ranging from 98.6 to 100% across sites, dem-
onstrating that it has maintained its efficacy after more 
than a decade of use in the country. The current study 
assessed the efficacy of AL for the first time in the 
country and showed similar high cure rate with a PCR-
adjusted ACPR between 92 and 100%. Although, the 
cure rate of AL (92.4%) in Ebebiyin was above the thresh-
old (< 90%) requiring for changing treatment policy [3], 
this data calls for close monitoring of the efficacy of this 
artemisinin-based combination. Overall, the findings are 
in line with reports from recent studies confirming that 
ASAQ and AL, the most commonly recommended ACTs 
for the treatment of uncomplicated falciparum infection, 
remain effective in Africa and support their continued 
use [25–44].

It  is  worth noting that malaria transmission varies in 
the study sites, with a low level in Malabo (Bioko Island) 
and a moderate to high level in the mainland where Bata 
and Ebebiyin sites are located [15]. A survey conducted in 
Bata district reported higher malaria prevalence (58.9%) 
in the rural setting compared to 33.9% in the urban area, 
where the study patients were recruited, [45]. Health 
facility based rapid assessment of malaria indicators in 
2016 revealed a test positivity rate of 70.9% (2071/2872) 
and 34.9% (1635/4687) among consultations with sus-
pected malaria at Angokong Health Centre and Provincial 

Hospital, respectively, in Ebiyein district (Riloha Rivas, 
pers. commun.). The ongoing high malaria transmission 
observed in Ebibeyin compared to the other sites may 
explain the higher rate of new infections detected using 
the standard WHO PCR correction method [22] and the 
higher treatment failure rate using the 2/3 algorithm [23], 
especially for AL, for which the partner medicines has a 
shorter half-life. In the absence of a gold standard tool to 
distinguish between reinfection and recrudescence, it is 
difficult to interpret this increase in treatment failure rate 
using the 2/3 algorithm. Nevertheless, it is surprising that 
two medicines with opposite mechanism of resistance 
could fail at the same site and at the same time [46].

All study patients cleared their parasitaemia by day 3, 
indicating the absence of delayed parasite clearance, and 
together with lack of the known Pfkelch13 mutations asso-
ciated with artemisinin resistance in South East Asia, may 
indicate the absence of partial artemisinin resistance in 
Equatorial Guinea. Ih addition, the data based on 476 clin-
ical samples of P. falciparum, support that the indigenous 
M579I mutant, claimed to be associated with delayed par-
asite clearance and increased in vitro parasite survival rate 
[19], did not expand and spread across the country.

Conclusion
The study confirmed that ASAQ and AL remain highly 
effective in treating uncomplicated falciparum infections 
more than a decade after their use in Equatorial Guinea 
and that there are no known Pfkelch13 mutant parasites 
associated with artemisinin resistance. Continued moni-
toring of the efficacy of these artemisinin-based com-
binations, at least every 2 years, is imperative to inform 
national malaria treatment policy. In addition, recent evi-
dence of the de novo emergence of the Pfkelch13 muta-
tion (R561H) associated with artemisinin resistance in 
Africa calls for monitoring molecular markers associ-
ated with artemisinin and partner drug resistance to 
detect resistant parasites early. In this study, the 2/3 algo-
rithm increased the failure rate at high transmission site 

Table 4. Proportion of Pfkelch13 alleles on pre-treatment samples with interpretable result

Pfkelch13 allele Malabo Bata Ebebiyin Total

N % N % N % N %

Wild type 131 100% 170 97.1% 168 98.8% 469 98.5%

Synonymous mutants

 R471R 0 0 2 1.2% 1 0.6% 3 0.6%

 T478T 0 0 1 0.6% 0 1 0.2%

Non-synonymous mutants

 E433D 0 0 1 0.6% 0 1 0.2%

 A578S 0 0 1 0.6% 1 0.6% 2 0.4%

Total 131 0 175 100% 170 100% 476 100%
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compared to the standard WHO methodology. Further 
comparison and validation in different transmission set-
ting are needed before this new suggested algorithm can 
be systematically implemented for PCR correction.
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