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Abstract

Next generation sequencing produces large volumes of short sequences with broad applications. The noise due to
sequencing errors led to the development of several correction methods. The main correction paradigm expects a high (from
30-40X) uniform coverage to correctly infer a reference set of subsequences from the reads, that are used for correction. In
practice, most accurate methods use k-mer spectrum techniques to obtain a set of reference k-mers. However, when correcting
NGS datasets that present an uneven coverage, such as RNA-seq data, this paradigm tends to mistake rare variants for
errors. It may therefore discard or alter them using highly covered sequences, which leads to an information loss and may
introduce bias. In this paper we present two new contributions in order to cope with this situation.

First, we show that starting from non-uniform sequencing coverages, a De Bruijn graph can be cleaned from most errors
while preserving biological variability. Second, we demonstrate that reads can be efficiently corrected via local alignment
on the cleaned De Bruijn graph paths. We implemented the described method in a tool dubbed BCT and evaluated its
results on RNA-seq and metagenomic data. We show that the graph cleaning strategy combined with the mapping strategy
leads to save more rare k-mers, resulting in a more conservative correction than previous methods. BCT is also capable
to better take advantage of the signal of high depth datasets. We suggest that BCT, being scalable to large metagenomic
datasets as well as correcting shallow single cell RNA-seq data, can be a general corrector for non-uniform data. Availability:
BCT is open source and available at github.com/Malfoy/BCT under the Affero GPL License.

Introduction

Motivations

Fast and accurate pre-filters are key to many bioinformatics applications such as assembly (to remove spurious nucleotides
and propose more contiguous assemblies), variant calling, genotyping or mapping (to help reduce the noise ratio and increase
the power of these methods). Removing errors is also determinant to reduce the quantity of data to index, in particular for
k-mer approaches. Thus, a good read correction should allow to index less, though more meaningful, data.
While numerous and very efficient methods exist for genomic correction, less methods were dedicated to short-reads datasets
presenting uneven coverage1 such as transcriptomics or metagenomics. Short read sequencing (shotgun and single-cell) remain
the widest way to access transcriptomics, metagenomics and metatranscriptomics data despite the growing applications of long
reads (PacBio, Oxford Nanopore). Partly because of the relative lack of correction methods, most transcriptomic/metagenomic
softwares include their own pre-filters, which is not in favor of homogeneous pipelines. This motivates efficient and reliable
correction of non-uniform coverage short-read data.

Background

k-mer spectrum methods
These correction methods assume a uniform sequencing coverage. With the second assumption that sequencing errors are
uniformly distributed along read sequences, then there must exist a coverage level for k-mers (the set of read substrings of
length k) at which it becomes highly unlikely to observe errors. Thus, they compute distribution of the k-mers’ number of
occurrences (spectrum) in the dataset, and rely on an abundance threshold that is chosen to distinguish “weak” (error-prone)
k-mers from “solid” k-mers. “Weak” k-mers are then corrected by converting them to corresponding solid ones. Because they
are conceptually simple and only rely on computationally efficient structures [15,18,28], these methods have been preferred
to other approaches relying on suffix structures [25], [21], [13] and probabilistic models or multiple sequence alignment [23].
Graph-based methods
Recently, methods based on De Bruijn graphs emerged for read correction. The rationale is that a set of k-mers can efficiently be
represented in such a graph, and that a read can be corrected by its alignment on the graph that contain a low amount of errors.
Following this idea, the two methods [22] [24] were specifically designed to correct long reads from PacBio or Oxford Nanopore tech-
nologies (therefore, they are out of the scope of short read correction, as shown in [17]). Lastly, Bcool [17] introduced a new approach
dedicated to short reads. The approach first constructs a De Bruijn graph and applies heuristics to remove most of the erroneous k-
mers from the graph. Thereafter, the reads are aligned to this cleaned graph which is used as a set of reference sequences to correct
them. This allows to take into account more global information for the correction by relying on graph paths instead of k-mers.
Adaptation to non-uniform coverage
In transcriptomics, data reflect the gene expression levels. Consequently, relative low-frequency k-mers are not always the mark
of a sequencing error, as they may pertain to lowly expressed regions. Moreover, in a De Bruijn graph, alternative splicing
or alternative transcription events produce several alternative correct k-mers in the same graph region. Those properties induce
a harder correction process. In metagenomics, the mixture of unevenly represented genomes yields similar issues.

The first approach to face this issue was SEECER [14], combining a multiple sequence alignment to hidden Markov models,
but was poorly scalable. BayesHammer and Rcorrector [27] both derive from the idea to compute groups of neighbors k-mers,

1number of reads that cover a given nucleotide in the original sequences
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from which “solid” k-mers are identified, and used to correct “weak” k-mers from the same group. BayesHammer (designed for
single-cell datasets) proposes a clustering technique based on bayesian statistics derived from the k-means clustering technique
to find groups of close k-mers according to the Hamming distance. Rcorrector is designed for transcriptomic datasets, and
proposes to choose among sets of k-mers from possible alternative paths in the De Bruijn graph to correct an error. The path
chosen must not contain k-mers counted less than a fixed threshold, and must not be incoherent with the read’s k-mer counts.
Finally, to our knowledge, there exist no method specifically dedicated to the correction of shotgun metagenomics data.

Contribution

In this paper, we show that important algorithmic novelties are required to propose an uneven coverage corrector based on
De Bruijn graph cleaning and alignment. We demonstrate that:
• k-mer set cleaning steps, whether they are k-mer spectrum approaches, assembler pre-filters or Bcool, have room from

improvement, and we present a new approach with better results,
• a graph approach can be combined with a likelihood model for scoring the unitigs according to their probability to be

generated by errors. Such approach allows to save more “weak” although meaningful k-mers,
• local read alignment on the graph provides better results for read correction (more read corrected and less errors introduced

in reads) than the current techniques.

Methods

Preliminaries

Let Σ be an alphabet of fixed size, in this work we assume Σ={A,C,G,T}. A k-mer is a sequence s∈Σk (i.e of length |s|=k). We
consider a read dataset as a multiset R⊂Σ∗ and an integer k, and define the De Bruijn graph as a directed graph Gk(R)=(N,E)
whereN is the set of distinct k-mers that appear inR, and for u,v∈N,(u,v)∈E if and only if u[2,k]=v[1,k−1] (see (1) in Figure 1).

The out-neighborhood (respectively in-neighborhood) of a node u is {v∈N |(u,v)∈E}=N+ (respectively {v∈N |(v,u)∈
E}=N− and its in-degree d+(u) (respectively out-degree d−(u)) is |N+| (respectively |N−|). A node u is called a branching
node if d+(u)>1 or d−(u)>1.

We call simple path in Gk a set of nodes s=u0,...un such that, for each 0≤ i≤n, (ui,ui+1)∈E, d+(u0)=1,d−(un)=1
and for each 1≤i≤n−1,d+(ui)=d−(ui)=1. A simple path s=u0,...un can be compacted by concatenating u0 to ui[k−1]
for each 0<i≤n into a single node of length k+n−1, and by keeping only edges to in-neighbors of u0 and to out-neighbors
of un (see (2) in Figure 1). We call a graph whose simple paths have been compacted a compacted De Bruijn graph. Resulting
compacted nodes are called unitigs. In the following, we work with this node-centric, compacted version of a De Bruijn graph.
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Figure 1: (1) De Bruijn graph with k=5. Nodes are k-mers. (2) Same, compacted, De Bruijn graph. The k-mers constituting
simple paths (red CTGAG,TGAGA,GAGAA,AGAAC,GAACC and green CTGAT,TGATA,GATAA,ATAAC,TAACC) have
been merged by concatenating two consecutive k-mers while removing the overlapping part of the second one. Each node
of this graph is called a unitig. (3) Effect of a single substitution in a compacted De Bruijn graph. The alternative versions
of a nucleotide (red G/T) create two unitigs of the same lengths, that only differ by one position. Such an event can originate
from a sequencing error (G is an error while T is genomic) or a SNV. (4) Expected topology in the case of an alternative
splicing event in a transcriptomic De Bruijn graph (see [20] for a formalization). The red part is the sequence of an alternatively
spliced exon or an insertion/deletion (indel). The inclusion/exclusion of exon-length or indel sequences creates patterns where
branching nodes are connected to paths that may differ in length and sequence content.

Algorithm overview

We present an approach to correct reads by using a 2-steps procedure. First a De Bruijn graph is built fom the reads’ k-mers.
This graph is iteratively cleaned (unitigs are removed, see section 2.3) using topological, textual and unitig coverage information
(the unitig coverage being cu= 1

n

∑n
i=1count(ki) for k1,..,kn the k-mers of the unitig u of size n+k−1). Then, reads are mapped

to the cleaned graph, using a procedure involving coverage estimation and local alignment, to decide which path is the most
eligible to correct each read (see section 2.4).

Graph cleaning

Graph construction and hard filters

To build a reference De Bruijn graph, we rely on Bcalm2 [5] to build a raw De Bruijn graph from all non-unique k-mers of the
dataset. k-mers are extracted and counted, then Bcalm2 constructs the unitigs and computes their average coverage. Optionally,
we can apply a filter on this coverage, removing low coverage unitigs (useful in case (5), Figure 2). While this kind of filtering
has been shown to be efficient in genomics [17], such a threshold could suppress poorly represented but relevant k-mers. Unless
said otherwise we did not applied this filter.

In genomics, since most sequencing errors create bulges (pattern (3) in Figure 1) and tips (pattern (1) in Figure 2), their removal
is done by a very efficient cleaning [1]. However, those patterns are commonly found as variants in transcriptomic De Bruijn
graph [11], thus we introduce more advanced strategy to distinguish sequencing errors from actual variants in the next paragraph.
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Figure 2: Unitig coverage is shown using node thickness. (1) A tip created by an erroneous ’G’ in the De Bruijn graph. (2)
Very similar patterns can be encountered with SNV (here G/T subsitution), however most of them are expected to create
bubbles and to have a higher coverage. (3) Alternative variant differ from SNV by the larger Hamming distance. (4) Error
in a shallow coverage region. (5) “Slingshot” error that creates more than one dead-end tips of low coverage.

Advanced filters

In this section we present a likelihood model based on k-mer counting and hamming distance to attribute unitigs a probability
to have emerged from an error or from a real variant. We use the Bayesian estimation framework to derive rules used to keep
or discard unitigs for the correction step. Despite being based on simple framework, we demonstrate that these rules helps
our correction to be more accurate than Bcool’s cleaning algorithm.

Preliminary observations We examine branching patterns. We start from the following observations: first, sequencing
errors provoke patterns including a branching node and alternative paths in the graph. Thus we can focus on graph regions
that correspond to triplets of nodes u,v,w∈N such that (u,v),(u,w)∈E or (v,u),(w,u)∈E. In the following, u is the branching
node, v and w the alternative unitigs. In Figure 2, scenario (1) represents such branching pattern.
We examine pairs of alternative nodes and assume that the most covered comes from a real event. Second, for
triplets u,v,we, unitigs containing sequencing errors we are expected to be such that the coverages cwe�cv and cwe�cu. However,
due to the skewed k-mer distribution, an error can be more covered than other low expressed real events in other parts of the graph.
This motivates to work at a local scale (i.e. each branching pattern must be considered rather than applying a global threshold).
Third, we expect that, for a triplet u,v,we, if we is an erroneous unitig, v exists with cv>cwe and corresponds a real event node.
The existence of the error node without a true alternative is considered highly unlikely, unless in a specific scenario depicted
in Figure 2 (5).
Sequencing errors have a small distance to real events. Within triplets where we is erroneous, we expect that
dhamming(v,we)<t, with t≤1%×|we| because we consider a small (0.01% to 1%) and uniform error rate. On the contrary,
alternative splicing or insertion/deletion for instance are expected to produce distant nodes (see Figure 2 (3) and (4) for the
contrast). A SNV can yield a node with a small distance just as sequence errors. Such properties were also noticed and used
in [3]. This means that in some cases, SNV with very shallow coverage might be lost during the correction.

Rules for the relative filters We place ourselves in a given branching pattern with a triplet of nodes u,v,w, as described
above (with cv≥cw) and we want to determine whether w comes from an expressed variant or an error.
According to Bayesian frameworks [9] designed for close problems (to distinguish genomic variants), we consider the probability
to observe an error err in a node given the data in the given pattern and the probability to observe a real event event under
the same circumstances:

p(err|cov)∝P(err)×p(cov|err)
p(event|cov)∝P(event)×p(cov|event)

cov represents the observed data, i.e. the mean coverage in k-mers of each unitigs.
The first posterior probability corresponding to errors can be written as :

• p(err)=εd, the probability to have errors in w (under the hypothesis that errors are uniformely distributed and that there
is no error in v)

• p(cov|err)=
(
C
cw

)
εd×cw(1−εd)C−cw , which is the probability to generate cw erroneous unitigs given that the neighborhood

indicates there are C unitigs (with C=max(cv+cw,cu)).
The second posterior probability corresponding to an existing variant is:

• p(event)= cw
cw+cv

×(1−ε)d thus sequences are expressed and contain no sequencing error

• p(cov|event)=( cw
cw+cv

×(1−ε)d)cw using the approximation of the expression of the region from which the unitigs originate,
with their coverages as proxy

For each pair of unitigs, we compute both p(err|cov) and p(event|cov) and keep the maximum value between the two. If
p(err|cov)>>p(event|cov) the unitig is removed, else it is considered as an event and kept in the graph for correction.

Implementation details A detailed paragraph summing up the implementation details is provided in the Appendix. We
mention that we apply an iterative procedure to compare pairs of nodes in case the branching node u has more out-neighbors.
We also apply a low-pass filter on the v,w pairs to account for putative over-estimation of the error rate. Finally, polyA regions
(from messenger RNAs) of the reads are removed before the graph construction to avoid highly connected nodes due to repeats.

Read correction

During the graph cleaning, some rare events may be removed from the graph due to their low coverage (example (2) in Figure 2).
To cope with this peculiar situation that is not expected in genomic graphs, we developed a new read mapping algorithm. On
such cases, our aim is to produce a local alignment of the read to the graph able to partly correct the read without applying
incorrect modifications to the read subsequence absent from the graph.
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Global strategy

The mapping procedure follows a seed and extend paradigm as described in [16,17]. During the mapping of a read, the anchors
shared between the read and the graph are detected and the alignment is greedily extended from each anchor using a simple
linear scoring function, and the best alignments are used for correction. The proposed mapping algorithm brings two new
important features described in detail below, the local alignment and the coverage assisted consensus correction.

...ACTGA

CTGATTTT...

CTGATACC...

(1)

...ACTGA

CTGATTTT...

CTGATACC...

(2)

CTGATTTT...

T..

...ACTGA

CTGATTTT...

CTGATACC...

(3a)

CTGATACC...

A..

...ACTGA

CTGATTTT...

CTGATACC...

(3b)

CTGATTTT...

A..

Figure 3: Partial correction strategy post mapping. (1) Before the mapping step, a real unitig is cleaned out from the graph
because its coverage is too low. Henceforward in (2), reads from this region can only be mapped to the alternative path, leading
to mismatches. In this example we present a read with a sequencing error (T in red) in its left part. Strategies consist in
either not correcting the read at all, or fully correcting it (3a), leading to correct T but also to introduce many false positives
on the right (unitigs used for the correction have a black stroke). (3b) Our strategy in BCT. If a a unitig bring a negative
score, then this unitig is not considered for the correction leading to a partly mapped read. Then the best-scored among
all possible mappings is chosen (other possible mappings are not shown in the example). Assuming the example mapping
is the best-scored, this leads in the example to correct only the left part (T) of the read. This way, even if low covered parts
of the graph were removed at the cleaning step, errors are not transmitted to next steps of the pipeline.

Local alignment

Because we expect some read parts to be missing in the cleaned graph, we allow a trimming of the last (respectively first) unitigs
selected if it improves the read score in order to find the best mapping possible, even if it does not involve the entire read. The
procedure (algorithm described in Appendix) selects the unitig sequence optimizing the alignment score and keeps the corresponding
unitigs for correction. Note that if a local alignment is chosen to correct a read, the unmapped part of the read will be unchanged.
The rationale behind this choice is that we do not want to take the risk to perform wrong corrections in such cases (Figure 3).

Coverage-assisted correction

Another significant feature of the mapping algorithm is its ability to take into account the unitigs coverage. Following the
idea of Rcorrector that estimates the coverage of a read from its k-mers counts, our approach is able to estimate a read coverage
using the coverages of unitigs it can be mapped on. This information is then used when different mappings present the same
score, the average coverage of the read is computed from the unitigs shared among the mapping candidates. This behavior
allows to choose more precisely the path that corresponds to the read context (an example is given in Figure 4, see also the
algorithm in Appendix). Once again the rationale is to avoid to perform wrong corrections when possible. We use the statistics
of the comparison of means test to decide whether one mapping should be selected among others or the corresponding read
part should be left uncorrected (Implementation details in Appendix).

1

2 3

A

B

4

5

10

50 60 50

10
10

50

read, mean k-mer coverage 50

graph region

2       3   C    5

read mapping

Figure 4: Choice of the most likely coverage in paths in case of a tie during mapping. Assuming a read containing a region
C that can be mapped with a tie to two alternative unitigs A and B in the graph. The mapping strategy will take into account
the most likely path to choose according to the possible coverages (bold numbers under the unitigs) in comparison to the
coverage in k-mers of the read (here 50).

Differences with the other correction strategies

As BCT, Bcool and Rcorrector rely on De Bruijn graphs for the reads correction. Bcool was designed to correct genomic data
with high uniform sequencing coverage. Its approach, based on a global alignment of the read to the graph is not adapted
to RNA-seq data. Indeed, the reference graph may not contain all rare alternative events. Furthermore the graph cleaning
step proposed by Bcool strongly relies on a uniform coverage.

Rcorrector uses paths of the De Bruijn graphs built from the reads’ k-mers for the correction. However, it does not perform
a graph cleaning step. It selects k-mer nodes that are more covered than a threshold to correct reads in a greedy way. The
correction step highly relies on the coverage estimation of the read to be corrected. Contrary to BCT, the graph is not compacted,
thus each single k-mer coverage is used, and the filter threshold is estimated empirically.
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Interestingly, proposed improvements over Bcool do not impact the ability of BCT to correct genomic datasets. We show
in Appendix that BCT provides results similar to Bcool on the correction of a genomic dataset, with the same parameters.

Results

Transcriptomic De Bruijn graph cleaning

In this section we assess the behavior of our proposed method to remove erroneous k-mers from a De Bruijn graph constructed
from non uniform dataset as RNA-seq data. To assess our ability to correct sequencing errors, we simulated RNA-seq dataset of
more than 100 millions reads with FluxSimulator [12]. The reads were generated from RefSeq reference genome v19 and represent
107 millions reads, and 19 billions bases and were simulated with a one percent error rate. We selected rnaSPAdes [3] as it shares
similarities with the presented approach (graph topology and hamming-based cleaning), the graph correction module of Bcool [17] to
benchmark our own BCT implementation. We also included how a simple k-mer spectrum technique would perform for comparison.

In Table 1, we compared the produced cleaned De Bruijn graphs to the reference De Bruijn graph constructed using the
errorless reads and measured the number of true positive (“good” k-mer seen both in the graph and the reference), false positive
(“erroneous” k-mer in the graph not present in the reference) and the number of false negative (“missing” k-mer from the
reference not found in the graph) and derive precision, recall and F1-score.

cleaning strategy TP FP FN precision recall F1-score
BCT cleaning 32,868,544 893,867 3,579,538 97.352 90.179 93.628
rnaSPAdes cleaning 8,594,056 173,100 27,854,026 98.026 23.579 38.014
BCOOL cleaning 15,736,613 495,331 20,711,469 96.948 43.175 59.744
k-mer spectrum 2 34,044,102 427,250,600 2,403,980 7.380 93.404 13.679
k-mer spectrum 4 31,335,429 142,569,063 5,112,653 17.742 80.026 29.045

Table 1: Evaluation of the De Bruijn graph cleaning step. True positive : TP, “good” k-mer seen both in the graph and
the reference), false positive (FP, “erroneous” k-mer in the graph not present in the reference) and the number of false negative
(FN, “missing” k-mer from the reference not found in the graph). We therefore define the recall and the precision of a correction
as TP

TP+FN
TP

TP+FP respectively. The F1-score is the harmonic mean of the recall and the precision. k-mer spectrum 2 and
4 strategies refer to the k-mer minimum abundance threshold: respectively 2 and 4.

We show that BCT’s cleaning is able to retain most k-mers, even k-mers with very low abundance. BCT lost 3.5 millions
k-mers, slightly more than the filter removing unique k-mers but less than the filter removing k-mers seen 3 times or less. We
observe that if rnaSPAdes or Bcool’s cleaning steps are able to suppress most sequencing errors (low FP and high precision)
they tend to suppress a very important part of the expressed k-mers. In addition to its high recall BCT is also able to propose
a similar ratio of erroneous k-mers than those methods.

Results on simulated transcriptomic data

We kept the previously described dataset to assess our ability to correct sequencing errors. We corrected the read set using
BFC [15] and Musket [18], that are correctors among the best performers according to recent benchmarks [17], Bcool and
Rcorrector [27]. In Table 2, we report the recall and precision of our correction, the F1-score, the correction ratio (by which
factor the error rate was divided after correction) and the proportion of reads that still contain at least one error after correction.

corrector precision recall F1-score correction ratio % erroneous reads
BCT 99.532 98.511 99.019 51.248 2.069
Rcorrector 99.868 91.131 95.300 11.126 7.090
Musket 99.207 77.361 86.933 4.302 21.359
BFC 95.662 41.027 57.425 1.673 51.074
Bcool 84.856 25.002 38.624 1.299 64.5977

Table 2: Evaluation of the correction of simulated RNA-seq data. After correction we reported the number of true positive
(TP),errors corrected to the right nucleotide, false positive (FP), nucleotides modified by the corrector to a wrong nucleotide
and false negatives (FN), errors not corrected by the correctors. Precision, recall and F1-score are defined as in Table 1. The
correction ration is defined as FN+FP

TP+FN . All corrector were used with default parameters as experimental evaluations showed

a low impact of the parameters on the performances (See Appendix).

We observe that BCT is able to correct more errors than Rcorrector at the cost of being slightly less precise. We also observe
that k-mer spectrum techniques developed for genomics data does not perform well.

Because of low expression variants, we expect the correction to be harder with a lower coverage as it become more challenging
to distinguish erroneous from rare k-mer. To assess this effect we constructed smaller datasets by random sub-sampling on
the one presented. We build a “medium” dataset of 53 millions reads and 9 billions bases, a“small” dataset of 17 millions
reads and 5 millions bases and a “shallow” dataset of 13 millions reads and 2 billions bases. We kept Rcorrector as the most
competing tool for this benchmark and report it in Table 3.

We show that BCT is able to increase its correction performances when a higher coverage is available. The correction ratio
going from 35 from the 13 millions reads dataset to 52 with the dataset containing four time more reads. This can be explained
that a higher coverage leads to the construction of a better De Bruijn graph as the sequencing errors and the variant become easier
to distinguish. Per contra the performances of Rcorrector remained very similar despite an order of magnitude coverage change.
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dataset corrector precision recall F1-score correction ratio % erroneous reads
Medium dataset BCT 99.572 98.530 99.048 52.818 1.919

”” Rcorrector 99.851 91.153 95.304 11.134 7.083
Small dataset BCT 99.511 98.285 98.894 45.500 2.156

”” Rcorrector 99.827 91.007 95.213 10.929 7.223
Shallow BCT 99.442 97.692 98.559 35.015 2.697

”” Rcorrector 99.785 90.545 94.941 10.364 7.643

Table 3: Evaluation of the correction of simulated RNA-seq data according to the available coverage.

Results on simulated metagenomic data

To evaluate the capacity of BCT to correct sequences from metagenomic samples, we created 2 synthetic datasets. First, we created
a highly covered dataset (more than 100X) of 25 mixed bacterial genomes using CAMISIM [8] (genomes included in CAMISIM).
Second, we created a low coverage dataset (20 in average) with high diversity of bacterial genomes (100 genomes). Datasets
used for the reads generation can be found in Appendix. For both of the datasets, we added 1% of uniformly distributed errors.

corrector precision recall F1-score correction ratio % erroneous reads
CAMISIM 25 genomes

BCT -S4 99.576 99.614 99.595 123.454 0.564
Rcorrector 99.953 99.233 99.592 123.001 0.628

BFC 93.560 66.218 77.550 2.726 37.786
100 genomes simulation

BCT 99.527 97.091 98.294 29.68 3.141
Rcorrector 97.745 48.986 65.265 1.919 41.07

BFC 98.943 95.686 97.287 18.759 3.951

Table 4: Evaluation of the correction of simulated metagenomic data. CAMISIM 25 genomes simulation contains 22,222,221,750
nucleotides split into 148,148,145 reads. 100 genomes simulation contains 7,654,414,260 nucleotides split into 51,023,830 reads.
The average genome coverage is 20 with a lognormal distribution.

Results are presented in Table 4. A study of the influence of BCT’s parameters is available in Appendix. While BCT, BFC
and Rcorrector could handle 25 genomes correction, only BFC and BCT’s performances continued to keep up with the number
of genomes. With default parameters, BCT had the best results on all metrics on the 100 genomes dataset.

Results on real datasets

We tested our correction on more realistic scenarios from human sequencing: 2 RNA-seq files and 5 single cell RNA-seq (scRNA)
files, presenting various read sizes and coverages. Since no ground truth is available when working on real data, we used read
alignment on the reference genome as a proxy to correctors’ performances. All read files (raw and corrected) were mapped to
the human reference genome using STAR [7] with default parameters. Since BayesHammer uses different information (FASTQ
qualities) than our algorithm, we do not report direct comparison. However, BayesHammer’s results can be found in Appendix,
showing that it performed best on scRNA-seq, with BCT ranking second in terms of mismatches. Results are presented in Tables 5
and 6, and the complete results are available in Appendix. BCT successfully reduced the mismatch rates, at a better rate than
Rcorrector in 6 out of 7 cases. It increased the reads length mapped and decreased the fraction of unmapped reads in most cases.

SRR3466506 SRR8942950
metric raw BCT Rcorrector raw BCT Rcorrector

average mapped length 199.29 199.43 199.30 99.93 100.03 99.97
unmapped (%) 0.69 0.80 2.3 3.08 3.05 3.46

mismatch rate per base (%) 0.31 0.18 0.30 0.44 0.33 0.39

Table 5: Correction of RNA-seq human datasets. Statistics were computed using STAR 2.7.0

Conclusion and future works

In this work we presented a method able to construct a De Bruijn graph containing a low amount of erroneous k-mers while
preserving most of the diversity present in dataset, even if in presence of a high discrepancy in the observed coverage. We shown
that this graph could be used as a reference for read correction using De Bruijn graph local read alignment. We benchmarked
the implementation of the proposed method, dubbed BCT, against state-of-the-art correctors on RNA-seq and metagenomic
data and showed the interest of such a method to efficiently raise the signal to noise ratio in such datasets.

Since our proposition is designed as a workflow, a natural extension of this work could be to test different graph alignment
tools as graphAligner [19] or vg [10] to assess if they could be adapted to perform read correction.

6

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted June 25, 2019. ; https://doi.org/10.1101/673624doi: bioRxiv preprint 

https://doi.org/10.1101/673624
http://creativecommons.org/licenses/by-nc/4.0/


ERR2457632 ERR2457650 SRR2977735
metric raw BCT Rcorrector raw BCT Rcorrector raw BCT Rcorrector

average mapped length 71.92 73.51 73.53 71.35 73.44 73.37 43.59 43.74 43.78
unmapped (%) 7.9 7.81 7.92 11.76 11.74 12.14 0.45 0.57 1.06

mismatch rate per base (%) 0.45 0.27 0.27 0.76 0.49 0.60 0.71 0.62 0.68
SRR5739564 SRR4055098

raw BCT Rcorrector raw BCT Rcorrector
average mapped length 96.26 96.27 96.47 71.41 71.44 71.62

unmapped (%) 37.29 37.16 37.39 0.61 0.7 0.65
mismatch rate per base (%) 0.38 0.24 0.25 1.19 1.21 1.03

Table 6: Correction of scRNA-seq human datasets. Statistics were computed using STAR 2.7.0.

dataset k-mers solid k-mers
perfect 48,768,160 42,341,330
raw (s=2) 1,730,909,073 1,106,857,613
raw (s=3) 1,730,909,073 379,996,372
corrected 64,571,030 42,705,163

42,341,330

96.7 %

real k-mers
42,705,163
corrected k-mers

solid k-mers

Figure 5: Effect of the correction on the usable k-mer set size.The simulated dataset from Table 2 was used. The perfect
dataset refers to reads without errors. The corrected dataset was generated with BCT. We filtered k-mers with abundance
¡ 2 to obtain solid k-mers for these two datasets. We show k-mers from raw reads, with abundance filters ¡ 2 and ¡3 for solid
k -mers. On the right, the proportion of solid corrected k-mers that intersect real k-mers is presented.

An ongoing application of this work is the hybrid correction of long reads. Transcriptomic long reads (Iso-seq and Nanopore)
are increasingly used for full-length isoform identification and de novo transcript and alternative splicing discovery. For these
data, hindered by high error rates and especially insertion/deletion, a primary correction step is often required. The mixture of
short and long reads was shown to provide sequences with higher accuracy [6], in particular for technologies prone to systematic
errors such as Oxford Nanopore. We would like to investigate the impact of high quality short reads on such correction.

Another potential function of the proposed method would be to produced paired-end read alignment to produce merged long
reads from read pairs [4]. Such extended and corrected reads could improve assembly or variant calling, especially in repeated
regions. Those extended reads could also improve the hybrid correction as they should be easier to associate to a long reads.

An interesting feature of our method is that most reads can be decomposed into a path of the De Bruijn graph. This
compressed representation could be highly efficient to index RNA-seq experiment at the read level. One could build an index
of such paths to efficiently associate a k-mer (or a set of k-mers) to the reads it originates from.

Finally, we see in Figure 5 that the corrected reads account for orders of magnitude less distinct k-mers to index
while preserving most of the original read k-mer content. Therefore, this procedure could greatly impact the scalability
of k-mers based indexing methods such as SBT [26] or BIGSI [2] by drastically reducing the amount of k-mers to in-
dex.
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[18] Yongchao Liu, Jan Schröder, and Bertil Schmidt. Musket: a multistage k-mer spectrum-based error corrector for illumina sequence
data. Bioinformatics, 29(3):308–315, 2012.
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