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Abstract

Streptococcus agalactiae is a common human commensal and a major life-threatening pathogen in neonates. Adherence to
host epithelial cells is the first critical step of the infectious process. Pili have been observed on the surface of several gram-
positive bacteria including S. agalactiae. We previously characterized the pilus-encoding operon gbs1479-1474 in strain
NEM316. This pilus is composed of three structural subunit proteins: Gbs1478 (PilA), Gbs1477 (PilB), and Gbs1474 (PilC), and
its assembly involves two class C sortases (SrtC3 and SrtC4). PilB, the bona fide pilin, is the major component; PilA, the pilus
associated adhesin, and PilC, are both accessory proteins incorporated into the pilus backbone. We first addressed the role
of the housekeeping sortase A in pilus biogenesis and showed that it is essential for the covalent anchoring of the pilus fiber
to the peptidoglycan. We next aimed at understanding the role of the pilus fiber in bacterial adherence and at resolving the
paradox of an adhesive but dispensable pilus. Combining immunoblotting and electron microscopy analyses, we showed
that the PilB fiber is essential for efficient PilA display on the surface of the capsulated strain NEM316. We then
demonstrated that pilus integrity becomes critical for adherence to respiratory epithelial cells under flow-conditions
mimicking an in vivo situation and revealing the limitations of the commonly used static adherence model. Interestingly,
PilA exhibits a von Willebrand adhesion domain (VWA) found in many extracellular eucaryotic proteins. We show here that
the VWA domain of PilA is essential for its adhesive function, demonstrating for the first time the functionality of a
prokaryotic VWA homolog. Furthermore, the auto aggregative phenotype of NEM316 observed in standing liquid culture
was strongly reduced in all three individual pilus mutants. S. agalactiae strain NEM316 was able to form biofilm in microtiter
plate and, strikingly, the PilA and PilB mutants were strongly impaired in biofilm formation. Surprisingly, the VWA domain
involved in adherence to epithelial cells was not required for biofilm formation.
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Introduction

Group B Streptococcus (GBS, Streptococcus agalactiae) is a

common colonizer of the gastro-intestinal and urogenital tracts

of up to 40% of healthy individuals [1]. However, in certain

circumstances, GBS can become a life-threatening pathogen

causing invasive infections in human neonates [2,3]. Epidemio-

logical studies have documented how commonly GBS are

transmitted from ‘‘carrier’’ mothers to newborn infants [4]. The

clinical symptoms of acute GBS disease are pneumonia,

septicemia, and meningitis. The lung is the portal of entry in

neonatal GBS infections although it possesses a sophisticated array

of innate immune mechanisms for defense against infection:

mechanical barriers and mucociliary clearance, antimicrobial

factors in the airway lining fluid, and resident alveolar macro-

phages. Thus, adherence to the host pulmonary epithelium is the

first step in GBS pathogenesis and experimental studies involving

static binding assays indicate that the molecular interactions of S.

agalactiae with host cells are complex, involving a variety of surface

adhesion molecules [5,6,7].

Bacterial pili have recently been recognized in several gram-

positive bacteria (for reviews see [8–12]). In contrast to gram-

negative bacteria, gram-positive bacteria assemble pili by a distinct

mechanism involving a transpeptidase called sortase. Sortase was

first discovered in Staphylococcus aureus and is mostly known for

catalyzing the covalent anchoring of LPXTG-containing proteins

to the peptidoglycan [13]. Analysis of bacterial genomes revealed a

plethora of sortases in almost all gram-positive species with

frequently more than one sortase gene per genome [14]. Our

previous bioinformatic analysis of sixty-one sortases from complete

gram-positive genomes suggested the existence of 4 distinct classes

of sortases named A, B, C, and D involved in different functions

[15]. The class A sortase is the ubiquitous housekeeping enzyme

that anchors LPXTG proteins to the cell wall. The class B, C, and
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D sortases are specifically involved in iron acquisition, pilus

assembly and developmental processes including sporulation

[15–17].

Sortase-mediated pilus assembly was first demonstrated in

Corynebacterium diphtheriae [18,19] and these pioneer studies revealed

the existence of 3 conserved genetic elements found within the

major pilin subunit and necessary for pilus formation: i) the pilin

motif (WxxxVxVYPK); ii) the E-box domain (YxLxETxAPxGY);

and iii) the cell wall sorting signal (LPxTG followed by a

hydrophobic domain and a positively charged tail). The current

model for pilus assembly is as follows: the major subunit is

assembled into a pilus by a cis-encoded sortase that catalyzes the

covalent attachment between the conserved pilin motif lysine

residue of one subunit with the conserved threonyl residue LPxTG

motif of another subunit. In addition, one or more accessory

subunits are incorporated into the pilus by an unknown

mechanism, but requiring pilus-specific sortase as well as the E-

box domain within the major pilin subunit. Then, during a final

step, the pilus fiber is covalently linked to the peptidoglycan by

either the pilus-specific sortase or the housekeeping sortase. This

mechanism of pilus assembly catalyzed by class C sortases has now

been demonstrated in several gram-positive pathogens using

similar genetic and biochemical analyses [20–27].

We previously carried out a detailed structural and functional

analysis of the pilus locus gbs1479-1474 (also referred to as PI-2A

[27] in GBS strain NEM316 [22]). This locus encodes a pilus

composed of three structural subunit proteins Gbs1478 (PilA),

Gbs1477 (PilB), and Gbs1474 (PilC) whose assembly involves two

class C sortases (SrtC3 and SrtC4). PilB, the bona fide pilin, is the

major component; PilC is a minor associated component mainly

localized at the base of the pilus; and PilA is the pilus associated

adhesin located at intervals along the pilus backbone. We

previously showed that PilA mediates adherence of GBS

NEM316 to the pulmonary epithelial cell line A549 independently

of pilus formation [22]. The apparently paradoxical situation of a

pilus that carries the adhesive property and yet is dispensable for

binding was reported previously in the Escherichia coli Pap pilus

model system [28] and more recently in the pneumococcal pilus

[29]. We postulated that, in the absence of pilus, PilA behaves as a

classical LPXTG-containing adhesin anchored to the cell wall by

the housekeeping class A sortase SrtA to mediate adherence to

cultured epithelial cells.

Bacteria often exist within natural systems in an entirely

different form (sessile) from those grown in laboratory conditions

(planktonic). Sessile bacteria appear to be protected in hostile

environments by growing as colonies embedded in an extracellular

matrix of carbohydrate or exopolysaccharide called biofilm. The

pattern of biofilm development involves bacterial attachment to a

solid surface, the formation of microcolonies, and their differen-

tiation into exopolysaccharide-encased communities to form a

mature biofilm. Many gram-negative pathogens use their pili to

promote attachment and aggregation to host cells, that eventually

develop into mature biofilm resulting in host tissues colonization

[30]. Pilus contribution in biofilm formation was recently shown in

gram-positive bacteria such as E. faecalis, S. pyogenes (GAS), and S.

pneumoniae [11,26,31,32].

In this work, we investigated the roles of the housekeeping

sortase A in pilus assembly in GBS and that of the pilus structure

to resolve the paradox of a pilus dispensable in adherence assays

although containing an adhesin subunit. We characterized the

functional role of the von Willebrand adhesion domain found in

the PilA adhesin. We adapted a biofilm formation assay for GBS

and thus uncovered an essential role of GBS pilus in this process.

Results

The pilus is anchored to the cell-wall by the
housekeeping class A sortase

Our previous functional characterization of the pilus locus in S.

agalactiae [22] raised the question of the role of the housekeeping

class A sortase (SrtA) in pilus biosynthesis but did not answer it

since transcription of the PI-2A pilus locus was dramatically

reduced in the srtA mutant of strain NEM316 [22]. This mutant

was made by insertion of a promoterless aphA-3 kanamycin

cassette within srtA by allelic replacement to generate a strain that

synthesizes a truncated SrtA protein deleted of its carboxylic half

(i.e., 127 out of 248 amino acids) including the catalytic TLXTC

sequence [33]. Complementation of the srtA mutant with the wild-

type gene inserted ectopically on NEM316 chromosome did not

result in wild-type levels of pilus expression (data not shown),

although restoring the correct localization of two model LPXTG

proteins, Alp2 and ScpB [33].

To characterize the role of SrtA in pilus synthesis, we therefore

constructed a catalytic mutant of SrtA by in frame-modification of

the TLXTC signature sequence encompassing the critical cysteyl

residue (TLVTCTDPE to TAAAPGRAE replacement in the

catalytic site). This new mutant named SrtA* exhibited pheno-

types similar to those of the previously characterized SrtA2

mutant (Figure 1A–1C). It is unable to anchor the classical

LPXTG protein Alp2 on the bacterial surface as shown by

immunofluorescence (Figure 1A) or by Western blotting

(Figure 1B, left panel). The ScpB protein was found in larger

amounts in the supernatants of the SrtA2 and SrtA* mutants

compared to the wild-type strain NEM316 (Figure 1B, right

panel). As expected, the binding to human fibronectin- and

fibrinogen-coated plates was similarly affected in both mutant

strains (Figure 1C). Of note, the surface properties of SrtA2 and

SrtA* were macroscopically different from that of the parental

strain: they bound less to polypropylene-, MaxiSorp-, or glass-

matrices and their pellets obtained after centrifugation were

smooth (data not shown).

We then tested expression levels of the major pilin subunit PilB

in the SrtA* mutant by immunoblotting on whole bacteria. As

shown in Figure 1D, the level of PilB in the SrtA* mutant was

Author Summary

Streptococcus agalactiae (Group B Streptococcus) is a
leading cause of sepsis (blood infection) and meningitis
(brain infection) in newborns. Most bacterial pathogens
have long filamentous structures known as pili or fimbriae,
which are often involved in the initial adhesion of bacteria
to host tissues but also in bacteria–bacteria interactions,
resulting in biofilm formation. Our previous functional
characterization of the pilus locus in S. agalactiae showed
that it encodes a major pilin and two minor pilin subunits
that are covalently polymerized by the action of two
enzymes belonging to the sortase C family. One of the
accessory pilins is responsible for the adhesive property of
the pilus. However, this initial study raised two major
questions that were addressed in the present work: i) what
anchors the pilus to the cell wall and ii) what is the
function of the pilus fiber itself. We showed that the pilus
is essential for optimal display of the pilus-associated
adhesin and overcomes the masking effect of the capsule.
Pilus integrity was shown to be critical in adherence assays
under flow conditions. We also report that GBS can form
biofilms and that pili play an important role in this process.

Roles of GBS PI-2A Pilus
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similar to that found in the wild-type strain. To unravel the role of

the various sortases in the pilus assembly process, we monitored

pilus polymerization in the various GBS sortases mutants by

immunoblotting using specific anti-PilB polyclonal antibody

(Figure 2). S. agalactiae isogenic strains were grown to the same

optical density (OD600<2) and the cultures were separated into

three fractions (medium, cell-wall, and membrane) that were

electrophoresed on 4–12% gradient SDS-PAGE and probed with

the PilB antiserum (upper panel). The same fractions were also

probed with an antiserum raised against the secreted protein Bsp

[34] used as an internal loading control (lower panel). Pilus

polymers are readily detected in the various fractions of the wild-

type strain but, as previously reported [22], their polymerization

requires either SrtC3 or SrtC4 (Figure 2). PilB monomer could be

detected in the culture medium fractions as a band of about

80 kDa, the lower band at 60 kDa being a degradation product.

As previously shown, pili are not expressed in the SrtA2 mutant

(Figure 2). In the SrtA* mutant, the pilus polymers are only found

in the membrane and medium fractions, but not in the cell wall

fraction. This result demonstrates that the housekeeping class A

sortase is not necessary for pilus polymerization but is absolutely

required for anchoring the pilus to the cell wall.

Figure 1. Phenotypic characterization of the catalytic mutant of Sortase A (SrtA*). (A) Display of the LPXTG-containing protein Alp2 on the
cell surface of S. agalactiae NEM316 (wild-type strain), NEM2135 (SrtA2 mutant), and NEM2511 (SrtA*). Bacteria were grown in TH broth at 37uC to an
OD600<1.5 washed twice in PBS, and incubated for 5 min at 37uC in PBS containing 1% SDS. They were analyzed by immunofluorescence with
affinity-purified polyclonal anti-R28/Alp2 antibodies revealed with an anti-IgG coupled to Alexa 488 (left panel) and the same sample was observed
by staining the DNA with DAPI (right panel). (B) Western blot analysis of GBS cell wall and supernatant proteins with anti-R28/Alp2 and anti-ScpB sera
from the wild-type strain NEM316, the SrtA2 mutant, and the catalytic mutant SrtA*. (C) Adherence of S. agalactiae strains to immobilized human
fibronectin and fibrinogen. Microtiter wells were coated with 5 mg of fibronectin or fibrinogen and 107 bacterial CFU (NEM316, SrtA2 and SrtA*
strains) were added. The wells were washed and bound bacteria were assayed with crystal violet staining. OD595 values are presented as mean values
(6SD) of two experiments performed in quadruplet. (D) Dot-blot analysis of PilB expression on whole bacteria in wild-type NEM316 and the srtA
mutants. The isogenic DpilB mutant was used to verify the antibody specificity.
doi:10.1371/journal.ppat.1000422.g001

Roles of GBS PI-2A Pilus
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Pilus integrity is essential for PilA display at the cell
surface

The PI-2A pilus of S. agalactiae is composed of three structural

subunits PilA (Gbs1478), PilB (Gbs1477), and PilC (Gbs1474). PilB

is the major constituent of the pilus fiber; PilC is a minor

associated component mainly localized at the base of the pilus; and

PilA is the pilus-associated adhesin located at intervals along the

pilus backbone [22,27]. Immunogold electron microscopy re-

vealed abundant surface staining and pilus structures extending

largely beyond the capsule in strain NEM316 (Figure 3A). Using

the previously characterized mouse monoclonal antibody S9

directed against the type III capsular polysaccharide [35], we

carried out a triple-labeling experiment to detect simultaneously

the PilB pilin, the PilA-associated adhesin, and the capsule. Wild-

type (WT) and isogenic mutant bacteria were stained with: i)

mouse mAb S9 followed by 5 nm gold-labeled IgG; ii) with rabbit

pAb anti-PilB followed by 10 nm gold-labeled IgG, and iii) with

rabbit pAb anti PilA followed by 20 nm gold-labeled IgG. The

mAb S9 decorates the external layer of the capsule [36] and its

thickness in strain NEM316 was estimated to be <50 nm on ultra-

thin sections by transmission electron microscopy (Figure S1). In

the absence of the PilB backbone pilin, the PilA adhesin is found at

the cell surface without detectable pili (Figure 3A, bottom panel).

As expected, the absence of the PilA accessory protein did not

prevent pilus formation and in this mutant pili are even longer

than in wild-type strain (Figure 3A, bottom panel, and Figure S2).

Strikingly, in the absence of the PilC ancillary protein, pili are

longer but also more extended (Figure 3A, bottom panel). Of note,

a significant amount of pili produced by DpilA and DpilC mutants

were released in the culture medium compared to the parental

strain (Figure S2). These immuno electron micrographs were

subjected to quantitative analysis and the results are shown in

Table 1. Pili were shown to be longer in both DpilA and DpilC

compared to the wild-type strain. In addition, immunofluores-

cence analyses clearly shows that pili are not only longer but also

thicker in the DpilA and DpilC (Figure S2). Immunoblotting

analysis on whole bacteria confirmed the specificity of all four

antisera (PilA, PilB, PilC, and S9) and showed that in the absence

of the pilus backbone (DpilB), PilA cannot be detected at the

bacterial surface (Figure 3B). PilA accessibility at the bacterial

surface is also reduced in the DpilC mutant. Previous transcrip-

tional and western blot analyses showed that deletion of pilB or

pilC does not affect expression of pilA [22]. Altogether, these results

reinforce the idea that pilus integrity is essential for efficient PilA

display at the bacterial surface.

PilB-dependent display of PilA is essential for adherence
to epithelial cells under flow-conditions

We previously showed that PilA mediates adherence of S.

agalactiae strain NEM316 to the human alveolar epithelial cell line

A549 independently of pilus formation [22]. Indeed, the apiliated

pilB mutant is as adherent as the wild-type strain to A549 cells

(Figure 4A) and the role of the pilus fiber in bacterial adhesion

therefore remains to be characterized. A major defence in the lung

is constituted by the mucociliary clearance apparatus. Goblet and

glandular cells beneath the epithelium produce mucus that lines

the epithelial layer of the air conducting pathways. Mucus is

moved through the conducting pathways as fast as 1 cm/min by

bronchial epithelial cell cilia to the trachea and later towards the

mouth. We reasoned that surface display of PilA adhesin could be

important in more stringent adherent conditions, e.g., in the

presence of liquid fluid mimicking the mucociliary movement in

the lung. A major limitation of the standard adhesion model is that

it neglects the local fluid mechanic environment encountered in

the organism. We therefore examined the role of the various pilus

components under defined shear stress condition by analyzing pilA,

Figure 2. Pilus synthesis and localization in S. agalactiae sortases mutants. Proteins anchored to the cell-wall or associated to the membrane
or secreted in the supernatant were isolated from S. agalactiae strain NEM316 and its isogenic sortases mutants [22], separated on 4%–12% Criterion
XT SDS-PAGE gel, and detected by immunoblotting with specific anti PilB antiserum (upper part). Equivalent amount corresponding to 500 ml of the
initial culture was loaded in each well. The PilB monomer is indicated by a black arrow. The high-molecular-weight species correspond to PilB
polymers while the lower band at 50 kDa is most likely a degradation product. The equal quantity loaded in each well is verified by immunoblotting
the same gel with a control antiserum that recognizes a secreted protein Bsp of 65 kDa (lower part).
doi:10.1371/journal.ppat.1000422.g002

Roles of GBS PI-2A Pilus
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pilB, and pilC mutants. Adherent human alveolar epithelial cells

(A549) were grown on glass slides and placed in a laminar flow

chamber observed under an inverted microscope (for experimental

details see [37]). S. agalactiae labeled with fluorescent 5-chlor-

omethylfluorescein diacetate (CMFDA) was introduced in the

chamber under a controlled flow. Before introduction of bacteria

little or no fluorescence was detected. A low shear stress value

(0.04 dynes/cm2) mimicking the mucus flow in the lung was

selected. We showed that all three pilus mutants were significantly

decreased for adherence as much as the srtA* mutant under low

shear stress (Figure 4B and Figure S3). The structural component

of the pilus is therefore necessary for efficient adhesion in the

presence of a shear stress reproducing the conditions encountered

by the bacteria in the lung.

The von Willebrand Adhesion type A (VWA) domain of
PilA is required for adherence to epithelial cells

In silico analysis of GBS PilA adhesin revealed the presence of a

von Willebrand factor type A domain (VWA found at amino acids

228 to 585) located upstream from the putative pilin motif (YPK).

This VWA domain is flanked by two Cna-B type domain found in

a S. aureus collagen-binding surface protein (Figure 5A). However,

the Cna-B regions do not mediate collagen binding but forms a

stalk that presents the ligand binding domain away from the

bacterial surface [38]. VWA domains in extracellular eukaryotic

proteins mediate adhesion via metal ion-dependent adhesion sites

(MIDAS). Binding of Mn2+ and Mg2+ to the MIDAS region in

eukaryotic proteins have been demonstrated by crystallographic

structures. Divalent cations were shown to stabilize the a1b1

integrin I domain [39]. Of note, the critical serine and aspartate

residues known to interact with divalent cations are conserved in

the VWA domain of PilA (Figure 5A). Many homologues have

been identified in bacterial genomes but their role have not been

characterized [40]. Multiple sequence alignments of prokaryotic

and eukaryotic VWA-domains is shown in Figure S4.

We sought to determine whether the VWA domain of PilA was

involved in PilA-mediated adherence. To test this hypothesis, we

constructed a PilA mutant named DVWA in which the first 180

amino acids of the 358 amino acids VWA domain was replaced by

a 9-aa residue-long hemagglutinin epitope tag (HA tag) allowing

the detection of the mutant protein with specific anti-HA

monoclonal antibody (Figure S4). Of note, the putative pilin motif

YPK of PilA allowing its incorporation into the pilus fiber is

Figure 3. The PilB pilus backbone as a carrier for surface
display of the pilus-associated adhesin PilA. (A) Immuno-
electron-microscopy (IEM) analyses of the pilus subunits PilA, PilB and
the capsular type III polysaccharide. S. agalactiae wild-type strain
NEM316 and its isogenic pilus mutants (DpilA, DpilB, DpilC) were
incubated with rabbit polyclonal antibody raised against PilA and PilB,
and with a mouse monoclonal antibody raised against the type III
capsular polysaccharide (mAb S9). Antibodies were conjugated to
20 nm, 10 nm, and 5 nm gold particles, respectively. The outer layer of
the capsule is marked by thin arrows. The major pilin PilB is marked by
thick arrows. The PilA adhesin is present along the entire pilus and
marked by arrowheads (cf. the DpilC panel). (B) Dot-blot analysis of PilA,
PilB, PilC, and capsule expression on whole bacteria in wild-type
NEM316 and its isogenic derivatives mutants.
doi:10.1371/journal.ppat.1000422.g003

Table 1. Quantification of pilus length in S. agalactiae
NEM316 and mutant derivatives.

Strain

WT DpilA DpilC

Experiment 1

Sample number 48 39 50

Mean length in mM 0.29 0.42* 0.65*

Standard Deviation 0.134 0.155 0.299

Experiment 2

Sample number 25 38 28

Mean length in mM 0.296 0.503* 0.582*

Standard Deviation 0.107 0.185 0.243

*Using the Mann-Whitney Test, the two-tailed P value is ,0.0001 between WT
and mutant strains considered extremely significant.

doi:10.1371/journal.ppat.1000422.t001

Roles of GBS PI-2A Pilus
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located behind the VWA domain and left intact in the mutant

(Figure 5A). This new isogenic pilADVWA mutant displayed similar

growth caracteristics in Todd-Hewitt broth compared to the

parental strain at 37uC (data not shown). Dot-blot analysis on

whole bacteria using a commercial anti-HA antibody showed that

the HA epitope is located at the bacterial surface of the DVWA

HA-expressing bacteria. No signal could be detected in the

parental strain confirming the specificity of the HA antibody

(Figure 5B). Interestingly, introduction of the srtC3C4 mutation in

the DVWA strain to abrogate pilus polymerization caused the

disappearance of the HA signal (Figure 5B). This result strongly

suggests that HA detection on the bacterial surface of DVWA

mutant depends on its incorporation into the pilus fiber. Western-

blot analysis of cell wall extracts from isogenic mutants showed the

presence of the HA-tagged PilADVWA protein in the pilus

polymers of the DVWA strain but this incorporation is abolished

in the DVWA/SrtC3C42 mutant where a single 60-kDa protein,

i.e. the predicted size of monomeric PilADVWA protein, is present

(Figure 5C). We also analyzed the interaction between HA-tagged

PilA mutant and the major pilin subunit PilB using pull-down

experiment with HA agarose beads and immunoblotting with anti-

PilB antibody. As shown in Figure 5D, the HA-tagged PilADVWA

physically interact with PilB polymer in cell wall extracts. No

signal was detected with wild-type extracts as control for HA

specificity (data not shown). Immunolocalization of the Pi-

lADVWA-HA protein in the pilus fiber was demonstrated by

scanning electron microscopy (Figure 5E). Double-labeling

experiments were performed on the parental DVWA and its

isogenic SrtC3C42 mutant using rabbit anti-PilB polyclonal

antibody followed by 10 nm gold-labeled IgG (thin arrows) and

then with rat anti-HA monoclonal antibody followed by 20 nm

gold-labeled IgG (arrow heads). HA staining was detected at

various locations including the base and the tip (Figure 5E) and

was similar to that of PilA staining (Figure 3A and [22,27]). No

staining was detected in the absence of pilus polymerization in the

DVWA/SrtC3C42 double mutant (Figure 5E). Altogether these

results indicate that the PilADVWA protein is produced, folded,

and incorporated into the pilus fiber like the intact PilA protein.

Finally, we examined the ability of the PilADVWA mutant to

bind to human epithelial cells from alveolar (A549) and intestinal

(TC7) origins. Standard adhesion assays showed that the DVWA

mutant is strongly reduced for adherence to both A549 and TC7

cell lines compared with the parental strain NEM316, to a level

similar to that obtained with the pilA and the SrtA* mutants

(Figure 6). Collectively, these results show that the VWA domain

of PilA is essential for PilA adhesive property.

The PI-2A pilus is involved in biofilm formation
We initially observed that all pilus mutant strains remained in

suspension after an overnight culture in Todd-Hewitt broth

whereas strain NEM316 sedimented at the bottom of the tube

(data not shown). This result suggested a role of the PI-2A pilus

locus in bacterial aggregation and possibly in biofilm formation.

We thus began to assay the ability of S. agalactiae to form biofilms

on microtiter polystyrene plate as previously described [41]. In this

assay, staining with 0.1% crystal violet (CV) for 15 min enables the

visualization of attached, sessile cells after bacterial biofilms have

formed in microtiter plate wells. Biofilm assays were carried out

under various conditions to determine the optimum experimental

conditions. Various media (TH, THY, BHI, LB, RPMI 1640),

temperature (30uC and 37uC), and time points (24 to 48 h) were

used in preliminary experiments but only LB and RPMI 1640

media supplemented with 1% glucose at 37uC for 24 h produced

uniform biofilms (data not shown). In enriched media such as TH,

THY, BHI bacteria grew better than in LB or RPMI media but

failed to evenly adhere over the surface, instead forming pellets at

the bottom of the well. It appears that a nutritionally rich

environment does not favor S. agalactiae biofilm formation on

polystyrene but that nutritionally limited environment increases

sessile growth. We also compared the ability of S. agalactiae to form

biofilms on different surfaces. Polystyrene surface was more suited

than polyvinylchloride or glass surfaces on which S. agalactiae

adhered poorly. Thus, the optimal conditions to see biofilm

formation with strain NEM316 were as follows: overnight culture

Figure 4. Adherence of S. agalactiae pilus mutants to human
pulmonary epithelial cells A549 under static (A) or low flow
conditions (B). (A) Cells were infected at a M.O.I of 20 bacteria per cell
for 1 h at 37uC and adherence frequencies were calculated from the
numbers of bacteria remaining attached to the cells after the
incubation period with respect to the number if inoculated bacteria.
The level of adherence of the WT strain is arbitrarily reported as 100,
and the level of adherence of the various mutants are relative values.
The results are presented as mean value (6SD) from one representative
experiment of at least 3 independent experiments. (B) Adherence of the
same strains labeled with fluorescent CMFDA under liquid flow
(0.04 dynes/cm2). The number of fluorescent bacteria per mm2 was
determined (see Experimental Procedures). The level of adherence of
the WT strain is arbitrarily reported as 100 and the level of adherence of
the various mutants are relative values. The results presented as mean
value (6SD) is representative of 3 independent experiments.
doi:10.1371/journal.ppat.1000422.g004
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in Todd-Hewitt medium, dilution in LB medium supplemented

with 1% glucose to obtain an initial OD 600 nm of 0.05,

inoculation of sterile polystyrene 96-well plate and growth at 37uC
for 24 h. Biofilm formation of S. agalactiae strain NEM316 and its

isogenic pilus mutants were assayed accordingly (Figure 7). We

hypothesized that the sortase A mutants, unable to attach to the

polystyrene surface, would be defective for biofilm formation as

recently reported for S. gordonii srtA mutant [42]. Indeed, both S.

agalactiae srtA2 and srtA* mutants were unable to form biofilm

(Figure 7). We showed that pilA and pilB mutants were as strongly

impaired as the srtA mutants for biofilm formation. The pilC

mutant that still forms pili was only slighly reduced for biofilm

formation. Surprisingly, the pilADVWA mutant readily forms

thicker biofilm, as compared to the parental strain NEM316,

although it is unable to adhere to epithelial cells (Figure 6 and

Figure 7).

Discussion

Our previous functional characterization of the pilus locus in S.

agalactiae [22] raised two major questions that were addressed in

the present work: i) what is the role of the housekeeping class A

sortase (SrtA) in pilus biosynthesis and ii) what is the function of

the pilus fiber itself. Indeed, understanding the apparent paradox

of a pilus carrying the adhesive property but yet dispensable for

adherence remains a major challenge of the field.

Figure 5. Characterization of the von Willebrand Adhesion Domain of PilA. (A) PilA contains a N-terminal signal peptide (SP), a von
Willebrand factor type A domain (VWA) flanked by two Cna-B type domain, a putative pilin motif (YPK) and a C-terminal cell wall sorting signal (CWS).
The critical seryl and aspartatyl residues known to interact with divalent cations in extracellular eukaryotic proteins containing a von Willebrand factor
type A domain are conserved (D236, S238, S240, D395). (B) Analysis of HA display at the bacterial surface using dot-blot on whole bacteria. In the DVWA
deletion mutant, the VWA domain has been replaced by the HA (hemagglutinin) epitope. (C) Western blot analysis of cell wall extracts of S. agalactiae
strains. Proteins were separated on 4–12% gradient Criterion XT SDS-PAGE gel and detected by immunoblotting with specific anti-HA antiserum
(Roche). (D) Pull-down experiment with HA agarose beads and immunoblotting with anti-PilB antibody. (E) Immunolocalization of the HA epitope in
the pilus of S. agalactiae DVWA strain. Double-labeling experiment were performed on the parental DVWA strain and its isogenic DVWA/SrtC3C42

mutant strain with rabbit anti PilB /IgG-10 nm gold (thin arrowheads) followed by mouse anti HA/IgG-20 nm gold beads (thick arrowheads) viewed
by SEM.
doi:10.1371/journal.ppat.1000422.g005
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We previously observed a down-regulation in transcription of

the pilus genes in the srtA2 mutant and therefore could not test the

role of SrtA in pilus biogenesis [22]. In this report, a new srtA

mutant (srtA*) displaying all characteristics of the srtA2 mutant but

expressing wild-type levels of PI-2A pilus was constructed. Since

high molecular weight polymers of pili were seen in the srtA*

mutant, it is clear that the housekeeping sortase A is not involved

in the polymerization process. This is in direct contrast to the

effects of deleting both pilus-associated sortases SrtC that

abrogates the formation of pilus polymers (Figure 2). Shedding

of pilus polymers in the culture medium of the srtA* mutant

demonstrate a role of the housekeeping sortase A in the anchoring

phase. A similar result was very recently reported in S. agalactiae

strain 515 [43]. As previously shown in C. diphtheriae [44] and B.

cereus [21], these results support a two-stage model of pilus

assembly where pilins are first polymerized by a pilus-specific

sortase and the resulting fiber is then attached to the cell wall by

the housekeeping sortase. In contrast, SrtA is dispensable for

pilus assembly and localization to the cell wall in S. pneumoniae

[45]. Interestingly, the three pneumococcal RrgA, RrgB, and

RrgC proteins that assemble into the pilus each have a motif

(YPRTG, IPQTG, and VPDTG respectively) that is divergent in

the first amino acid position of the canonical LPxTG cell wall

signature sequence (CWSS) recognized by the house-keeping

sortase A which could account for differences in sortase

specificity.

Figure 6. Adherence of S. agalactiae pilus mutants to human pulmonary epithelial cells A549 and to human intestinal epithelial cells
TC7. Cells were infected at a M.O.I of 20 bacteria per cell for 1 h at 37uC and adherence frequencies were calculated from the numbers of bacteria
remaining attached to the cells after the incubation period with respect to the number of inoculated bacteria. The level of adherence of the WT strain
is arbitrarily reported as 100 and the level of adherence of the various mutants are relative values. The results are presented as mean value (6SD)
from one representative experiment of at least 3 independent experiments (left panel). Immunofluorescence analysis of GBS adherence to A549 and
TC7. Bacteria were revealed with specific rabbit anti-GBS polyclonal antibodies and anti-rabbit IgG coupled to Alexa 488 respectively. Cellular F-actin
was visualized with phalloidin coupled to Alexa 594 and nuclei were stained with DAPI (right panel).
doi:10.1371/journal.ppat.1000422.g006
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S. agalactiae is a capsulated bacteria and the size of the capsule is

subject to phase variation [46]. By immunogold labeling, we

visualized the capsule by electron microscopy and showed that the

pilus extends beyond the capsule and thus serve as carrier for

surface located adhesive clusters of PilA. Thus, pili-associated

adhesins, as opposed to those directly linked to the peptidoglycan,

can overcome masking by the capsule as demonstrated by

immunodetection of PilA on capsulated bacterial surface

(Figure 3B). In a capsulated strain, PilA is not detected in the

absence of PilB or in the srtC3C42 mutant in which pilus

polymerization is abrogated (Figure 3B, data not shown). These

results indicate that the pilus structure is necessary for optimal

display at the bacterial surface of the PilA subunit that is necessary

for adherence to epithelial cells. However, the fact that PilA

remains a functional adhesin in the absence of a pilus fiber raises

question on the role of this appendage. A similar situation was

recently reported in Streptococcus pneumoniae in which RrgA, a minor

pilus component, is central in pilus-mediated adherence and

disease, even in the absence of polymeric pilus production [29]. As

mentioned in this work, it is conceivable that the conventional in

vitro adherence assays carried out with immortalized cells culture

are not adapted to test the functional benefit provided by a pilus

fiber. This was recently demonstrated for the pili of S. pyogenes that

mediate specific adhesion to human tonsil and skin epithelial cells

[47]. The authors showed that pili were not required for S. pyogenes

adhesion to immortalized HEp-2 and A549 cell lines but were

indispensable for adhesion to ex vivo tissues and primary human

keratinocytes highlighting an important limitation of the currently

used adhesion models. We reasoned that surface display of PilA

adhesin could be important in more stringent conditions, as for

example in the presence of liquid flow mimicking the mucociliary

movement in the lung. A major limitation of the standard

adhesion model is that it neglects the local fluid mechanic

environment encountered in the organism. Using a laminar flow

chamber system optimized to study the adhesion of Neisseria

meningitidis under low shear stress conditions [37], we were able to

prove the benefit of the S. agalactiae pilus fiber for adherence to

human pulmonary epithelial cells A549 (Figure 4B), thus

emphasizing the need of employing models that are more relevant

to the infectious process when studying bacterial-host interactions.

Closer examination of EM micrographs shows a large

heterogeneity in pilus structures in the wild-type strain. The

composition, the size, but also the diameter of the individual pili

appears highly variable and, as described in S. pneumoniae, bundles

of individual pili could be also observed (data not shown). In

agreement with our previous results [22], pili are still formed in the

pilA2 mutant but were longer than those produced by the wild-

type strain. This is most probably due to the increased

transcription of pilB in the pilA2 mutant where a 3-fold increase

in pilB expression was measured by qRT-PCR [22]. Synthesis of

longer pili by mutants overexpressing the major pilin subunit has

been demonstrated in C. diphtheriae [48]. Strikingly, we also

observed longer and largely extended pili in the pilC2 mutant and

a higher amount of PilB polymers were found shed in the culture

medium of this mutant in agreement with a role of PilC as the

pilus anchor [43]. Again, similar results were obtained recently in

C. diphtheriae [49], a bacterium where the prototype pilus contains a

major pilin (SpaA), a tip pilin (SpaC), and a minor pilin (SpaB).

Immunoelectron microscopy revealed that when SpaB was absent,

the SpaA fibers found in the culture medium and on the bacterial

envelope are considerably longer than in the wild-type strain.

Incorporation of the SpaB minor pilin in the shaft base serves as

the terminal step in pilus polymerization and triggers the

concomitant cell wall linkage by sortase A [49].

The von Willebrand Adhesion Domain (VWA) has been

identified in several prokaryotic proteins but their function remain

unknown [40]. We showed here that the VWA domain of PilA is

essential for its adhesive function. S. agalactiae strain NEM316

possesses another pilus locus (PI-1) that is not expressed [22] but

displayed a genetic organization similar to that of the PI-2A locus.

In particular, the putative pilus associated adhesin (Gbs0632) also

contains a central VWA domain surrounded by two Cna-B domains

and, interestingly, this central domain structure was also found in

the pneumococcal pilus-associated adhesin RrgA [29] and in the

minor pilin SpaC of C. diphtheriae [50]. Extracellular matrix proteins

constitute good ligand candidates for these adhesins and it was

recently shown that RrgA interacts with human fibronectin,

collagen I, and laminin [51]. However, sequence comparisons

revealed that the VWA domain of RrgA shares 59% identity with

that of Gbs0632 but only 37% with that of PilA, suggesting that

RrgA and PilA have different VWA-binding ligands. In agreement

with this idea of different receptor recognized by different VWA

domain, SpaC was shown to promote specific adhesion to human

pharyngeal cell line D562 [50].

Finally, we investigated the possibility that GBS pili could also

play a role in bacterial-bacterial interactions, as shown for E.

Figure 7. Role of the PI-2A pilus in biofilm formation. S. agalactiae strains were grown in 96 wells polystyrene plates in LB supplemented with
1% glucose at 37uC for 24 h. Adherent bacteria were stained with crystal violet (CV) and quantification was performed by measuring the absorbance
at 595 nm. Results are representative of three experiments. Error bars show standard deviations.
doi:10.1371/journal.ppat.1000422.g007
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faecalis, S. pyogenes, and S. pneumoniae [26,31]. We demonstrated that

all three individual pilus NEM316 mutants were impaired for

bacterial aggregation in liquid culture. Importantly, S. agalactiae

strain NEM316 was able to form biofilm in microtiter plates under

certain culture conditions. We demonstrated that pili are key

surface structures involved in biofilm formation and showed that

both PilB and PilA, but not PilC, are essential in this process.

Surprisingly, the VWA domain required for adherence to

epithelial cells was found to be dispensable for biofilm formation

on polystyrene plates. This result indicates that the VWA domain

is not required for adherence to abiotic surfaces and suggests that it

recognizes specific ligand on epithelial cells. These results revealed

GBS pili possess dual and non-overlapping functions in partici-

pating in biofilm formation and adherence to host cells. Current

work aiming at identifying the epithelial receptor of PilA is in

progress. Establishing a link between biofilm formation and

colonization is the next challenging question requiring the

development of an appropriate animal model.

Materials and Methods

Bacterial strains, plasmids, and growth conditions
S. agalactiae NEM316 was responsible for a fatal septicemia and

belongs to the capsular serotype III. The complete genome

sequence of this strain has been determined [52]. Escherichia coli

DH5a (Gibco-BRL) was used for cloning experiments. S. agalactiae

was cultured in Todd-Hewitt (TH) broth or agar (Difco

Laboratories, Detroit, MI) and E. coli in Luria-Bertani (LB)

medium. Unless otherwise specified, antibiotics were used at the

following concentrations: for E. coli - ampicillin, 100 mg/ml;

erythromycin, 150 mg/ml; for S. agalactiae - erythromycin, 10 mg/ml;

kanamycin, 1,000 mg/ml. S. agalactiae liquid cultures were grown

at 37uC in standing filled flasks.

General DNA techniques
Standard recombinant techniques were used for nucleic acid

cloning and restriction analysis [53]. Plasmid DNA from E. coli was

prepared by rapid alkaline lysis using the Qiaprep Spin Miniprep kit

(Qiagen). Genomic DNA from S. agalactiae was prepared using the

DNeasy Blood and Tissue kit (Qiagen). PCR was carried out with

Ampli Taq Gold polymerase as described by the manufacturer

(Applied Biosystem). Amplification products were purified on

Sephadex S-400 columns (Pharmacia) and sequenced with an

ABI 310 automated DNA sequencer, using the ABI PRISM dye

terminator cycle sequencing kit (Applied Biosystems).

Construction of S. agalactiae mutants
In-frame replacement of the VWA by an HA tag domain in pilA

(gbs1478) (O1–O2; O3–O4) and modification of the catalytic

sequence signature of sortase A gbs0949 (O5–O6; O7–O8) were

constructed by using splicing-by-overlap-extension PCR as

previously described [22]. Mutants were confirmed by PCR and

sequence analysis.

The sequences (59 to 39) of the primers were: O1, ACCAAT-

GAATTCGGGGAAAGTACCGTACCG; O2,GGCGTAGTC-

GGGGACGTCGTAGGGGTACGGCTTTTGTTTGTCCAC-

TGGTTTTAC; O3, TACCCCTACGACGTCCCCGACTAC-

GCCTTGGGTGCATCATATGAAAGCCAATTTGAA; O4,

GGATGAGGATCCTATCGGGGTATAATACTCAGG; O5,

TAAACGAATTCGCAATGCTTTCATAGC; O6, GGCACG-

CCCGGGTGCTGCCGCAGTGAGTTGGCTCTTGCCAGG-

TGT; O7, GCGGCAGCACCCGGGCGTGCCGAAGCCACA-

GAACGTATTATTGTG; and O8, TCTTGGATCCAGTA-

TAGTCATCGTAACGAATAGGC.

Cell culture and adherence assays
The human cell lines A549 (ATCC CCL-185) from an alveolar

epithelial carcinoma and TC7 clone [54] established from the

parental colon adenocarcinoma Caco-2, were cultured in

Quantum 286 Medium (PAA). Cells were incubated in 10%

CO2 at 37uC and were seeded at a density of 2 to 56105 cells per

well in 24-well tissue culture plates. Monolayers were used after

24–48 h of incubation.

Bacterial cultures from overnight cultures OD600 of 2

(approximately 6 108 CFU/ml) were washed once in PBS and

resuspended in DMEM. Cells were infected at a multiplicity of

infection (M.O.I) of 10 bacteria per cell for 1 h at 37uC in 10%

CO2. The monolayers were then washed four to five times with

PBS, and the cells were disrupted by the addition of 1 ml sterile

deionized ice-cold water and repeated pipeting. Serial dilutions of

the lysate were plated onto TH agar for count of viable bacteria.

The percent of adherence was calculated as follows: (CFU on plate

count/CFU in original inoculum)6100. Assays were performed in

triplicate and were repeated at least three times.

Laminar flow chamber experiments
Adhesion under flow was performed as previously described

[37]. Before the assay, bacteria were grown overnight in TH broth

at 37uC, resuspended at OD600 = 0.3, and labeled for 30 min with

the fluorescent marker CMFDA (Molecular Probes) at 20 mM on

ice. After several washes in PBS, fluorescent bacteria were

resuspended in DMEM supplemented with 10% FBS. A549 cells

grown on glass slides were placed in the parallel plate flow

chamber (3.3 cm60.6 cm6250 mm, Immunetics, MA, USA) and

sealed with vacuum. About 36107 fluorescent bacteria were

introduced in the laminar flow chamber containing the cells at

0.04 dynes/cm2. Experiments were performed in DMEM sup-

plemented with 2% serum and maintained at 37uC with a heated

platform (Minitub, Germany). Medium was introduced into the

chamber using a syringe pump (Vial Medical, Becton-Dickinson or

Harvard Apparatus). Adhesion of bacteria was recorded using an

Olympus CKX41 inverted microscope with a 206 objective, a

Hamamatsu ORCA285 CCD camera and the Openlab darkroom

software (Improvision, UK).

Protein solubility in hot SDS
Cell-wall anchored proteins are insoluble in hot SDS unless the

peptidoglycan had been first digested enzymatically with mutano-

lysin. In contrast, membrane anchored proteins are generally

extractable in hot SDS without any prior treatment. The assay

described by Garandeau et al. [55] was used to study the solubility

of PilB polymers in NEM316 and sortases derivatives. The

bacteria in 10 ml overnight culture were collected by centrifuga-

tion (6,000 rpm, 4uC, 10 min). Medium corresponds to the

supernatant that was filter-sterilized and concentrated 106 by

ultra filtration on Sartorius vivaspin 20 devices (cut-off 10 kDa).

The bacterial pellet was washed in phosphate-buffered saline

(PBS), centrifuged, and resuspended in 500 ml of 4% SDS - 0.5 M

Tris-HCl pH 8. The bacterial suspension was boiled for 10 min

and then centrifuged at 10,000 rpm for 5 min. Membrane

correspond to the SDS-extracted supernatant and cell-wall to

the pellet. These different protein fractions were further analyzed

by immunoblotting.

Immunoblotting and immunofluorescence analyses
For dot-blot analysis on whole bacteria, late-exponentially

growing bacteria were washed in PBS and resuspended in adjusted

volumes of PBS to get similar OD600 values. The bacteria were
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loaded on nitrocellulose membrane, dried up for 20 min at room

temperature, and then blocked in PBS-milk 5% for 30 min. PilB

was detected using a specific rabbit polyclonal antibody obtained

previously [22] at 1:2000 dilution and the HA epitope was

detected using the rat monoclonal antibody (3F10) from Roche at

1:1000 dilution. The secondary horseradish peroxidase (HRP)-

coupled anti-rabbit secondary antibody (Zymed) was used at

1:20000 dilution whereas the goat anti-mouse antibody was used

at 1:10000 dilution. Detection was performed using the Western

pico chemiluminescence kit (Pierce). Image capture and analysis

were done on GeneGnome imaging system (Syngene). For

Western blotting analysis, proteins were boiled in Laemmli sample

buffer, resolved on Tris-Glycine Criterion XT gradient gels 4–

12% SDS-PAGE gels and transferred to nitrocellulose membrane

(Hybond-C, Amersham). Protein detection was performed as

described above.

Immunofluorescence staining of R28/Alp2 and PilB was

performed as described [56] using specific rabbit polyclonal

antibodies revealed with an anti-IgG coupled to Alexa 488

(Molecular Probes, OR). Microscopic observations were done on a

Nikon Eclipse E600 and images acquired with a Nikon Digital

Camera DXM1200F.

Pull-down experiment
Bacteria (50 ml) were grown in TH medium at 37uC for

18 hours and harvested for preparation of cell wall extracts.

Bacteria were washed once in PBS and resuspended in the

mutanolysin digestion buffer to get an OD600 of 100 ml21

(50 mM Tris-HCl pH 7.3, 20% sucrose and protease inhibitor

cocktail (Roche)). Mutanolysin (Sigma) dissolved to 5000 U ml21

in potassium buffer (10 mM pH 6.2) was then added to the

bacterial suspension to give a final concentration of 200 U ml21.

The digestion was performed for 2 h at 37uC under gentle

rotation. After centrifuging at 12 000 g for 15 min at 4uC,

supernatants corresponding to the cell wall fractions were

transferred to clean tubes. 25 ml of EZview Red anti-HA affinity

gel (EZview, Sigma) was added and the samples were rotated

overnight at 4uC. Beads were washed five times in solubilization

buffer (20 mM Tris-HCl, 137 mM NaCl, 0,25% NonidetP40,

1.5 mM MagCl2, 1 mM EDTA, 10 mM NaF) and resuspended in

20 ml of 26 reducing sample buffer followed by boiling for

5 minutes. Samples were then analyzed by Western blot analysis.

Immunogold electron microscopy
For scanning electron microscopy analysis, bacteria were

applied to polylysine coated glass coverslips, and fixed with

0.1% glutaraldehyde/4% paraformaldehyde in 0.1 M Sorensen

buffer (pH 7.2) for 30 min. Fixed bacteria were incubated in PBS

supplemented with 0.25% NH4Cl for 20 min then washed

extensively with PBS. Samples were incubated in incubated in

PBS/BSA 1% for 10 min. Following incubation for 30 min with

the primary antibody, samples were washed and incubated for

10 min with the secondary antibody conjugated to colloidal gold.

Preparations were washed with PBS and fixed in 2.5%

glutaraldehyde in 0.1 M cacodylate buffer (pH 7.2) overnight at

4uC, then washed three times for 5 min (each time) in 0.2 M

cacodylate buffer, post-fixed for 1 h in 1% osmium in 0.2 M

cacodylate buffer and rinsed with distilled water. Bacteria were

dehydrated through a graded series of ethanol (25, 50, 75, 95 and

100%) followed by critical point drying with CO2. Dried

specimens were sputter coated twice with carbon, with a with a

GUN ionic evaporator PEC 682 and were examined and

photographed with a JEOL JSM 6700F field emission scanning

electron microscope operating at 5 kV. Images were acquired

from the YAG BSE detector. For transmission electron micros-

copy, samples were processed as above. After dehydratation in

ethanol the samples were embedded in epoxy resina and 70 nm

thin sections were prepared and examined using a JEOL JSM1010

microscope operating at 80 kV.

For double and triple labeling experiments, the same procedure

was applied using the following antibodies: the mouse monoclonal

S9 anti-type III capsule (1/5), the rat monoclonal anti HA

antibody (clone 3F9 from Roche at 1/100), the rabbit polyclonal

a2PilB (1/100) and the rabbit polyclonal a2PilA (1/10). The

secondary antibodies were goat anti mouse or goat anti rabbit

conjugated to 20 nm-, 10 nm- or 5 nm gold beads.

Biofilm formation assays
Bacterial attachment and surface growth on polystyrene

microtiter plates were studied during growth of S. agalactiae in

LB medium supplemented with 1% glucose. Overnight cultures

grown in TH were used to inoculate LB glucose medium at

OD600 0.1, were vortexed briefly and 180 ml volumes were

dispensed into 96-wells plate (Costar 3799; Corning, Inc., NY)

followed by incubation at 37uC for 24 h. The OD600 of each

culture was measured to ensure that all cells had reached

stationary phase with a similar OD600, and the wells were washed

twice in PBS and air-dried for 15 min. Biofilms were stained with

0.1% crystal violet for 30 min (100 ml per well) and the wells were

washed twice with PBS and air-dried. The stained biomass was

resuspended for quantification in ethanol/acetone (80:20) and

A595 was measured. The assay was performed in quadruplet.

Supporting Information

Figure S1 IEM analysis of the capsular type III polysaccharide.

S. agalactiae wild-type strain NEM316 was incubated with a mouse

monoclonal antibody raised against the type III capsular

polysaccharide (mAb S9) and rabbit polyclonal antibody raised

against PilA and PilB, and. Antibodies were conjugated to 5 nm

gold particles for capsule, 10 nm for pilB and 20 nm for PilA. The

outer layer of the capsule is marked by black arrows. Scale bar is

shown for each panel.

Found at: doi:10.1371/journal.ppat.1000422.s001 (9.12 MB TIF)

Figure S2 Visualization of pili by immunofluorescence. Visual-

ization of pili by immunofluorescence using polyclonal anti-PilB

antibody. (A) on whole bacteria- (B) detached pili found in the

extracellular medium.

Found at: doi:10.1371/journal.ppat.1000422.s002 (3.00 MB TIF)

Figure S3 Adhesion under flow conditions. A monolayer of

A549 cells was cultivated and placed in a flow chamber. The same

amount of fluorescently labeled strains were introduced under flow

and adherent bacteria were detected by fluorescent microscopy.

Representative fields are presented: A549 cells as seen by phase

contrast (A) and adherence of the wild type strain NEM316 and

isogenic mutant derivatives (B-F).

Found at: doi:10.1371/journal.ppat.1000422.s003 (8.32 MB TIF)

Figure S4 Multiple sequence aligments of procaryotic and

eucaryotic VWA-domains. The alignment was generated by

comparing PilA (GBS1478) to the SMART database using Profile

hidden Markov models (HMMER). Computations were made

online at the following URL (http://smart.embl-heidelberg.de/).

Note the presence of a VWA domain in the pili adhesin subunit

Gbs0632 from Streptococcus agalactiae (PI-1 pili operon), RggA from

Streptococcus pneumoniae, and SpaC from Corynebacterium diphteriae.

Explanation of codes used in CHROMA coloured alignments is as

described in http://smart.embl-heidelberg.de/help/chroma.shtml.
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Found at: doi:10.1371/journal.ppat.1000422.s004 (0.65 MB

DOC)
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