
HAL Id: pasteur-03261098
https://pasteur.hal.science/pasteur-03261098

Submitted on 15 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Social and non-social autism symptoms and trait
domains are genetically dissociable

Varun Warrier, Roberto Toro, Hyejung Won, Claire S. Leblond, Freddy
Cliquet, Richard Delorme, Ward de Witte, Janita Bralten, Bhismadev

Chakrabarti, Anders D. Børglum, et al.

To cite this version:
Varun Warrier, Roberto Toro, Hyejung Won, Claire S. Leblond, Freddy Cliquet, et al.. Social and
non-social autism symptoms and trait domains are genetically dissociable. Communications Biology,
2019, 2 (1), pp.328. �10.1038/s42003-019-0558-4�. �pasteur-03261098�

https://pasteur.hal.science/pasteur-03261098
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


ARTICLE

Social and non-social autism symptoms and trait
domains are genetically dissociable
Varun Warrier1, Roberto Toro 2, Hyejung Won3, Claire S. Leblond2, Freddy Cliquet 2, Richard Delorme2,4,

Ward De Witte5, Janita Bralten5,6, Bhismadev Chakrabarti 1,7, Anders D. Børglum 8,9,10,

Jakob Grove 8,9,10,11, Geert Poelmans5, the 23andMe Research Team#, David A. Hinds 12,13,

Thomas Bourgeron2,13 & Simon Baron-Cohen1,13

The core diagnostic criteria for autism comprise two symptom domains – social and com-

munication difficulties, and unusually repetitive and restricted behaviour, interests and

activities. There is some evidence to suggest that these two domains are dissociable, though

this hypothesis has not yet been tested using molecular genetics. We test this using a

genome-wide association study (N= 51,564) of a non-social trait related to autism, sys-

temising, defined as the drive to analyse and build systems. We demonstrate that system-

ising is heritable and genetically correlated with autism. In contrast, we do not identify

significant genetic correlations between social autistic traits and systemising. Supporting this,

polygenic scores for systemising are significantly and positively associated with restricted

and repetitive behaviour but not with social difficulties in autistic individuals. These findings

strongly suggest that the two core domains of autism are genetically dissociable, and point at

how to fractionate the genetics of autism.
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The core diagnostic criteria of autism comprises two
symptom domains: difficulties in social interactions and
communication (the social domain), and unusually repe-

titive and restricted behaviour and stereotyped interests (the non-
social domain)1. Multiple lines of evidence suggest that these two
domains are dissociable2,3. First, factor and principal component
analysis of autism and autistic traits have predominantly identi-
fied two factors—a social and a non-social factor4–9. Second,
investigations of autistic traits in large cohorts have demonstrated
a positive phenotypic correlation between different social traits
and different non-social traits separately, but only a limited
correlation between social and non-social traits9–12. Third, twin
genetic correlations between social and non-social symptom
domains in autism are low, although both social and non-social
trait domains are highly heritable in neurotypical13,14 or autistic
twins15. Fourth, difficulties in social and non-social domains can
occur independently of each other16,17, which has been used to
subgroup individuals on the spectrum based on the two
domains18. This suggests that the genetic and phenotypic archi-
tecture of autism consists of at least two broadly dissociable
domains. This has implications for genetic, biological, and clinical
studies of autism, since most studies have investigated autism as if
it is a unitary condition3. The idea that social and non-social
symptom domains are dissociable is unsurprising given their very
different nature, and very different underlying neurology and
cognitive processes: one related to interpreting animate motion
and mental states (theory of mind) and the other related to
recognising inanimate objects, events or patterns (systemising)3.
Nevertheless, a diagnosis of autism is only given when the social
and non-social symptom domains cluster together.

However, to date, there has been limited molecular genetic
evidence in support of this dissociability hypothesis, partly due
to the limited large-scale research on the genetics of social and
non-social domains. Most genetic research into the social
and non-social domains has been primarily through linkage
and genome-wide association studies (GWAS) in relatively
small samples of autistic individuals and the general population
(N < 5K)19–25. This has precluded a detailed molecular genetic
investigation of the social and non-social domains associated
with autism. Given currently available sample sizes with phe-
notypic information, investigating the genetics of the social and
non-social domains in autistic individuals is difficult. However,
several studies have demonstrated that the underlying
liability for autism is normally distributed in the general
population26–29. Factor analyses have failed to identify dis-
continuities between clinical autism and autistic traits in the
general population30. Autistic traits are heritable31–33, are ele-
vated in family members of autistic individuals compared
to the general population34,35, and are transmitted inter-
generationally36,37. Factor analysis of autistic traits measures
have also identified two different factors in both the general
population and autistic individuals—one linked to the social
domain, and another linked to the non-social domain, mir-
roring the factor structure of clinical autism domains6,9,30,38.
Studies have further demonstrated moderate to high shared
genetics between the extremes of the liability distribution
and the rest of the distribution14,39–41. One twin study inves-
tigated the bivariate genetic correlation between research and
clinical autism diagnosis and autistic traits and identified high
genetic correlations (0.7 < rg < 0.89)42. Validating this, studies
have identified modest shared genetics between autism and
autistic traits43–45. Taken together, there is considerable evi-
dence to suggest that autism represents the extreme end of the
autistic traits continuum.

While a few studies have investigated the genetics of traits
contributing to the social domains such as social and

communications difficulties19,44,45, empathy46, and emotion
recognition47, there have been limited studies investigating the
genetics of the non-social domain25,48. Neither of these studies
have replicably identified significant variants associated with the
non-social domain, primarily because of the relatively modest
sample sizes of the GWAS. An alternate approach is to investigate
the genetics of non-social traits related to autism in the typical
population, maximising the sample size. To better understand the
genetics of a non-social trait related to autism, we investigate the
genetics of systemising measured using a 75-item well validated,
self-report measure called the Systemising Quotient-Revised (SQ-
R) (see ‘Methods’ section). Systemising involves identifying
input-operation–output (or if-and-then) relationships in order to
analyse and build systems, and to understand the laws that govern
specific systems49. The hyper-systemising theory of autism pro-
poses that autistic individuals, on average, have superior attention
to detail, and a stronger drive to systemise compared to indivi-
duals in the general population49. This has been validated in
several studies50,51 including a recent study in more 650,000
individuals, including 36,000 autistic individuals12. Several lines
of evidence suggest that autistic individuals have at least intact if
not superior systemising. The idea was noted in the earliest
papers describing autism by both Asperger52 and Kanner53,
although these early papers do not use the term ‘systemising’ but
instead comment on strong interests in pattern recognition, the
need for order and predictability, excellent memory for facts, and
a strong focus on objects and understanding how things work.
Further, autistic adults, on average, score higher on the SQ-R
compared to individuals in the general population10,51, a profile
also observed in autistic children54. Several items in the SQ-R
specifically measure circumscribed interests and insistence on
sameness, two of the items mentioned in the DSM-5, and several
of these items map onto items on the Autism Spectrum Quotient
(AQ), a well validated measure of autistic traits27 (see Supple-
mentary Note). Because systems follow rules, they repeat. A fas-
cination with systems may thus manifest as unusually repetitive
behaviour. And because systems depend on precise variables, a
fascination with systems may also manifest as unusually narrow
interests in autism.

The present study has two aims: first, to investigate the genetic
architecture of a non-social trait linked to autism (system-
ising); and second, to investigate whether social and non-social
traits related to autism, measured in the general population, are
genetically dissociable.

Results
GWAS results. We first conducted a GWAS of systemising
(N= 51,564) measured using the SQ-R. Following this, and using
data from GWAS of social traits genetically correlated with aut-
ism (GWAS of self-reported empathy (N= 46,861)46, and GWAS
of social relationship satisfaction55 measured using friendship
(Neffective= 164,112) and family relationship (Neffective = 158,116)
satisfaction scales), we investigated whether the social and non-
social traits related to autism are genetically dissociable in the
general population. A flow chart of the study design is provided
in Fig. 1.

Systemising was measured in the 23andMe sample
(N= 51,564) using scores from the SQ-R10. Scores on the SQ-R
were normally distributed, with a mean of 71 ± 21 out of 150. As
hypothesised based on previous research10,12,51, males (76.5 ± 20),
on average, scored higher than females (65.4 ± 20.6) (P < 0.001,
Cohen’s d= 0.54, Supplementary Fig. 1). Given the significant sex
differences in scores, we conducted a non-stratified and sex-
stratified GWAS for the SQ-R. Genome-wide association analyses
identified three significant loci (Fig. 2, Supplementary Data 1 and
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Supplementary Fig. 2). Two of these were significant in the non-
stratified GWAS: rs4146336 on chromosome 3 (P= 2.58 × 10−8)
and rs1559586 on chromosome 18 (P= 4.78 × 10−8). The third
significant locus was in the males-only GWAS (rs8005092 on
chromosome 14, P= 3.74 × 10−8). rs8005092 and rs1559586 lie in
regions of high genetic recombination. Linkage-disequilibrium
score regression (LDSR) intercept suggested that there was
minimal inflation due to population stratification (Fig. 2). Fine-
mapping of the three regions identified 14 credible SNPs (see
‘Methods’ section). None of the SNPs overlapped with fetal brain
eQTL. However, two of these SNPs mapped onto two genes—
LSAMP and PTMAP8, both of chromosome 3—using chromatin
interaction data in the fetal brain. Of these, LSAMP is a neuronal
adhesion molecule in the limbic system of the developing brain. In
addition, gene-based analysis identified four significant genes
SDCCAG8, ZSWIM6, ZNF574, and FUT8 (Supplementary Data 2).
Of these, mutations in ZSWIM6 cause a neurodevelopmental
disorder with, in some cases, co-morbid autism and unusually
repetitive movements and behaviour56. As supporting analyses, we
investigated the direction of effect for all independent SNPs with P
< 1 × 10−6 in the non-stratified SQ-R GWAS in GWAS of
autism57, educational attainment58, and cognitive aptitude59. Five
out of six SNPs tested had concordant effect direction in the
GWAS for educational attainment and GWAS for cognitive
aptitude (P= 0.21, two-sided binomial sign test for each
comparison). Similarly, four out of five SNPs tested had
concordant effect direction in the GWAS for autism (Supplemen-
tary Data 3a) (P= 0.37, two-sided binomial sign test). For these
three phenotypes, we additionally assessed effect direction
concordance using binomial sign test at less stringent P-value
thresholds in the SQ-R GWAS, after LD-based clumping (P < 1,
0.5, 0.1 and 1 × 10−4). Binomial sign test was statistically
significant at three of the four P-value thresholds (P= 1, 0.5 and

0.1) for all three phenotypes but not statistically significant at P=
1E−4, presumably due to the low statistical power (Supplemen-
tary Data 3b). In addition, we tested effect direction concordance
(P < 1 × 10−6) in a GWAS (N= 1981) of ‘insistence on sameness’,
a phenotype similar to systemising (see ‘Methods’ section). Four
out of five SNPs had a concordant effect direction including the
two SNPs with P < 5 × 10−8 in the non-stratified SQ-R GWAS (P
= 0.37, two-sided binomial sign test).

Genetic correlation between the SQ-R and other phenotypes.
Additive SNP-based heritability h2SNP

� �
calculated using LDSR

was 0.12 ± 0.012 for the SQ-R (P= 1.2 × 10−20). Despite small
but significant sex differences in the SQ-R scores, there was no
significant difference in h2SNP between males and females (P=
0.34) (Supplementary Fig. 3 and Supplementary Data 4), which
was strengthened by the high genetic correlation between males
and females (1 ± 0.17; P= 3.91 × 10−10), suggesting a similar
polygenic architecture between sexes. The per-SNP effect for the
most significant SNPs was small, suggesting a highly polygenic
architecture (R2= 0.001–0.0002%, after correcting for winner’s
curse, Supplementary Data 5).

Partitioned heritability for functional categories identified
significant enrichment for evolutionary conserved regions,
transcription start sites, fetal DNase hyper-sensitivity sites, and
H3 lysine 27 acetylation (H3K27ac), suggesting a prominent role
for regulatory and conserved genomic regions in systemising
(Supplementary Data 6). Partitioning heritability based on tissue-
specific active chromatin marks identified a significant enrich-
ment for brain specific chromatin signatures. Notably, this
enrichment was significant in both adult and fetal brain specific
active chromatin marks (Supplementary Data 7 and Supplemen-
tary Fig. 4). Enrichment for genes expressed in the brain was high

SQ-R GWAS
N = 51,564

N = 26,063 N = 25,501

Functional enrichment:
gene sets,
tissue expression

Sex stratified
SQ-R GWAS

Genetic
correlation

Genetic
correlation

1

0.8

–0.8

0.6

–0.6

0.4

0.2

–0.4

–0.2

0
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Clustered genetic
correlogram

Polygenic
score analyses

ADOS: social/communication
RBS-R

Intelligence,
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h2
SNP

h2
SNP h2

SNP

Autism GWAS

Fig. 1 Schematic diagram of the study. We conducted a GWAS of the SQ-R (N= 51,564) and quantified SNP heritability h2SNP
� �

, quantified genetic
correlations with multiple phenotypes, and conducted polygenic score analyses. In addition, we conducted sex-stratified GWAS of the SQ-R, and
investigated h2SNP within sex and genetic correlation between males and females. Finally, we investigated the clustering of all phenotypes that are
genetically correlated with autism, and whether the social and the non-social phenotypes associated with autism are genetically correlated
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but failed to reach statistical significance after correcting for the
multiple tests conducted (Supplementary Fig. 5 and Supplemen-
tary Data 8).

We identified a significant positive genetic correlation between
the SQ-R and autism as well as measures of intelligence (cognitive
aptitude and educational attainment) (Supplementary Data 9 and
Fig. 3a). Of all the psychiatric conditions tested (see ‘Methods’
section), SQ-R was only significantly genetically correlated with
autism (rg= 0.26 ± 0.06; P= 3.35 × 10−5), demonstrating the
relative specificity of the correlation of the SQ-R to autism.
Notably, the absolute magnitude of the genetic correlation
between autism and the SQ-R is similar to the genetic correlation
between autism and self-reported empathy (measured using the
Empathy Quotient (EQ60): rg=−0.27 ± 0.07) and scores on the
Social and Communication Disorders Checklist (SCDC61): rg=
0.27 ± 0.13). Controlling for the genetic effects of educational
attainment on the SQ-R GWAS using genome-wide inferred
statistics (GWIS) (see ‘Methods’ section) attenuated the genetic
correlation with autism only modestly, suggesting that the SQ-R
scores are genetically correlated with autism independently of the
genetic effects of education (Fig. 3b and Supplementary Data 10).
We validated this using genomic structural equation modelling

(GSEM) (see ‘Methods’ section) using both educational attain-
ment and cognitive aptitude (Fig. 3c). Further, the SQ-R was not
genetically correlated with any of the social measures related to
autism—friendship and family relationship satisfaction, scores on
a self-report measure of empathy (the EQ), and the scores on the
Social and Communication Disorders Checklist (SCDC), which is
a measure of social and communication difficulties (see Supple-
mentary Note for how these traits map onto social domains in
autism). Estimates of genetic correlations between SQ-R scores
and the various social traits are also small, suggesting that there is
limited shared genetics between social autism traits and the SQ-R.

Genetic correlations between social/non-social traits and psy-
chiatric conditions. To understand the genetic relationship
between the SQ-R and autism in a broader context, we evaluated
the genetic correlations between multiple phenotypes with evi-
dence of significant genetic correlation with autism (15 pheno-
types in total, see ‘Methods’ section for a list of phenotypes
included). Clustering highlighted three broad clusters: a social
cluster, a psychiatric cluster, and an intelligence cluster (Fig. 4a
and Supplementary Tables 11 and 12). The SQ-R clusters closely
with measures of intelligence, but while educational attainment
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and cognitive aptitude are significantly genetically correlated with
multiple social traits and psychiatric conditions, the SQ-R is only
genetically correlated with autism.

Given that the two major domains of autism as identified by the
DSM-5 are persistent difficulties in social interaction and commu-
nication and unusually restrictive, stereotyped, and repetitive
interests1, we hypothesised that the combination of significant
negative genetic correlation with social traits (friendship satisfaction
and empathy) and significant positive genetic correlation with SQ-R
would be uniquely associated with autism (see ‘Methods’ section).
Indeed, across the nine psychiatric conditions for which we had
summary GWAS statistics, this combination was uniquely observed
for autism (Fig. 4b, Supplementary Data 13).

Validation in additional cohorts. Given that our current analysis
focussed on the general population, we sought to investigate
whether polygenic scores from the SQ-R were associated with
social and non-social autism domains in 2221 autistic individuals
from the Simons simplex collection (see ‘Methods’ section). We
hypothesised that SQ-R may be significantly associated with the
non-social domain in autism, but not associated with the social
domain in autism. Polygenic scores for SQ-R were significantly
associated with scores on the Repetitive Behaviour Scale-
Revised (RBS-R) (beta= 0.052 ± 0.02, P= 0.013), but not on the
social and communication subscale of ADOS-G (beta=
−0.00099 ± 0.018, P= 0.95) after adjusting for multiple test
(Bonferroni alpha= 0.025). We validated this in 426 additional
individuals of which 401 had a diagnosis of autism with RBS-R
scores from the EU-AIMS LEAP, AGRE, and Paris cohorts. Here,
we identified a concordant effect direction for polygenic scores of
the SQ-R (beta= 0.02 ± 0.05, P= 0.65), although the results were
not significant potentially due to the small sample size. Inverse-
variance meta-analysis of the discovery and the validation cohorts
marginally improved the significance of the association (beta=
0.047 ± 0.018, P= 0.010), and the results remained statistically
significant (Bonferroni alpha= 0.025). In a separate sample of
475 autistic individuals from the AGRE cohort, polygenic scores
for the SQ-R were not associated with the social and commu-
nication subscale of ADOS-G (beta=−0.046 ± 0.04, P= 0.24).
Meta-analysis of the two cohorts did not produce a statistically
significant result (beta=−0.008 ± 0.016, P= 0.60) (see Power
calculations in the Supplementary Note). We note that the lack of
association between the polygenic scores for the SQ-R and the
ADOS-G social and communication subscale is not indicative of
absence of shared genetics, but rather indicative of lower shared
genetics between the SQ-R and the ADOS-G social and com-
munication subscale than that between the RBS-R and the SQ-R.

Finally, to further validate the results in autistic individuals, we
conducted bivariate genetic correlations on scores on the RBS-R
and the ADOS-G social and communication subscale in 2989
individuals from the SSC, AGRE, EU-AIMS LEAP and Paris
cohorts (2964 autistic individuals). Both the RBS-R
h2SNP ¼ 0:11 ± 0:11; P ¼ 0:15
� �

and the ADOS-G social and
communication subscale h2SNP ¼ 0:26 ± 0:10; P ¼ 0:004

� �
had

modest h2SNP, though only the latter was statistically significant.
We identified a small genetic correlation (rg= 0.15 ± 0.46, P=
0.74), which was not statistically different from 0. Given the small
sample size, the genetic correlation is unlikely to be statistically
significant. However, the effect was small and statistically less
than 1 (P= 0.034, one-tailed t-test).

Discussion
Here we present, to our knowledge, the largest GWAS of a non-
social trait related to autism in the general population—system-
ising, measured using the SQ-R. We demonstrate that systemising

is heritable and genetically correlated with autism. Associated loci
are enriched in genomic regions containing brain chromatin
signatures and we identify three genome-wide significant loci, but
these must be replicated in an independent cohort. Despite the
modest sample size, our GWAS is well-powered to investigate
genetic correlations between various phenotypes including social
traits related to autism, as the Z-score of the h2SNP is above the
recommended threshold of four62. We identify high sign con-
cordance of the top SNPs in genetically correlated traits,
enrichment for active chromatin marks in fetal and adult brain,
and significant polygenic score association with the RBS-R.
Polygenic score analysis suggests that the shared genetics between
systemising and the non-social domain of autism is considerably
higher than the shared genetics between systemising and the
social domain of autism. In addition, using a smaller sample of
autistic individuals, we provide preliminary evidence that the
social and non-social domains in autistic individuals have low
shared genetics. Our results highlight the need to collect deeper
clinical and cognitive information in autistic individuals to better
understand the phenotypic heterogeneity in autism.

Most studies model autism and autistic traits as a single phe-
notype. This has likely arisen because of the difficulties in
recruiting and phenotyping sufficient numbers of autistic people.
Our study suggests that both in the general population and in
autistic individuals, social and non-social autistic traits and
symptom domains are genetically dissociable. This may to some
extent explain why, compared to GWAS of other psychiatric
conditions of roughly similar sample sizes57,63–65, the lar-
gest GWAS of autism to date has identified fewer loci. One
possible explanation is statistical signal-attenuation because of the
underlying heterogeneity. However, this does not necessarily
suggest that systemising, or the other individual trait domains are
less complex. For instance, we observe similar h2SNP for SQ-R, self-
reported empathy46, and the largest and most recent GWAS of
autism57.

It is important to investigate whether these domains are dis-
sociable in a larger cohort of autistic individuals and identify
potential convergence of the two domains in gene expression
networks in the developing brain. Our results confirm the need to
rethink our understanding of autism as existing along a single
dimension3,66. We hypothesise that the dissociation of the two
domains will extend to other research modalities in studies of
autism and autistic traits. It is important to note that, while our
results demonstrate two broadly dissociable autistic trait domains
in the general population and in autistic individuals, more
research is needed to identify other potentially dissociable
domains and to investigate whether this dissociability is driven by
different designs of phenotypic instruments (e.g. self-report vs
informant report). For example, our research does not make a
distinction between communication and social interaction abil-
ities, or between sensory difficulties and repetitive behaviours,
and future molecular genetic studies may identify varying levels
of overlap between these domains. The same principle applies to
other research modalities (neuroimaging, cognitive studies, hor-
monal assays, etc.) investigating the biology of autism and autistic
traits. These different symptom domains of autism may con-
tribute to different co-morbidities. Our results identify shared
genetics between the social traits related to autism and psychiatric
conditions such as schizophrenia and depression, but limited
shared genetics between the SQ-R and these conditions.

Methods
Participants. The current study included participants from 23andMe (primary
GWAS - SQ-R), from ALSPAC (GWAS of scores on the Social and Commu-
nication Disorders Checklist (SCDC)) and autistic individuals from the Simons
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Simplex Collection (SSC), the Autism Genetic Resource Exchange (AGRE), and the
EU-AIMS LEAP and PARIS cohorts.

23andMe participants. Research participants in the GWAS of the SQ-R were
from 23andMe and are described in detail elsewhere67,68. All participants provided
informed consent and answered surveys online according to a human subjects’
research protocol, which was reviewed and approved by Ethical & Independent
Review Services, an external AAHRPP-accredited private institutional review board
(http://www.eandireview.com). All participants completed the online version of the
SQ-R on the 23andMe participant portal. Only participants who were primarily of
European ancestry (97% European Ancestry) were selected for the analysis using
existing methods69. Unrelated individuals were selected using a segmental identity-
by-descent algorithm70. A total of 51,564 participants completed the SQ-R (males
= 26,063, and females= 25,501).

ALSPAC participants. ALSPAC is a longitudinal cohort which recruited pregnant
mothers in the Avon region of the UK. The ALSPAC cohort comprises 14,541
initial pregnancies from women in Avon resulting in a total of 13,988 children who
were alive at 1 year of age. Children were enrolled in additional phases, described in
greater detail elsewhere71. This study received ethical approval from the ALSPAC
Law-and-Ethics Committee, and the Cambridge Human Biology Research Ethics
Committee. Written informed consent was obtained from parent or a responsible
legal guardian for the child to participate. Assent was obtained from the child
participants where possible. We conducted a GWAS of scores on the SCDC in
5,421 individuals from ALSPAC.

Other cohorts. We included data from four cohorts to conduct polygenic score
and bivariate genetic correlation analyses. The SSC (n= 2221 unrelated autistic
individuals) consists of simplex autistic families, and are described elsewhere72. The
AGRE cohort (n= 482 unrelated autistic individuals) consists of multiplex autism
families, details of which are provided elsewhere73. In addition, we included 401
individuals (including 25 neurotypical individuals) from the EU-AIMS LEAP74 and
Paris75 cohorts. Across all cohorts, we included only unrelated individuals, who
were predominantly of European Ancestry as defined by genetic principal com-
ponents (5 SD deviations above or below the mean of PC1 and PC2 from the
HapMap CEU population).

Additionally, we also included data from 1981 unrelated individuals (1000
males, 981 females) from the Nijmegen Biomedical Study (NBS) to provide support
for the independent SNPs with P < 1 × 10−6 in the non-stratified GWAS.
Participants were asked the question: ‘It upsets me if my daily routine is disturbed’,
which is related to a non-social domain of autism, and is similar to an item in the
Autism Spectrum Quotient. Further information including genotyping and quality
control is provided elsewhere43. Genetic association for the top SNPs were
conducted using age, sex, and the first five genetic principal components as
covariates using linear regression.

Phenotypes. The primary phenotype for this study is the SQ-R, which was used to
conduct a GWAS in participants from 23andMe. The SQ-R is self-report measure
of systemising drive, or interest in rule-based patterns10. The SQ-R taps a variety of
domains of systemising, such as interest in mechanical (e.g. car engines), abstract
(e.g. mathematics), natural (e.g. the weather), motor (e.g. knitting), and collectible
(e.g. stamp collecting) systems. There are 75 items on the SQ-R, with a maximum
score of 150 and a minimum score of 0. Scores on the test are normally dis-
tributed10. The SQ-R has good cross-cultural stability and good psychometric
properties with Cronbach’s alpha ranging from 0.79 to 0.94 in different studies76.
Test–retest reliability available in a Dutch sample indicated high reliability of 0.79
(Pearson correlation)76. This was supported by another study in 4058 individuals
which identified high internal cohesion77. Exploratory followed by confirmatory
factor analysis using Rasch modelling suggests that the SQ-R is unidimensional77.
A sex difference has been observed in multiple studies with males, on average,
scoring significantly higher than females10,51. Criterion validity shows that the SQ-
R has a modest but significant correlation with the mental rotation test (r = 0.25, P
= 0.013), as well as its subscales78. Autistic individuals, on average, score higher on
the SQ-R in multiple different studies10,51,79. Further, the SQ-R also predicts
autistic traits, with a combination of the SQ-R and the Empathy Quotient pre-
dicting as much as 75% of the variance on the autism spectrum quotient, a measure
of autistic traits10. The SQ-R has been validated using a short form in a very large
population of 600,000 controls and 36,000 autistic individuals12.

In addition, we used the following secondary phenotypes: SCDC in ALSPAC,
ADOS-G social and communication scores and the RBS-R in the other cohorts. We
also used a single question which is a measure of ‘insistence on sameness’ in the
NBS cohort.

The SCDC is a questionnaire that measures difficulties in verbal and nonverbal
communication, and social interaction including reciprocal social interaction61.
The questionnaire consists of 12 questions, with scores ranging from 0 to 24, and
with higher scores reflecting difficulties in social interaction and communication.
The SCDC has good internal consistency (0.93) and good test–retest reliability
(0.81)61. The SCDC has reasonable specificity and sensitivity in distinguishing
autistic from control individuals80. Previous research has demonstrated that the

SCDC is genetically correlated with autism44,45,57. We conducted a GWAS of
SCDC to investigate whether it is genetically correlated with SQ-R in this study.
We used mother-reported SCDC scores on children aged 8. Although SCDC
has been measured at different ages in the ALSPAC cohort, we chose SCDC
scores measured at age 8 as this has the largest sample size and has high h2SNP
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(h2= 0.24 ± 0.07).
We chose two measures of social and non-social traits in autistic individuals.

For the social trait, we used the social and communication domain scores from the
ADOS-G, a widely used instrument for diagnosing and assessing autism in four
cohorts (SSC, AGRE, EU-AIMS LEAP, and Paris). Participants completed one of
the following ADOS-G modules81: 1 (used for children with little or no phrase
speech), 2 (for children with non-fluent speech), 3 (verbally fluent children), and 4
(verbally fluent adolescents and adults). For this study, we used the raw totals of the
scores from the social domain and the communication domain, combined. Scores
for all four modules range from 0 to 24. The ADOS-G has high overall internal
consistency, and high test–retest reliability for the social and communication
subscales81. The choice for combining the social and communication domain
scores were informed by factor analysis which suggested that the two domains
contribute to one underlying factor82.

In contrast to the social and communication domain, the restricted and
repetitive behaviour domain of the ADOS-G has poor test–retest reliability (r < 0.6)
and a smaller range of scores (0–8) as it captures fewer repetitive and restrictive
behaviour81. Hence, for this study, we used sores on the RBS-R83. The RBS-R is a
measure developed to specifically measure restricted and repetitive behaviours in
autistic individuals and captures stereotyped, self-injurious, sameness, compulsive,
ritualistic, and restricted behaviour84, and has high inter-rater reliability and
internal consistency84. The RBS-R comprises 43 questions with scores ranging
from 0 to 3 for each item based on a Likert scale.

‘Insistence on sameness’ in the NBS cohort was measured using a single item: ‘It
upsets me if my daily routine is disturbed’. This is related to a non-social domain of
autism, and is again similar to an item in the Autism Spectrum Quotient.
Participants were asked to indicate on a 4-point Likert scale ‘definitely agree’,
‘slightly agree’, ‘slightly disagree’, ‘definitely disagree’.

Genotyping, imputation, and quality control and genetic association in the
23andMe cohort. Details of genotyping, imputation and quality control in the
23andMe cohort are provided elsewhere47. Briefly, unrelated participants were
included if they had a call rate of >98.5%, and were of primarily European ancestry
(97% European ancestry). A total of 1,030,430 SNPs (including InDels) were
genotyped or imputed. SNPs were excluded if: they failed the Hardy–Weinberg
equilibrium test at P < 10−20; had a genotype rate of <90%; they failed the parent-
offspring transmission test using trio data in the larger 23andMe research parti-
cipant database; or if allele frequencies were significantly different from the Eur-
opean 1000 Genomes reference data (χ2 test, P < 10−20). Phasing was conducted
using Beagle (version 3.3.1)85 in batches of 8000–9000 individuals. This was fol-
lowed by imputation against all-ethnicity 1000 Genomes haplotypes (excluding
monomorphic and singleton sites) using Minimac286. Genetic association analyses
were restricted to SNPs with a minor-allele frequency > 1%. After quality control,
9,955,952 SNPs (imputed and genotyped) were included in the GWAS.

Our primary analysis was an additive model of genetic effects and was
conducted using a linear regression with age, sex, and the first five ancestry
principal components included as covariates. In addition, given the modest sex
difference, we also conducted sex-stratified analyses. SNPs were considered
significant at a genome-wide threshold of P < 5 × 10−8. Leading SNPs were
identified after LD-pruning using Plink (r2 > 0.8). Winner’s curse correction was
conducted using an FDR-based shrinking87.

We calculated variance explained by first standardising the regression estimates
and then squaring the estimates. This is equivalent to:

R2 ¼ B̂2
j

2 MAFj
� �

ð1�MAFjÞ
σ2y

;

where R2 is the proportion of variance explained for SNPj. B̂2
j is the non-

standardised regression coefficient, MAF is the minor-allele frequency for SNPj,
and σ2y is the variance of SQ. Further details of this formula are provided in
the Supplementary Note.

Genotyping, imputation, and quality control and genetic association in the
ALSPAC. The SCDC61 scores were calculated from children of the 90 s (ALSPAC
cohort)71, in children aged 8. In total, SCDC scores were available on N= 7,825
children. From this, we removed individuals for whom complete SCDC scores were
not available. After excluding related individuals and individuals with no genetic
data, data was available on a total of N= 5,421 unrelated individuals.

Participants were genotyped using the Illumina® HumanHap550 quad chip by
Sample Logistics and Genotyping Facilities at the Wellcome Sanger Institute and
LabCorp (Laboratory Corportation of America) using support from 23andMe.
Individuals were excluded based on gender mismatches, high missingness (>3%),
and disproportionate heterozygosity. We restricted subsequent analyses to
individuals of European descent (CEU), which were identified by multi-
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dimensional scaling analysis and compared with Hapmap II (release 22).
Individuals were also removed if cryptic relatedness, assessed using identity by
descent, was >0.1. Genotyped SNPs were filtered out if they had >5% missingness,
violated Hardy–Weinberg equilibrium (P < 1 × 10−6), and had a minor-allele
frequency < 1%, resulting in a total of 526,688 genotyped SNPs. Haplotypes were
estimated using data from mothers and children using ShapeIT (v2.r644)88.
Imputation was performed using Impute2 V2.2.289 against the 1000 genomes
reference panel (Phase 1, Version 3). Imputed SNPs were excluded from all further
analyses if they had a minor-allele frequency < 1% and info < 0.8. After quality
control, there were 8,282,911 genotyped and imputed SNPs that were included in
subsequent analyses.

Dosage data from BGEN files were converted using hard-calls, with calls with
uncertainty > 0.1 treated as missing data. Post-imputation, we excluded SNPs that
deviated from Hardy–Weinberg equilibrium (P < 1 × 10−6), with minor-allele
frequency < 0.01 and missing call rates > 2%. We further excluded individuals with
genotype missing rates > 5%. The SCDC score was not normally distributed so we
log-transformed the scores and ran regression analyses using the first two ancestry
principal components and sex as the covariates using Plink 2.0 (ref. 90).

The log-transformed SCDC scores (henceforth, SCDC scores) had a modest but
significant h2SNP as quantified using LDSR h2SNP ¼ 0:12 ± 0:05

� �
. LDSR intercept

(0.99) suggested that there was no inflation in GWAS estimates due to population
stratification. The λGC was 1.013. We replicated the previously identified genetic
correlation with autism57 (constrained intercept) using our SCDC GWAS (rg=
0.45 ± 0.18, P= 0.01). In addition, we also identified a negative genetic correlation
between educational attainment58 and SCDC (rg=−0.30 ± 0.11, P= 0.007).

Genomic inflation factor, heritability, and functional enrichment for the SQ-R
GWAS. LDSR91,92 was used to calculate for inflation in test statistics due to
unaccounted population stratification. Heritability was calculated using LDSR
using the north-west European LD scores. Difference in heritability between males
and females was quantified using:

Z ¼ h2males � h2femalesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE2

males þ SE2
females

q ;

where Z is the Z-score for the difference in heritability for a trait, h2males � h2females

� �
is the difference h2SNP estimate in males and females, and SE is the standard errors
for heritability. Two-tailed P-values were calculated and reported as significant if
P < 0.05.

For the primary GWAS (non-stratified analyses), we conducted functional
annotation using FUMA93. We restricted our analyses to the non-stratified
analyses due to the high genetic correlation between the sexes and the low
statistical power of the sex-stratified GWAS. We conducted gene-based association
analyses using MAGMA94 within FUMA and report significant genes after using a
stringent Bonferroni corrected P < 0.05. In addition, we conducted enrichment for
tissue specific expression and pathway analyses within FUMA. For the significant
SNPs, we investigated enrichment for eQTLs using brain tissues in the BRAINEAC
and GTEx95 database within FUMA. We further conducted partitioned heritability
for tissue-specific active chromatin marks and baseline functional categories using
extended methods in LDSR96.

Hi-C-based annotations of fine mapped loci. We fine mapped three genome-
wide significant loci (index SNPs: rs4146336 and rs1559586 or SQ; rs8005092 for
SQ-R males) to obtain credible SNPs. First, we selected SNPs with P < 0.01 that are
located in the LD region (r2 > 0.6) with an index SNP. LD structure within a locus
was constructed by calculating correlations between SNPs within a locus (1KG
v20130502). CAVIAR97 was then applied to the summary association statistics and
LD structure for each index SNP to generate potentially causal (credible) SNPs with
a posterior probability of 0.95. In total, we identified 14 credible SNPs from the
three GWS loci.

For each locus, candidate genes were identified by mapping credible SNPs based
on physical interactions in foetal brain as previously described98. One locus (index
SNP rs4146336) was mapped to two genes, LSAMP and PTMAP8, indicating that
two credible SNPs (rs13066948 and rs11713893) located in this locus physically
interact with these genes.

Genetic correlation. For all phenotypes, we performed genetic correlation without
constraining the intercept using LDSR. We identified significant genetic correla-
tions using a Bonferroni adjusted P-value < 0.05. For the primary genetic corre-
lation analysis with SQ-R, we included psychiatric conditions57,63,99–102,
personality traits103–105, measures of intelligence58,59,106,107, and social traits
related to autism46,55 including scores on the SCDC, as previous research has
investigated the phenotypic correlation between these domains and system-
ising10,78,108–112.

To understand the correlation between systemising and various phenotypes that
have been genetically correlated with autism, we used GWAS data from 15
phenotypes including autism. 10 of these phenotypes (cognitive aptitude59,
educational attainment58, tiredness113, neuroticism103, subjective wellbeing103,
schizophrenia114, major depression102, depressive symptoms103, ADHD63,

and chronotype115), have been previously reported to be significantly
genetically correlated with autism out of 234 phenotypes tested using LDHub62

(P < 2.1 × 10−4). We excluded college degree from this list, as previous work has
identified near perfect genetic correlation between educational attainment and
college degree58. In addition, we included data from friendship satisfaction55,
family relationship satisfaction55, systemising, and self-reported empathy46, all of
which are also significantly genetically correlated with autism with P < 2.1 × 10−4.
These four additional phenotypes were not included in the previous paper which
investigated genetic correlations with autism. Details of sample sizes with PMIDs/
DOIs are provided in Supplementary Data 12. Cross trait genetic correlations were
computed for all 15 phenotypes, and results were corrected for multiple testing
using Bonferroni correction. A correlogram was created after using hierarchical
clustering to cluster the phenotypes.

To investigate whether the combination of negative genetic correlation social
traits and positive genetic correlation for non-social traits is specific to autism, we
conducted a genetic correlation between all psychiatric conditions for which we
had access to summary GWAS statistics (ADHD63, Anxiety116, Autism57,
Anorexia101, Bipolar Disorder99, Major Depressive Disorder102, OCD117,118,
PTSD119, and Schizophrenia114) and SQ-R, self-reported empathy measured using
the EQ46 and friendship satisfaction55. We chose friendship satisfaction and self-
reported empathy as representative of social traits as these are the most relevant to
the social domain of autism for which we had access to GWAS summary statistics.
The EQ is a short, 40-item self-report measure of empathy, which has been widely
used and has good psychometric properties60,120. In addition, differences in aspects
of empathy compared to the neurotypical population have been widely reported in
autism50,51,121, and empathy is one of the items in measures such as ADOS-
G. Friendship satisfaction was selected as difficulties in making friends is listed as a
criteria for an autism diagnosis in the DSM-51.

GWIS and GSEM. To investigate whether the SQ-R is genetically correlated with
autism independent of the genetic effects of educational attainment, we constructed
a unique SQ-R phenotype after conditioning on the genetic effects of educational
attainment using GWIS122. GWIS takes into account the genetic covariance
between the two phenotypes to calculate the unique component of the phenotypes
as a function of the genetic covariance and the h2SNP. Before performing GWIS, we
standardised the beta coefficients for the SQ-R GWAS by using the following
formula:

dBstd ¼ B̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 MAFð Þ 1�MAFð Þ

σ2y

s
;

where dBstd is the standardised regression coefficients, B̂ is the regression coefficient
obtained from the non-standardised GWAS, MAF is the minor-allele frequency, σ2y
is the variance of the SQ-R. This equation is explained in detail in the Supple-
mentary Note. We conducted GWIS using only educational attainment as we were
unclear whether the GWAS of cognitive aptitude59 was conducted on a standar-
dised phenotype. Further, there is a high genetic correlation between cognitive
aptitude and educational attainment. In addition to GWIS, to validate the findings,
we conducted GSEM123, a complementary but independent method. GSEM uses
the genetic correlations and covariances calculated using LDSR after accounting for
sample overlap.

Polygenic scores in the SSC, AGRE, EU-AIMS LEAP, and Paris cohorts. We
generated polygenic scores for SQ-R (mean weighted score of all the alleles that
contribute to higher systemising) in 2221 probands from the SSC (Discovery
dataset). We downloaded genotype data from the SSC from SFARI base (https://
www.sfari.org/resource/sfari-base/). Individuals were genotyped on three different
platforms: Illumina Omni2.5, Illumina 1Mv3, or Illumina 1Mv1. Informed consent
or assent was obtained from all participants. In addition, the research team
obtained ethical approval from the Cambridge Human Biology Research Ethics
Committee to access and analyse the de-identified data from the SSC. We con-
ducted stringent quality control and imputation separately for each platform. The
full pipeline is available here: https://github.com/autism-research-centre/
SSC_liftover_imputation. Briefly, individuals were excluded if they had: a geno-
typing rate < 95%, excessive or low heterozygosity (less or more than 3 SD from the
mean), mismatched reported and genetic sex, and families with Mendelian errors >
5%. We further removed SNPs that significantly deviated from Hardy–Weinberg
equilibrium (P < 1 × 10−6), had Mendelian errors in >10% of the families, and
SNPs that were not genotyped in >10% of the families. We then conducted multi-
dimensional scaling using the HapMap3 phase 3 population using the unrelated
individuals CEU and TSI populations as representatives of the European popula-
tion. This was conducted only in the parents to retain unrelated individuals for
multi-dimensional scaling. Genetic principal components were calculated using
only SNPs with minor-allele frequency > 5%, and pruning the SNPs in Plink using
an r2 of 0.2. We excluded families from further downstream analyses if either one
the parents were greater or less than 5 standard deviations from the means of the
first two genetic principal components calculated using only the unrelated indi-
viduals in HapMap3 CEU and TSI populations. Quality control was done using
Plink v 1.9 and R. Phasing and imputation were conducted using the Michigan
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Imputation Server (https://imputationserver.sph.umich.edu/start.html) using the
1000 genomes Phase 3 v5 as the reference panel.

Polygenic scores were generated using PRSice2 (https://choishingwan.github.io/
PRSice/) for the SQ-R using the non-stratified GWAS data. We calculated the mean
polygenic score for each of the 2221 probands in the SSC, after clumping SNPs using
an R2 threshold of 0.1. Prior to generating polygenic scores, we confirmed that the
probands were not related to each other using identity by descent PI-HAT > 0.15 as
a relatedness cut-off. We used a P-value threshold of 1 as previous research on
educational attainment, subjective wellbeing and social relationship satisfaction, all
suggest that the maximum variance explained is at a threshold of 1 (refs. 58,103). This
is expected for highly polygenic traits where many SNPs incrementally contribute to
the variance explained124. Polygenic scoring was done using standardised scores on
two different phenotypes as the dependent variable (RBS-R and the social and
communication domain of the ADOS-G). We included sex, platform, the first 15
genetic principal components and standardised full-scale IQ as covariates. In
addition, for the analysis of ADOS-G, we included the ADOS-G module as a
covariate. Linear regression was conducted in R. A total of 135,233 SNPs were
included in the polygenic score analyses after clumping and thresholding.

To validate the polygenic scores, we conducted additional polygenic score
analysis using data combined from the AGRE, EU-AIMS LEAP and Paris cohorts.
We followed similar quality control and imputation procedures to the SSC cohort.
Given that this dataset was a mix of related and unrelated individuals, we chose
unrelated individuals using a genomic relationship matrix (GRM) as provided in
GCTA (grm-cutoff 0.05)125. To calculate GRMs, we included only SNPs with
minor-allele frequency > 1%. Scripts are provided here: https://github.com/
vwarrier/PARIS_LEAP_analysis. Polygenic scores were calculated using PRSice2 as
described for the SSC data. Given the differences in dataset, polygenic scores were
calculated separately for the AGRE dataset, and the EU-AIMS LEAP and Paris
datasets combined. For each regression, we included sex and the first ten genetic
principal components (standardised). The dependent variables were standardised
scores on the RBS-R (N= 426) and the ADOS-G social and communication
subscale (N= 475). IQ information was unavailable for most individuals, and
hence we did not include IQ as a covariate. We combined the results of the EU-
AIMS LEAP and Paris cohorts, and the AGRE dataset using inverse-variance
weighted fixed-effect meta-analysis using the formula below:

wi ¼ 1=SE2
i

SEmeta ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=Σiwi

p
Betameta ¼ Σiβiwi=Σiwi

;

where βi is the standardised regression coefficient of the polygenic scores, SEi is the
associated standard error, and wi is the weight.

Bivariate GREML. We conducted bivariate genetic correlation using GCTA
GREML to test the genetic correlation between the ADOS social and communication
domains and the RBS-R scores. We created a GRM after including autistic indivi-
duals from the SSC, AGRE, EU-AIMS LEAP, and Paris cohorts. We excluded SNPs
and individuals using the same quality control pipeline as applied to the SSC dataset
outlined in the section above. We further restricted our analysis only to SNPs with a
minor-allele frequency > 1%. We excluded related individuals (–grm-cutoff 0.05)
resulting in a total of 2989 individuals. Of this, 2652 individuals had scores for the
ADOS social and communication domain and 2550 individuals had scores on the
RBS-R. We included sex and the first ten genetic principal components as covariates.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The SQ-R GWAS results are available from 23andMe. The full set of summary statistics
can be made available to qualified investigators who enter into an agreement with
23andMe that protects participant confidentiality. Interested investigators should email
dataset-request@23andme.com for more information. Top SNPs (n= 10,000) can be
visualised here: https://ghfc.pasteur.fr.Data. for ALSPAC can be requested here: http://
www.bristol.ac.uk/alspac/researchers/access/. Data from the Simons Simplex Collection
can be requested here: https://www.sfari.org/resource/sfari-base/. Summary GWAS
statistics were downloaded from the PGC consortium: http://www.med.unc.edu/pgc/
results-and-downloads. Data for chronotype was downloaded from http://www.
t2diabetesgenes.org/data/. Data for self-reported tiredness was downloaded from http://
www.ccace.ed.ac.uk/node/335. Additional source data are available in Supplementary
Data 1–13.

Code availability
Genomic-SEM: https://github.com/MichelNivard/GenomicSEM, GWIS: https://sites.
google.com/site/mgnivard/gwis, Plink: https://www.cog-genomics.org/plink2/, PRSice2:
https://choishingwan.github.io/PRSice/, CAVIAR: http://genetics.cs.ucla.edu/caviar/,
Michigan Imputation Server: https://imputationserver.sph.umich.edu/index.html,
custom code for quality control of the SSC and the other cohorts can be downloaded
from https://github.com/autism-research-centre/SSC_liftover_imputation (https://doi.

org/10.5281/zenodo.3342561) and from https://github.com/vwarrier/
PARIS_LEAP_analysis (https://doi.org/10.5281/zenodo.3342569).
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