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Abstract

Defective viral genomes (DVGs) are truncated and/or rearranged viral genomes produced

during virus replication. Described in many RNA virus families, some of them have interfer-

ing activity on their parental virus and/or strong immunostimulatory potential, and are being

considered in antiviral approaches. Chikungunya virus (CHIKV) is an alphavirus transmitted

by Aedes spp. that infected millions of humans in the last 15 years. Here, we describe the

DVGs arising during CHIKV infection in vitro in mammalian and mosquito cells, and in vivo

in experimentally infected Aedes aegypti mosquitoes. We combined experimental and

computational approaches to select DVG candidates most likely to have inhibitory activity

and showed that, indeed, they strongly interfere with CHIKV replication both in mammalian

and mosquito cells. We further demonstrated that some DVGs present broad-spectrum

activity, inhibiting several CHIKV strains and other alphaviruses. Finally, we showed that

pre-treating Aedes aegypti with DVGs prevented viral dissemination in vivo.

Author summary

Defective viral genomes (DVGs) are produced during virus replication. On their own they

cannot replicate, but some of them can compete with wild-type virus for viral and/or cel-

lular resources. For chikungunya virus, interference by DVGs has not been described.

Here, we use a new approach based on experimental evolution and computational analysis

to characterize all DVGs generated in a virus population and identify those with the high-

est antiviral potential. We confirm their antiviral activity in both mammalian and mos-

quito host environments and show that some can broadly interfere with other strains or

related alphaviruses. Finally, we show that DVGs can inhibit virus dissemination in

mosquitoes.
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Introduction

Chikungunya virus (CHIKV) is a positive stranded RNA virus belonging to the alphavirus

genus (Togaviridae family) that is responsible for chikungunya fever, a dengue-like syndrome

with severe joint pain. This arthropod-borne virus (arbovirus) transmitted by Aedes spp. mos-

quitoes re-emerged in the last 15 years, posing a serious public health threat by causing two

major worldwide epidemics with close to 8 million cases[1–3] and other frequent localized

outbreaks. Its emergence in the Indian Ocean islands in 2005–2006 was caused by the Indian

Ocean lineage strain (CHIKV-IOL) derived from the Eastern-Central-Southern African line-

age[1–3]; while the Caribbean strain originated from the Asian lineage and caused the out-

break in the Caribbean states and the Americas in 2013–2014[2, 3]. Because there are currently

no CHIKV treatment or licensed vaccines available, vector control strategy remains a main

axis of prevention and outbreak control.

Along with high mutation rates, recombination is another main driving force of RNA virus

evolution. Non-homologous recombination can give rise to truncated and/or rearranged viral

genomes called defective viral genomes (DVGs). First described in influenza virus in 1954 by

Von Magnus[4], DVGs have since been described in all viral families[5, 6], generally when

virus is passaged at high multiplicity of infection (MOI) conditions that favor the appearance

of defective genomes requiring helper function from full-length virus. Because they lack part

of their genome or its encoded functions, DVGs must co-infect cells with their parental virus,

in order to take advantage of the proteins encoded by the full-length virus. Hence, DVGs that

hijack the replication machinery or use proteins encoded by the parental virus, may compete

with wild-type virus for resources, which can result in inhibition of the parental virus[7, 8].

These types of DVGs are often referred to as defective interfering particles. Furthermore,

many DVGs have a strong, immunostimulatory potential both in mammals and invertebrates

[7, 9–11]. DVGs were identified in sera from patients suffering from acute dengue virus infec-

tion, but their pathophysiological role remains unknown[12]. In humans, their presence corre-

lates with milder disease and better outcome in influenza virus[13] and respiratory syncytial

virus infections[10]. All these reasons explain the recent renewed interest in using DVGs as

antiviral therapy[14, 15].

Only a few studies cover alphavirus DVGs. In Sindbis virus, a low-fidelity polymerase was

shown to recombine at higher rate, overproducing DVGs that correlated with interference

[16]. In invertebrates, alphavirus DVGs (Sindbis virus and CHIKV) were shown to be a tem-

plate for the viral DNA form, which is key in modulating the antiviral immune response and

establishing persistent infections in insects[9]. However, no studies have focused on develop-

ing antivirals derived from alphavirus DVGs.

In this work, we document and characterize naturally occurring DVGs bearing deletions,

arising during CHIKV infection in vitro and in vivo. From these, we selected the DVGs based

on their frequency and recurrence between replicates and/or their ability to be carried over

multiple passages. We show that natural DVGs have a strong antiviral activity on CHIKV both

in mammalian and mosquito cells in vitro, and demonstrate that interfering DVGs can be

broad-spectrum against other alphaviruses. Finally, we show that DVGs can be introduced

into the mosquito vector prior to infection to inhibit arbovirus dissemination.

Results

Generation of defective viral genomes (DVG) by in vitro high MOI passage

In order to capture DVGs containing deletions as they arise in cell culture, the Caribbean

strain of CHIKV (CHIKV Carib) was serially passaged in triplicate at high MOI in mammalian
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(Vero, Huh7) and mosquito (Aag2, U4.4) cells. RNA was extracted from the clarified superna-

tant of each replicate at each passage and RNA deep sequencing was performed to identify

DVGs. As expected, the amount of DVGs between the first and last passages increased by

between 1 and 5 orders of magnitude in all cell types, and the rates and oscillations differed

with each cell type (Fig 1A).

Characterization of the DVGs generated in vitro
Next, we pooled the data from each cell line to identify potential deletion hotspots in the differ-

ent cell types. The resulting heat map (Fig 1B) reveals the frequency at which each nucleotide

position was deleted (regardless of the total length of the deletion), where the x-axis indicates

the nucleotide position along the full CHIKV genome. Each row represents a different cell

type. We observed clear differences in regions with higher deletion frequencies between cell

types, suggesting that the same viral strain generates different deletion variants depending on

the host environment. In Vero and Huh7 cells, deletions were abundant in the region span-

ning the non-structural proteins nsP1-nsP2, yet the hotspot profile was shorter in HuH7 com-

pared to Vero cells. In Aag2 cells, deletions were more widely spread across the genome.

Contrary to the other cell lines, where deletions occurred in the first half of the CHIKV

genome, DVGs generated in U4.4 cells more often exhibited deletions in the second half of the

genome (from nucleotides 6000 [nsP3] to 11500 [3’UTR]). Of note, the same experiment with

the CHIKV IOL (Indian Ocean Lineage) strain had similar deletion profiles as the CHIKV

Carib strain in Vero and Aag2 cells. However, CHIKV IOL deletions differed strongly in

Huh7 (where the strongest hotspot is from nucleotides 9000 [E2] to 11000 [3’UTR]) and in

U4.4 cells (whose profile, in this case, was similar to the profile obtained in Aag2 cells) (Fig

1B). Taken together, these results suggest that both the virus strain, as well as the cellular envi-

ronment, influence the generation and maintenance of DVGs during passaging in vitro.

To visualize the different DVGs in these viral populations, the specific start (x axis) and

stop (y axis) breakpoints of individual DVGs with deletions of>100 nucleotides were plotted

(Fig 1C). The analysis revealed predominant DVGs forming three clusters (cluster A, B and C)

based on the location and the size of the deletion that was observed in all cell types, while a

fourth cluster (cluster D) was more prominent in mosquito cells. Cluster A presented relatively

small deletions of approximately 2500 nt, between the nsP1 and nsP2 genes. Cluster C pre-

sented large deletions of over 9000 nt from the end of nsP2 to the beginning of the 3’UTR, and

for cluster B, an even larger deletion spanning nsP1 to the 3’UTR. In Aedes mosquito cells

(Aag2 and U4.4), another cluster D was present with deletions of approximately 5000nt

between nsP3 and the 3’UTR.

Generation of chikungunya DVGs in mosquitoes in vivo
To see if DVGs were also generated during in vivo mosquito infection, we fed Aedes aegypti
mosquitoes an infected blood meal containing 106 PFU/ml of the Caribbean strain of CHIKV.

After allowing the infection to disseminate throughout the mosquitoes over seven days, we sac-

rificed and dissected ten of them to collect individual organs: midgut, abdominal wall (body),

thorax, heads and legs/wings (Fig 2A). RNA was extracted and sequenced, and the data were

analyzed using the BBmap pipeline. Similar DVG patterns to the data generated in Aag2 cells

(Fig 1C) were observed, with four distinct clusters (Fig 2B). One mosquito was not infected. In

two mosquitoes out of the nine remaining (Fig 2C), we found the same DVG (named CM1) in

several organs (midgut, body, head and legs/wings for one mosquito and midgut, body and

head for the other mosquito). No other mosquitoes, nor the viral stock used to infect them,
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Fig 1. Generation of chikungunya virus (CHIKV) defective viral genomes (DVGs) in different hosts in vitro. The Caribbean strain

(Carib) and Indian Ocean lineage (IOL) of CHIKV was passaged at high MOI in mosquito (U4.4, Aag2) or mammalian (Vero, Huh7) cells

in triplicate. For each passage, the supernatant harvested from the previous passage was used to infect fresh cells. The infection lasted 48 to

72 hours. (A) DVG accumulation through passages. Total frequency of CHIKV Carib DVG arising in each replicate in 2 mammalian cell

lines (Vero, Huh7) and 2 mosquito cell lines (Aag2, U4.4), determined after RNA deep-sequencing of each sample and quantification of

DVG with Bbmap pipeline output. Samples with coverage under 200 were excluded from analysis. DVG count is represented in log scale

(y axis) at each passage (x axis). (B) CHIKV Carib or IOL DVG heat maps in different cell types. The viral population of each passage was

deep sequenced (RNAseq) and analyzed through BBmap pipeline. An average of all passages and replicates of the normalized frequency of

each deleted nucleotide position (x axis) throughout the full genome is shown as a heat map (shades of orange), for each different cell type

(y axis). (C) Analysis of the deletions generated by high MOI passages by CHIKV Carib. Start (x axis) and stop (y axis) positions of the

breakpoint of DVGs generated are plotted for each cell type. The different clusters are called A, B, C, D.

https://doi.org/10.1371/journal.ppat.1009110.g001

Fig 2. Generation of chikungunya DVGs in mosquitoes in vivo. (A) Aedes aegypti mosquitoes were fed a blood meal infected with 106 PFU/ml of CHIKV Carib. After 7

days, ten mosquitoes were sacrificed and midgut, abdominal wall (body), thorax, head and legs/wings were dissected. After verification of infection by titration, viral RNA

was extracted and deep-sequenced. (B) Analysis of the deletions generated by CHIKV Carib in nine infected mosquitoes pooled together. Start (x axis) and stop (y axis)

positions of the breakpoint of DVGs generated are plotted for each organs. (C) Start (x axis) and stop (y axis) positions of the breakpoint of DVGs generated in the

different organs of 2 individual mosquitoes. The red dots represent the deletion starting at 2695 and ending at 5358, this DVG is called CM1. The number next to it is the

number of read per million reads (RPM).

https://doi.org/10.1371/journal.ppat.1009110.g002
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contained this DVG-CM1. These results indicate that DVGs are readily generated in the mos-

quito host, and that they share similar deletion profiles as what was observed in cell culture.

Chikungunya DVG candidates are non replicative

In the previous sections we uncovered all of the possible DVGs generated during virus infec-

tion. Our goal was to down-select, from the hundreds of individual DVGs, those that would

most likely and efficiently compete with wild-type virus. In other words, to identify which of

the total DVGs would be the most potent defective interfering particles. Our rationale was that

such DVGs would occur more frequently at high MOI passage, and would increase to higher

frequency over time as the DVG competes with wildtype virus for resources. Thus, we selected

DVGs based on: having high frequency, being maintained throughout the passage series and

occurring in several replicates.

In addition to DVG-CM1, carrying a deletion from nucleotide 2695 (middle of nsP2) to

nucleotide 5358 (end of nsP3), we selected and cloned another 19 DVGs, from the cell passage

deep sequencing data of CHIKV Carib (described above) and CHIKV IOL, along with repre-

sentatives from all four clusters (Fig 3A). We named DVGs according to their virus strain of

origin (C for CHIKV Carib and I for CHIKV IOL) and the cell in which they were generated

(V for Vero, H for Huh7, A for Aag2 and U for U4.4, M for in vivo mosquito). Their genomic

composition is shown in Fig 3A and their exact deletions are listed in Table 1. Three additional

candidates did not belong to any defined cluster, but were present at high frequency in several

replicates and were maintained throughout passages (Table 1).

To confirm that the selected DVGs were indeed defective genomes, unable to self-replicate

in absence of virus, we transfected in vitro transcribed RNA of each DVG or wild-type virus in

293T cells. We harvested each DVG- or control-transfected cells at 8, 20, 28, and 44 hours post

transfection, extracted RNA from the cells and performed an RT-qPCR. Contrary to CHIKV

Carib full-length virus RNA that had an increasing RNA copy number throughout the time-

points, all DVG RNA copy numbers decreased over time, reflecting the progressive degrada-

tion of transfected RNA, and demonstrating that none of the candidate DVGs could self-

replicate (S1 Fig).

Chikungunya DVGs interfere with wild-type virus in vitro
We next tested the interfering activity of the 20 DVGs derived from either mammalian cell cul-

ture (Fig 3B) or mosquito host environments (Fig 3C) in mammalian cells. We chose 293T

cells for their high transfectability, and a CHIKV Carib virus expressing Gaussia luciferase

under a sub-genomic promoter (CHIKV Carib-Gluc) as the target virus for rapid quantifica-

tion. To test the DVGs that were derived from mammalian or mosquito cell culture, 293T cells

were transfected with a mix of in vitro transcribed RNA corresponding to one DVG of interest

(or a control RNA) and the CHIKV Carib-Gluc full length virus RNA at a 1:1 or 10:1 molar

ratio. Supernatants were harvested at 48 hours to measure luciferase activity as a surrogate

measure for wild-type virus replication, since titers and luminescence correlated (S2 Fig). At a

1:1 molar ratio, most DVGs did not reduce wild-type virus luciferase expression, but transfec-

tion of IV1 and IH1 showed a modest decrease (p< 0,05). However, increasing the amount of

DVG RNA to 10 times that of CHIKV Carib-Gluc RNA significantly inhibited virus replica-

tion in nearly every case by 1 to 3 orders of magnitude (Fig 3B and 3C). Of note, the smallest

DVGs with the largest deletions (CH2 and CH3 from cluster B) had no, or little, interference

activity at the highest DVG:CHIKV Carib-Gluc molar ratio, with a decrease of less than 1 log

(Fig 3B). These results show that DVGs derived from both mammalian or mosquito cell cul-

ture can inhibit virus replication in mammalian cells when introduced exogenously.
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Fig 3. Defective viral genomes can interfere with chikungunya virus replication. (A) Schematic of the DVG candidates and the cell type and strain from which they

were derived (C Carib, I IOL). (B-E) Measuring DVG activity in vitro. In vitro transcription of each DVG candidate (identified from mammalian cell passage (B,D) or

mosquito cell passage (C,E)) or of a control RNA was co-transfected with CHIKV Carib-luciferase at 1:1 or 10:1 molar ratio in 293T cells (B,C) or U4.4 cells (D,E).

After 48 hours, luciferase activity was measured. (Representative result of one experiment out of three independent experiments is shown, n = 3, �p<0,05, ��p<0,01,
���p<0,001, ����p<0,0001, ns non significant compared to wild-type after Dunnett’s multiple comparisons on one-way ANOVA test).

https://doi.org/10.1371/journal.ppat.1009110.g003
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To determine whether these mammalian and mosquito cell-derived DVGs could also

inhibit virus replication in mosquito cells, we repeated the experiment in Aedes albopictus cells

(U4.4). As for 293T cells, no interference was observed at a 1:1 molar ratio; but considerable

inhibition with decreases of 1 to 2 log of luciferase activity was observed at 10:1 ratios for all of

the DVGs that previously inhibited virus in mammalian cells, except for IV4. As seen in 293T

cells, no interference was observed for DVG CV3 in mosquito cells (p>0,05) (Fig 3D), which

along with CH3, were the only two of 20 DVG candidates to fail to inhibit virus in any condi-

tion. On the other hand, most of the mosquito cell-derived DVGs that could inhibit virus in

293T cells completely lost their interference activity in mosquito cells; only DVG CA2, CA3

and CM1 significantly reduced luciferase activity by 1 to 2 log in U4.4 cells at a molar ratio of

10:1 (Fig 3E).

Chikungunya DVGs can be broad-spectrum inhibitors

The CHIKV Indian Ocean lineage belongs to the East, South and Central African (ECSA)

genotype and has approximately 7% nucleotide divergence with the CHIKV Caribbean strain

that belongs to the Asian genotype[17]. In the previous experiments, DVGs derived from

either the Indian Ocean Lineage or Caribbean strains were tested against the Caribbean strain

virus expressing Gaussia luciferase. Importantly, all of the CHIKV IOL-derived DVGs inhib-

ited the Caribbean strain, showing that DVGs can act broadly within the same virus species

Table 1. List and characteristics of chikungunya virus DVGs in our study.

DVG Straina Hostb startc Stopd deletion length DVG length Deletion locatione

IV1 IOL Vero 435 3123 2689 9163 NSP1-2

IV2 IOL Vero 663 2878 2216 9636 NSP1-2

IV3 IOL Vero 3892 11508 7617 4235 NSP2-3’UTR

IV4 IOL Vero 3850 11629 7780 4072 NSP2-3’UTR

IH1 IOL Huh7 8495 11593 3099 8753 E3-3’UTR

IU1 IOL U4.4 3570 11509 7940 3912 NSP2-3’UTR

CV1 Carib Vero 435 3123 2689 9541 NSP1-2

CV2 Carib Vero 663 2878 2216 10014 NSP1-2

CV3 Carib Vero 3893 11527 7635 4595 NSP2-3’UTR

CV4 Carib Vero 3893 11704 7812 4418 NSP2-3’UTR

CH1 Carib Huh7 508 2188 1681 10549 NSP1-2

CH2 Carib Huh7 555 11501 10947 1283 NSP1-3’UTR

CH3 Carib Huh7 555 11678 11124 1106 NSP1-3’UTR

CU1 Carib U4.4 5628 11468 5841 6389 NSP3-3’UTR

CU2 Carib U4.4 5897 11528 5632 6598 NSP3-3’UTR

CA1 Carib Aag2 6183 11784 5602 6628 NSP4-3’UTR

CA2 Carib Aag2 3050 6141 3092 9138 NSP2-4

CA3 Carib Aag2 373 2344 1972 10258 NSP1-2

CA4 Carib Aag2 2698 11790 9093 3137 NSP2-3’UTR

CM1 Carib mosquito 2695 5358 2664 9566 NSP2-3

a Virus strain of origin

b host cell type in which DVG was identified

c nucleotide position where the deletion starts

d nucleotide position where the deletion stops

e genes and genomic regions where deletion occurs; DVG, defective viral genomes; Deletion location, the region of the genome affected by the deletion that may include

envelope proteins (E), nonstructural proteins (NSP) or 3’untranslated region (3’UTR).

https://doi.org/10.1371/journal.ppat.1009110.t001

PLOS PATHOGENS Defective viral genomes from chikungunya virus

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009110 February 8, 2021 8 / 19

https://doi.org/10.1371/journal.ppat.1009110.t001
https://doi.org/10.1371/journal.ppat.1009110


(Fig 3B–3E). To extend these results, we repeated the same experiment in 293T using CHIKV

IOL strain as the target virus. In this case, we measured inhibition by virus titer instead of

luminescence. Most DVGs resulted in reduced virus titers, either modestly or significantly,

whether they were identified from mammalian (Fig 4A) or mosquito (Fig 4B) environments.

We next investigated whether CHIKV DVGs could inhibit even more broadly within the

alphavirus genus. We carried out the same experiment in 293T cells with O’nyong’nyong virus

(ONNV, CHIKV’s closest relative) or Sindbis virus (SINV, a very distant relative) as the targets.

While the inhibitory effect was lost for most DVGs, some DVGs still significantly inhibited

O’nyong’nyong virus (CV2 and CH1) (Fig 4C). Of the mosquito-derived DVGs, CM1 main-

tained inhibitory activity with close to no detectable O’nyong’nyong virus titers (Fig 4D). When

tested against the distantly related Sindbis virus, interference activity was lost for all DVGs, but

for CM1 that inhibited Sindbis virus by 2 logs (Fig 4E and 4F). These results confirm that some

DVGs derived from one alphavirus can have inhibitory activity on different strains, including

closely, and in some cases more distantly related viruses from the same genus.

Chikungunya DVGs block viral dissemination in vivo, in Aedes aegypti
mosquitoes

After demonstrating that DVGs can be used to limit/inhibit infection in vitro, we tested if their

interference activity could be used to block infection or dissemination in the mosquito host.

To do so, we injected purified RNA of the CV4, IH1 or CM1 DVGs, a control RNA, or PBS

into Aedes aegypti mosquitoes 2 days prior to feeding them with a blood meal containing the

CHIKV Carib-Gluc virus. Five days post infection, mosquitoes were sacrificed and midguts

were dissected from the rest of the carcass (Fig 5A). Virus replication was measured in each

mosquito by quantifying luciferase activity. Replication in the midgut was similar in all mos-

quitoes regardless of whether interfering DVG candidates were present or not. However, repli-

cation was significantly reduced in CV4- and CM1-treated mosquito carcasses (Fig 5B). Virus

in midguts (representing infection) and carcass (a proxy for viral dissemination) was then

quantified, and classified as positive or negative, depending on whether infectious viruses were

detected or not (limit of detection 30 PFU per organ). All groups had a similar proportion of

positive midguts (between 81 and 91,7%) (Fig 5C), confirming that the number of infected

mosquitoes following bloodmeal feeding was similar for each group. On the other hand, virus

dissemination was significantly impacted by the presence of DVGs: mosquitoes injected with

either CV4, IH1 or CM1 DVGs had lower dissemination rates compared to PBS injected mos-

quitoes (16,7%, 47,6% and 41,7% of total infected mosquitoes in each group) (Fig 5C). These

results confirm that DVGs can impact viral replication and dissemination in vivo, in the mos-

quito host.

Discussion

Described in all RNA virus families[5, 6] and often considered a waste product of viral replica-

tion, defective interfering particles, and more broadly speaking DVGs, have recently garnered

attention for their possible use as antivirals [6, 15, 18–22]. Indeed, the presence of DVGs in

natural human infections correlates with milder disease in clinical studies on respiratory syn-

cytial virus and influenza virus[10, 13]; and influenza defective interfering particles protect

mice against lethal challenge[18, 19, 23]. In this study, we aimed to characterize, as widely as

possible, the DVGs bearing deletions that arise during CHIKV infection in vitro in mamma-

lian and mosquito environments and in vivo in its mosquito host. We show that chikungunya

DVGs arise in all environments, in vitro and in vivo, but their type and abundance can depend

on the host and cell type, and on the virus strain, highlighting that both cellular environment

PLOS PATHOGENS Defective viral genomes from chikungunya virus

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009110 February 8, 2021 9 / 19

https://doi.org/10.1371/journal.ppat.1009110


co
ntro

l R
NA WT

100

101

102

103

104

105

106

107

Vi
ra

l t
itr

e 
(P

FU
/m

l)
Mammalian DVG with CHIKV IOL 

*

***

** **
**

Contro
l R

NA WT
102

103

104

105

106

107

108

109

Vi
ra

l t
itr

e 
(P

FU
/m

l)

Mammalian DVGs with SINV

co
ntro

l R
NA WT

100

101

102

103

104

105

106

107

Vi
ra

l t
itr

e 
(P

FU
/m

l)

Mammalian DVGs with ONNV

*

****

A

C

E

co
ntro

l R
NA WT

100

101

102

103

104

105

106

107

Vi
ra

l t
itr

e 
(P

FU
/m

l)

Mosquito DVGs with CHIKV IOL 

*

****

*

**** **** ****

B

D

F

co
ntro

l R
NA WT

100

101

102

103

104

105

106

107

Vi
ra

l t
itr

e 
(P

FU
/m

l)

Mosquito DVGs with ONNV

****

co
ntro

l R
NA WT

101

102

103

104

105

106

107

108

Vi
ra

l t
itr

e 
(P

FU
/m

l)

Mosquito DVGs with SINV

****

IH
1

CV1
CV2 IV1 IV2

CH1
CV3

CV4 IV3 IV4

Cluster A Cluster C

IH
1

CV1
CV2 IV1 IV2

CH1
CV3

CV4 IV3 IV4

Cluster A Cluster C

IH
1

CV1
CV2 IV1 IV2

CH1
CV3

CV4 IV3 IV4

Cluster A Cluster C

CA4 IU
1

CA1
CU1

CU2
CA2

CA3
CM1

Cl. C Cluster D

CA4 IU
1

CA1
CU1

CU2
CA2

CA3
CM1

Cl. C Cluster D

CA4 IU
1

CA1
CU1

CU2
CA2

CA3
CM1

Cl. C Cluster D

in 293T cells

in 293T cells

in 293T cells

in 293T cells

in 293T cells

in 293T cells

Fig 4. Defective viral genomes have broad-spectrum inhibiting activity in the alphavirus family. The DVGs identified in mammalian cell passage (A,C,

E) or mosquito cell passage (B,D,F) were tested for inhibition of CHIKV IOL (A, B), O’nyong-nyong virus (ONNV) (C, D) and Sindbis virus (SINV) (E, F).
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hours, viral titer was measured. (Representative result of one experiment out of three, n = 3, �p<0,05, ��p<0,01, ���p<0,001, ����p<0,0001, ns non-

significant compared to wild-type after Dunnett’s multiple comparisons on one-way ANOVA test).

https://doi.org/10.1371/journal.ppat.1009110.g004
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and the viral genome bear determinants of DVG generation. For example, cluster D was

strongly represented in both Aedes spp. mosquito cells, even though the deletion did not occur

at the exact same position, but it was rare in mammalian cells (Fig 1C).

To find DVGs that could be useful as antivirals, we selected the most redundant DVGs, that

arose in several conditions and were propagated over passages, which we hypothesized to be

indicative of higher fitness and the ability to be packaged by wild-type virus, which are impor-

tant characteristics of interfering DVGs. When used in higher quantity relative to wild-type

virus, most candidates showed promising inhibiting capacity. However, our analysis could not

identify a single or clear reason why one DVG candidate was better than another. Of note,

because smaller genomes should be replicated more quickly[7, 8], the conventional dogma

proposes that the smallest DVGs would most efficiently hijack the parental virus replication

machinery and outcompete wild-type virus. However, in our work, the smallest DVGs
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https://doi.org/10.1371/journal.ppat.1009110.g005
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identified (two DVGs from cluster B) had no or very little interference activity. This observa-

tion implies that strict competition for the replicase complex and replication speed is not the

only mechanism by which DVGs interfere with parental virus. It is possible that the DVGs

described here also have immunostimulatory activity as has been described for other viruses[7,

9–11, 24–29]. A specific sequence or RNA structure might render one DVG more immunosti-

mulatory. Additionally, they may more effectively compete for structural proteins or host

ressources[8, 30].

Of the DVGs generated in Aedes aegypti in vivo, CM1 attracted our attention because it

could cross bottlenecks. During a natural viral infection, after an infectious blood meal, the

midgut is the first organ infected before the virus reaches the hemocoel to disseminate to all

other organs[31]. Previous work has shown that virus exit from the midgut is the main popula-

tion bottleneck during mosquito infection with a drastic reduction in population size, followed

by egress from the salivary glands, a mandatory step for viral transmission to the mammalian

host through infected saliva[31–35]. CM1 was newly generated in the midguts of two indepen-

dent mosquitoes and found to disseminate to the body wall, head and legs/wings of these same

mosquitoes. The possibility that CM1 was generated de novo in other organs is unlikely

because this DVG did not appear in any organs of any other mosquitoes that had not gener-

ated it in the midgut. It is not clear how or why CM1 is able to cross the midgut bottleneck.

One possibility is that it belongs to a collective infectious viral unit, a structure that simulta-

neously contains and transports multiple viral genomes to a single cell, such as polyploid viri-

ons, aggregates of virions or virion-containing lipids vesicles[36, 37]. The possibility of

collective infectious unit containing DVGs has already been proposed. Indeed, Leeks et al.
modeled that if the viral population contains many DVGs, the collective infectious unit could

become very large. Nonetheless, the presence of interfering DVGs would disfavor transmission

within the collective infectious unit compared to free virions[38]. While CM1 had an inhibit-

ing activity at high molar ratio compared to the parental virus, its frequency in mosquito sam-

ples was very low (4 to 176 reads per million).

A valuable characteristic of some of these interfering DVGs is their broad-spectrum activity,

with inhibition not only on other CHIKV strains but also on other alphaviruses. This cross

reactivity had already been reported with influenza and Sendai virus, since their DVGs were

shown to be efficient vaccines or vaccine adjuvants in mammalian models not only against the

virus from they were derived, but also against unrelated viruses[15, 18–22]. From a therapeutic

point of view, this is of particular interest since the risk of worldwide dissemination of arthrito-

genic alphaviruses is well accepted[3, 39–43], especially since no antivirals or vaccines against

any of these viruses are currently licensed. In this context, any treatment (antiviral or vaccine)

that could work across a viral genus or family would be helpful in facing outbreaks to come.

It will be important in the future to test if chikungunya DVGs could function as antivirals

in mammalian in vivo models as well; however, a proper delivery system still needs to be devel-

oped. In previous work on influenza A and Sendai DVGs, authors isolated DVGs by ultra-cen-

trifugation of a mix of wildtype virus and DVG on sucrose gradients[15, 18–22]. However, we

could not successfully separate chikungunya DVGs from wild-type virus using these methods.

New approaches, such as delivering RNA or DNA in nanoparticles or nanostructured lipids

[44, 45], or attempting to package DVGs in virus-like particles (VLPs) could be explored.

Another major hurdle to overcome is the choice of in vivo model. Wild-type C57BL/6 could be

used, but as mice develop only a transient, mild infection, it would be difficult to demonstrate

an inhibitory effect for even the best DVG candidates. While the most commonly used mouse

models rely on interferon α/β knockouts[46, 47], the induction of innate immunity would be

excluded, which may be an important mechanism of action in chikungunya DVGs [10, 24–27,

29].
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Finally, when injected in Aedes aegypti mosquitoes two days before an infectious blood

meal, three DVGs significantly reduced viral dissemination from the mosquito midgut,

thereby shifting the status of mosquitoes from being competent to incompetent vectors for

CHIKV spread. This result is a proof of principle that DVGs might be useful tools in control-

ling CHIKV infection in the vector population. As releasing incompetent mosquitoes in the

wild during an arbovirus outbreak has already been shown to be an effective epidemic control

strategy[48, 49], and despite the need for a simpler delivery system, it is tempting to propose

that interfering DVGs could be used as a control strategy not only for CHIKV, but for any

arbovirus. Furthermore, interfering DVGs are presumably safe antiviral tools because they are

inert molecules that cannot self-replicate, and are only active when wild-type virus is present.

In conclusion, this work describes the different types of deleted DVGs generated during

CHIKV infection in both vertebrate and invertebrate environments in vitro and in vivo in the

mosquito vector. Moreover, we identified criteria to down-select the best defective interfering

particle candidates able to inhibit wild-type CHIKV in vitro in both vertebrate and invertebrate

hosts. An interesting observation is the broad-spectrum activity of some interfering DVGs

able to interact with related alphaviruses. Finally, we show that pre-exposure to a DVG can

modulate viral dissemination in mosquitoes in vivo. These results strengthen the idea that

defective interfering particles might be a useful therapeutic tool for CHIKV infection as well as

an efficient vector control strategy.

Material and methods

Ethics statement

Human blood used to feed mosquitoes was obtained from healthy volunteer donors who gave

formal written consent at the ICAReB biobanking platform (BB-0033-00062/ICAReB plat-

form/Institut Pasteur, Paris/BBMRI AO203/[BIORESOURCE]) of the Institut Pasteur, under

the CoSImmGen and Diagmicoll protocols which were approved by the French Ethical Com-

mittee (CPP) Ile-de-France I. The Diagmicoll protocol was declared to the French Research

Ministry under the reference: DC 2008–68 COL 1.

Cells

Vero, Huh7, 293T and BHK cells were grown in Dulbecco’s modified Eagle’s medium

(DMEM), containing 10% fetal calf serum (FCS), 1% penicillin/streptomycin (P/S; Thermo

Fisher) and 1% non essential amino-acid (Thermo Fisher) in a humidified atmosphere at 37˚C

with 5% CO2. U4.4 and Aag2 cells were maintained in Leibovitz’s L-15 medium with 10%

FCS, 1% P/S, 1% non-essential amino acids (Sigma) and 1% tryptose phosphate (Sigma) at 28˚

C.

Virus

The viral stocks were generated from CHIKV infectious clones derived from the Indian Ocean

lineage, ECSA genotype (IOL; described in [50]) or from the Caribbean strain, Asian genotype

(Carib; described in [51]). To test DVG interference activity, a CHIKV infectious clone con-

taining the Gaussia luciferase gene under a subgenomic promoter was used (obtained from

Andres Merits). In vitro transcription (IVT) with SP6 mMESSAGE mMACHINE kit (Invitro-

gen) was performed on Not I linearised plasmids prior to transfection in BHK using lipofecta-

mine 2000 (Invitrogen). After one passage in Vero cells, the stocks were titered and kept at

-80˚C before use.
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The O’nyong’nyong virus (ONNV) infectious clone, under an SP6 promoter, was obtained

from Andres Merits. Sindbis virus was generated from the pTR339 infectious clone described

in [16].

Plaque assay

Viral titration was performed on confluent Vero cells plated in 24-well plates, 24 hours before

infection. Ten-fold dilutions were performed in DMEM alone and transferred onto Vero cells.

After allowing infection, DMEM with 2% FCS, 1% P/S and 0,8% agarose was added on top of

cells. Three days post infection, cells were fixed with 4% formalin (Sigma), and plaques were

manually counted after staining with 0,2% crystal violet (Sigma).

Viral passages

Cells were seeded in 24-well plates to reach approximately 80% confluency the next day. For

passage 1, virus was diluted in PBS to obtain a multiplicity of infection of 5 PFU/cell (high

MOI). Cells were incubated with the viral inoculum at 37˚C for 1 hour. Following virus

adsorption, the inoculum was removed, the infected cells were washed with PBS, and replaced

with the appropriate cell culture medium containing 2% (v/v) FCS. At 48–72 hour post infec-

tion, supernatant was harvested and clarified by centrifugation (12 000 x g, 5 min). The follow-

ing passages were performed blindly, using a high volume (300 μl) of the clarified supernatant

from previous passage to infect naïve cells followed by the same procedure. A total of 10 pas-

sages were performed. Each passage was titered by plaque assay to determine at which passages

DVG accumulation may have resulted in interference. At least three replicates were performed

per cell type.

Sequencing

RNA of 100 ul of each sample supernatant was extracted using TRIzol reagent (Invitrogen) or

ZR viral RNA kit (Zymo) following the manufacturer’s protocol. RNA was eluted in 15–30 μL

nuclease-free water. After quantification using Quant-iT RNA assay kit (Thermo Fisher Scien-

tific), RNA libraries were prepared with NEBNext Ultra II RNA Library kit (Illumina). Multi-

plex oligos (Illumina) were used during library preparation. The quality of the libraries was

verified using a High Sensitivity DNA Chip (Agilent) and quantified using the Quant-iT DNA

assay kit (Thermo Fisher Scientific). Sequencing of the libraries (diluted to 1 nM) was per-

formed on a NextSeq sequencer (Illumina) with a NextSeq 500 Mid Output kit v2 (Illumina)

(151 cycles).

Next generation sequencing data analysis

All analyses were performed using BBTools suite (Bushnell B.—sourceforge.net/projects/

bbmap/). First, fastq files generated from sample sequencing were trimmed for low-quality

bases and adaptors using BBDuk. Then, alignment was performed using BBmap and the

appropriate CHIKV reference sequence (Carib—GenBank accession no. LN898104.1, IOL—

GenBank accession no. AM258994). BBMap’s variant caller CallVariants was used to report

deletion events, and the overall DVG frequency per sample was calculated as the sum of the

number of junction read counts (n) corresponding to each DVG and normalised as 5/3 × n/N,

where N denotes the 98th percentile of the coverage per position. Multiplying by 5/3 aims to

correct for the detection limit. Indeed, even if reads are 150 nucleotides long, aligned portions

are usually only 30 to 120 nucleotides long. This implies that a read starting 30 or less nucleo-

tides upstream of the breakpoint will be aligned on the right side but not on the left side of the
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breakpoint, and thus, will not be considered as a DVG. Consequently, we are missing (30+30)/

150 = 60/150 = 2/5 of the deletions, and the counts must be multiplied by 5/3 as a correction

factor. Heatmaps illustrate the deletion score per nucleotide position based on deletion events

removing that particular position. Specifically, scores were computed as the sum of the num-

ber of reads per million reads (RPM) supporting the deletion of a specific nucleotide position.

For plotting start/stop breakpoints, deletions with lengths below 10 nucleotides were

discarded.

Cloning selected defective genomes

Defective genomes selected from passages were cloned in the CHIKV infectious clones (under

SP6 promoter) corresponding to their strain, using the previously described In Vivo Assembly

(IVA) method[52] or using In-Fusion reagent (Takara Bio Reagent). Primers were designed

using SnapGene software, with a melting temperature of 60˚C, and obtained from Integrated

DNA Technology (IDT). 50 μl PCR using either Phusion high fidelity DNA polymerase

(Thermo Fisher) or Q5 DNA polymerase (NEB) was carried out with a melting temperature of

57˚C for Phusion enzyme or 65˚C for Q5 polymerase. 18 cycles were carried out and the PCR

products were then Dpn I (Thermo Fisher)-treated for at least 2 hours to remove the plasmid

template and purified (Macherey Nagel PCR and gel purification kit). When IVA technique

was used, 2ul of the PCR products were directly transformed in XL10-Gold extra competent

cells (Stratagene) according to supplied protocol. When In-Fusion reaction was needed, PCR

products were ligated using In-Fusion reagent (Takara Bio Reagent) following supplier

instructions and 1ul was transformed in Turbo cells (NEB).

Luciferase assay to test DVG interference activity

IVTs were performed using the SP6 mMESSAGE mMACHINE kit (Invitrogen) from Not I
linearized infectious clones of DVG and CHIKV Carib-GLuc (see above). The internal control

of the IVT kit (pTRI-Xef) was also in vitro transcribed and used as the control RNA in all

experiments. RNA production was quantified by Qubit RNA TS Assay kit (Thermo Fisher)

and diluted to be at the indicated molar ratios compared to the Carib-GLuc CHIKV. Mixed

DVG and full genome RNA were transfected in 293T or U4.4 cells seeded in 96-well plates

with TransIT-mRNA transfection kit (Mirus) following the supplier’s protocol (25 ng of

Carib-GLuc CHIKV per well). The medium was changed 4 hours post transfection to avoid

cellular toxicity. 48 hours after transfection, supernatant was collected and mixed with coelen-

terazine (supplied by Y. Janin, Institut Pasteur) at a final concentration of 0,05μM and lumi-

nescence was measured on a Tecan Infinite 200 microplate reader.

When tested with non-luciferase expressing viruses, the procedure was followed the same

way but the supernatant was titered by plaque assay 48 hours post transfection.

RT-qPCR to test for DVG self-replication

50ng of DVG or CHIKV Carib IVT was transfected in 293T cells (seeded the day before in

48-well plates), in triplicate, as described above. 8 hours post transfection, supernatant was

removed, and cells were washed 3 times with PBS before adding fresh medium. At 8, 20, 28

and 44 hours post-transfection, 200ul of lysis buffer from ZR 96 viral RNA kit (Zymo) was

added on the cells after supernatant removal and stored at -20˚C until all time points were col-

lected. Cellular RNA was extracted with the ZR 96 viral RNA kit and eluted in 15 μl.

TaqMan RNA-to-Ct One-step RT-PCR kit (Applied Biosystems) was used to perform a

quantitative RT-PCR spanning the 5’UTR-nsP1 region, with 5’-GAGACACACGTAGCC

TACCA-3’ as the forward primer, 5’-GGTTCCACCTCAAACATGGG-3’ as the reverse, and
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5’- [6-FAM] ACGCACGTTGCAGGGCCTTCA-3’ as the probe. After 20min at 50˚, and 10

min at 95˚, 40 cycles were performed (95˚C for 15 seconds followed by 60˚C for 1 minute).

Mosquitoes

Aedes aegypti female mosquitoes belonging to the 7th generation from wild mosquitoes col-

lected in Kamphaeng Phet Province (Thailand) were grown at 28˚C, 70% relative humidity

and a 12 hour light: 12 hour dark cycle, and fed with 10% sucrose.

Mosquito infections

A day before blood feeding, 6 to 10-day old females were selected and starved for a day. A

blood meal containing 106 PFU/ml of CHIKV was offered to a pool of 60 females through a

membrane feeding system (Hemotek Ltd) set at 37˚C with a piece of desalted pig intestine as

the membrane. Following the blood meal, fully engorged females were selected and incubated

at 28˚C, 70% relative humidity and under a 12 hour light: 12 hour dark cycle with permanent

access to 10% sucrose.

After 7 days, the mosquitoes were sacrificed and dissected to collect heads, thorax, midgut,

legs and wings (legs/wings), and abdominal wall (body). Each organ was ground in 300 ul of

L15 supplemented with 2% FBS with Qiagen TissuLyser 2 machine, then clarified by centrifu-

gation before titration and RNA extraction with TriZol reagent for RNA deep sequencing.

Mosquito injections

One hundred and fifty nanograms of RNA produced by in vitro transcription (as described

above) and purified by phenol-chloroform was mixed with Leibovitz’s L-15 medium and Cell-

fectin II Reagent (Thermo Fisher) following the supplier’s instructions. For each condition,

forty 6 to 8 day-old females were injected intra-thoracically with 300nl of this mix with Nano-

ject III Nanoliter Injector (Drummond scientific company). Two days later, after a night of

starvation, mosquitoes were fed with an infectious blood meal of 106 PFU/ml of CHIKV

Carib-GLuc as described above. After 5 days, mosquitoes were sacrificed; midgut and carcass

were dissected and ground as mentioned before. Each sample was then tested for luciferase

activity and titered by plaque assay.

Supporting information

S1 Fig. Chikungunya virus DVGs are not self-replicating. 293T cells were transfected with

DVG or CHIKV Carib in vitro transcribed RNA and harvested at 8, 20, 28 and 44 hours post

transfection. Cellular RNA was extracted and used to perform a RT-qPCR with a Taqman

probe.

(EPS)

S2 Fig. Measuring DVG activity in vitro by virus titration. In vitro transcribed RNA of each

DVG candidate (derived from mosquito cells) was co-transfected with CHIKV Carib-lucifer-

ase RNA at 1:1 or 10:1 molar ratio in U4.4 cells. After 48 hours, samples were titered and lucif-

erase activity was measured (Fig 3E). (n = 3, ��p<0,01, ����p<0,0001, ns non-significant

compared to wild-type after Dunnett’s multiple comparisons on one-way ANOVA test).

(EPS)
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Weger-Lucarelli, Marco Vignuzzi.

Funding acquisition: Maria-Carla Saleh, Marco Vignuzzi.

Methodology: Laura I. Levi, Veronica V. Rezelj, Annabelle Henrion-Lacritick, Thomas Vallet,

Yasutsugu Suzuki, Lucia Carrau, James Weger-Lucarelli.

Project administration: Maria-Carla Saleh, Marco Vignuzzi.

Resources: Annabelle Henrion-Lacritick, James Weger-Lucarelli, Maria-Carla Saleh, Marco

Vignuzzi.

Software: Diana Erazo, J Boussier, Veronika Bernhauerová, James Weger-Lucarelli.
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