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ABSTRACT Many plant-pathogenic bacteria of considerable economic importance
rely on type III secretion systems (T3SSs) of the Hrc-Hrp 1 family to subvert their
plant hosts. T3SS gene expression is regulated through the HrpG and HrpV proteins,
while secretion is controlled by the gatekeeper HrpJ. A link between the two mech-
anisms was so far unknown. Here, we show that a mechanistic coupling exists be-
tween the expression and secretion cascades through the direct binding of the
HrpG/HrpV heterodimer, acting as a T3SS chaperone, to HrpJ. The ternary complex is
docked to the cytoplasmic side of the inner bacterial membrane and orchestrates in-
termediate substrate secretion, without affecting early substrate secretion. The an-
choring of the ternary complex to the membranes potentially keeps HrpG/HrpV
away from DNA. In their multiple roles as transcriptional regulators and gatekeeper
chaperones, HrpV/HrpG provide along with HrpJ potentially attractive targets for an-
tibacterial strategies.

IMPORTANCE On the basis of scientific/economic importance, Pseudomonas syrin-
gae and Erwinia amylovora are considered among the top 10 plant-pathogenic bac-
teria in molecular plant pathology. Both employ type III secretion systems (T3SSs) of
the Hrc-Hrp 1 family to subvert their plant hosts. For Hrc-Hrp 1, no functional link
was known between the key processes of T3SS gene expression and secretion. Here,
we show that a mechanistic coupling exists between expression and secretion cas-
cades, through formation of a ternary complex involving the T3SS proteins HrpG,
HrpV, and HrpJ. Our results highlight the functional and structural properties of a
hitherto-unknown complex which orchestrates intermediate T3SS substrate secretion
and may lead to better pathogen control through novel targets for antibacterial
strategies.

KEYWORDS Erwinia amylovora, Pseudomonas syringae pv. phaseolicola, type III
secretion system (T3SS), gatekeeper complex

Plant-pathogenic bacteria that cause major economic losses for the food and
agriculture industry worldwide employ a type III secretion system (T3SS) from the

Hrc-Hrp 1 family (hypersensitive response and pathogenicity [hrp] genes conserved) to
infect and colonize their plant hosts (1). Among them are pathovars of Pseudomonas
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syringae, which collectively infect over 40 important crops worldwide (e.g., tomato,
corn, pea, wheat, rice, soybean, etc.), and Erwinia amylovora, causing extensive crop
losses due to fire blight in plants of the Rosaceae family (e.g., pear and apple). Both
pathogens have been classified among the top 10 plant-pathogenic bacteria on the
basis of their scientific and economic importance (2).

P. syringae employs the best-studied plant-pathogenic T3SS (3). This multiprotein
assembly consists of a basal structure residing in the cell envelope and an extracellu-
larly protruding pilus. It also comprises transcriptional regulators, specialized chaper-
ones that escort certain secretion substrates, a variety of secretion substrates which
include T3SS helpers (e.g., harpins/translocators which render the host cell permeable
to translocated substrates), and T3SS effectors, the virulent weaponry of the patho-
gen (4).

At the level of T3SS gene expression, the Hrc-Hrp 1 operons bear a promoter
consensus sequence known as the hrp-box, which is recognized by HrpL (5), an
alternative � factor. Two T3SS-specific enhancer-binding proteins (EBPs), HrpR and
HrpS, have been found in P. syringae pathovars to associate into active heterohexamers
to induce transcription of hrpL (6), while in E. amylovora this function is performed by
homohexameric HrpS (7).

An additional protein, HrpV, serves in P. syringae as a negative regulator of the T3SS,
binding and altering the oligomerization state of HrpS and suppressing productive
interactions between the HrpR/HrpS heterohexamer and the closed promoter complex
(6, 8). The HrpG protein has been shown to partially attenuate the negative regulation
exerted by HrpV on the HrpR/HrpS complex, through direct binding which inhibits
HrpV-HrpS interactions (6, 9). This double-negative regulatory loop imposed by the
HrpV and HrpG proteins on the system is responsible for establishing a state of
bistability on T3SS gene expression, with the bacteria differentiating stochastically into
T3SS-expressing and nonexpressing populations within a homogeneous environment
(10). We have recently reported the formation of a HrpG/HrpV complex in E. amylovora,
which strongly suggests a general regulatory pathway controlling the transcriptional
activation in the Hrc-Hrp 1 family (11).

At the level of T3SS secretion in animal pathogens, proteins from the gatekeeper
family play a central role, along with heterodimeric class I T3SS chaperones, with which
they frequently associate. They serve as T3SS plugs, preventing premature secretion of
effectors and yet permitting the exit of helpers, until a switching event takes place,
possibly triggered by host-derived stimuli (12, 13). The gatekeeper proteins from plant
and animal T3SSs exhibit several analogies and are organized in one or two separate
polypeptide chains (14). In the phytopathogenic Hrc-Hrp 1 system, the gatekeeper HrpJ
is a secreted and translocated substrate required for the secretion of helpers, the
subsequent translocation of effectors, and the elicitation of the hypersensitive re-
sponse (HR) (15, 16). Following its translocation, HrpJ also plays a role inside the plant,
contributing to the suppression of host immunity (16).

Until now, no direct connection between the processes of T3SS gene expression
regulation and T3SS protein secretion by employing the same protein components was
established. In this work, we show that in Pseudomonas syringae pv. phaseolicola and
E. amylovora the transcriptional regulators HrpG and HrpV assume, after migration
toward the inner bacterial membrane, the role of a T3SS chaperone and associate with
the gatekeeper HrpJ, thereby forming a membrane-docked ternary complex. This
promotes secretion of intermediate T3SS substrates, e.g., the harpin HrpZ1, without
affecting early substrate secretion (12). Thus, formation of the ternary complex fine-
tunes the regulation of secretion and expression mechanisms. Biochemical and struc-
tural characterization of the HrpG/HrpV/HrpJ complex reveals conserved gatekeeper
interaction patterns across various T3SSs and a key role of HrpG in docking the complex
to bacterial membranes. A new and potentially broadly applicable concept for the
coregulation of T3SS transcription and secretion by component migration emerges
from these studies.
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RESULTS
Gatekeeper chaperone genes are located upstream of the T3SS secretin genes

in a wide range of T3SS pathogens. Sequence comparisons classify HrpJ from P.
syringae pv. phaseolicola and E. amylovora as members of the YopN/TyeA family of T3SS
proteins (15). These proteins (e.g., MxiC, SsaL, SepL, and InvE), including HrpJ, have
been found to possess two domains with extensive amino acid sequence homologies
(see Fig. S1 in the supplemental material) and usually associate with an atypical,
heterodimeric class I T3SS chaperone (17), in contrast to the typical class I chaperones,
which are homodimeric escorts of T3SS effectors (18). Structural information is available
for YopN, a counterpart of HrpJ from the T3SS of Yersinia pestis, which associates with
its cognate chaperone, the SycN/YscB heterodimer, via two �-motifs (Fig. S1A), with
each �-motif interacting with a different subunit of the chaperone (17, 18). The HrpJ
sequence from P. syringae pv. phaseolicola and E. amylovora was examined for the
presence of comparable �-motifs, and significant homologies were detected with the
second �-motif (Fig. S1A), which is conserved in several members of the YopN/TyeA
family. This probably reflects a similar pattern of gatekeeper-chaperone interactions
extending across various species and T3SS families.

Syntenic analyses of T3SS gene clusters (Fig. 1A and S2) reveal that the yscB gene
and its counterparts, which encode gatekeeper-specific chaperones, are located imme-
diately upstream of the secretin-encoding gene, i.e., yscC, hrcC, etc. (19). Interestingly,
in the Hrc-Hrp 1 family this location is occupied by the hrpG gene, and therefore, it is
possible that the transcriptional regulator HrpG has a role as a class I chaperone for
HrpJ, in addition to its known function as a negative regulator of HrpV. The similarity
of phylogenetic trees and the symmetry of branches (mirror trees) between HrpG and
HrpJ homologues (Fig. 1B) suggest a coevolution pattern of the two proteins in Hrc-Hrp
1 systems, which among other possibilities could provide evidence for an interaction
between the two proteins.

HrpG, HrpV, and HrpJ form the gatekeeper complex in P. syringae pv. phase-
olicola and E. amylovora. To explore possible interactions hinted at by the in silico
findings, various binary protein complexes, each comprising a different combination of
HrpG, HrpV, and HrpJ, were isolated by affinity chromatography after heterologous
overexpression of P. syringae pv. phaseolicola or E. amylovora genes in Escherichia coli
host cells and characterized. The complexes of HrpG/HrpV and HrpG/HrpJ were puri-
fied, while the HrpV/HrpJ complex could not be isolated (Fig. 2A and B). As HrpG and
HrpV are the only proteins from the Hrc-Hrp 1 pathogenicity island with a predicted
class I chaperone fold, this observation fits the in silico analysis of T3SS gene clusters
(Fig. 1A), further suggesting that the HrpG/HrpV complex may function as a heterodi-
meric chaperone for the gatekeeper HrpJ, in addition to the known roles of the two
proteins in transcription regulation (6, 9).

Possible interactions of HrpJ with the HrpG/HrpV complex were thus investigated
via polycistronic constructions of the P. syringae pv. phaseolicola or E. amylovora genes
which were expressed in E. coli host strains. Using affinity chromatography, a soluble
ternary complex of HrpG/HrpV/HrpJ was isolated. Interestingly, the three proteins
become soluble in the context of the complex, which strongly contrasts with the
behavior of, e.g., HrpG from E. amylovora and HrpJ from P. syringae pv. phaseolicola,
which are insoluble when expressed alone. The identity of all interacting proteins was
verified by mass spectrometry (MS)-based bottom-up proteomic analysis (Fig. 2G and
S3). Interestingly, recombinant HrpJ is accompanied by an additional, truncated form
lacking the C-terminal domain (Fig. 2G). This truncated HrpJ form is less abundant in
the context of the triple complex (Fig. 2A and B), possibly reflecting an additional
function for the complex, i.e., that of HrpJ stabilization, in both P. syringae pv. phase-
olicola and E. amylovora.

HrpG, HrpV, and HrpJ form a 1:1:1 triple complex in solution. Size exclusion
chromatography (SEC) analysis of the heterologously expressed HrpG/HrpV/HrpJ com-
plex from P. syringae pv. phaseolicola and E. amylovora revealed in both cases the
coexistence of two distinct populations, one of which corresponds to the triple complex
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HrpG/HrpV/HrpJ and the other of which corresponds to the HrpG/HrpV heterodimer
(Fig. 2C to F).

To further characterize the formation of the triple complex, the HrpG/HrpV complex
and HrpJ from E. amylovora were separately produced and incubated overnight at an
approximately 1:1 molar ratio. The association of HrpJ and HrpG/HrpV was monitored
using an SEC column coupled to a multiangle laser light scattering (MALLS) detector
(Fig. 3A and B). The HrpG/HrpV/HrpJ complex was detected with a calculated molecular
mass of 74 kDa, corresponding to a stoichiometry of 1:1:1 among the three proteins. An
additional, smaller population of the HrpG/HrpV complex was also detected (Fig. 3C).

The three-dimensional (3D) structure of the HrpG/HrpV/HrpJ complex of E.
amylovora resembles a T3SS gatekeeper complex. Small-angle X-ray scattering
(SAXS) studies of the E. amylovora HrpG/HrpV/HrpJ complex reveal a high propensity
for (reversible) aggregation as evidenced by the increasing intensity at lower angles
(Fig. 4A) with increasing concentration. Moreover, the complex dissociates at very low
concentrations. This is evident from the molecular mass values estimated from both the

FIG 1 Sequence and synteny analyses establish for HrpG the additional role of a subunit of a class I chaperone for HrpJ. (A) Genetic organization of T3SS gene
cluster regions encoding gatekeeper-specific chaperones in various bacteria. The C-terminal region of HrpJ, SsaL, SepL, and CopN proteins is homologous to
TyeA of Yersinia enterocolitica (the corresponding genes are depicted in red). The genes hrpG, ssaB, sepD, and yscB coding for the first subunit of the gatekeeper
chaperone (purple outlines) are located always upstream of the gene coding for the T3SS secretin (light yellow), with the exception of Chlamydia, where the
secretin gene is lost (54, 55), but the gene organization resembles that of Salmonella enterica. The position of the gene coding for the second subunit of the
gatekeeper chaperone (cyan outline) is more variable. (B) Phylogenetic tree of the T3SS gatekeeper proteins juxtaposed with the phylogenetic tree of their
cognate chaperones. The phylogenetic relations were inferred using the neighbor-joining method (56), the bootstrap values are shown next to the branches
(57), and evolutionary distances were computed using the Poisson correction method (58). Analyses were performed with MEGA7 software (59).
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Guinier (20) approximation (55 kDa) and the Porod (21) volume (60 kDa). For this
purpose, the scattering data obtained at an intermediate concentration (1.5 mg/ml)
with the molecular mass calculated from the Guinier plot (75 kDa) and from the Porod
volume (78 kDa) and a radius of gyration (Rg) of 40 Å were used as a compromise
between excessive aggregation and dissociation. The pair distance distribution func-
tion p(r) (22) shows an elongated structure with a maximum particle dimension (Dmax)
of 160 Å (Fig. 4B, inset), in contrast to the more spherical structure of the HrpG/HrpV
subcomplex that we have characterized in our previous work (11) (Fig. 4C, inset).

Despite low sequence identity (Fig. S1 and S2), we used the only available structure
of a gatekeeper complex in the analysis of SAXS data. In the Y. pestis complex,

FIG 2 HrpG, HrpV, and HrpJ form the gatekeeper complex in P. syringae pv. phaseolicola and E.
amylovora. (A and B) Successive elutions derived from affinity chromatography isolation of various
E. coli-expressed complexes between the HrpG, HrpV, and HrpJ proteins from P. syringae pv. phaseolicola
and E. amylovora analyzed by SDS-PAGE. His6-tagged proteins are designated by HT. (C to F) SEC of
HrpG/HrpV/HrpJ from P. syringae pv. phaseolicola and E. amylovora showing the ternary HrpG/HrpV/HrpJ
complex coexisting with the HrpG/HrpV complex. The estimated molecular weights of the HrpG/HrpV/
HrpJ and HrpG/HrpV complexes from P. syringae pv. phaseolicola are 72 kDa and 32 kDa, respectively,
while in E. amylovora HrpG/HrpV/HrpJ elutes at 74 kDa and HrpG/HrpV elutes abnormally at 18 kDa. (G)
nLC-MS/MS identification of full-length and cleaved forms of HrpJ from E. amylovora and P. syringae pv.
phaseolicola. Due to solubility problems, HrpJ from P. syringae pv. phaseolicola was analyzed from the
soluble HrpG/HrpV/HrpJ complex. The truncated versions of HrpJ are depicted with the symbols * and
#, respectively, in panels A, B, and G.
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YscB/SycN/TyeA/YopN, the counterpart of HrpJ, consists of two polypeptide chains,
TyeA and YopN; the structure of the complete YscB/SycN/TyeA/YopN complex was
derived from the combination of two separate crystal structures, with the Protein Data
Bank codes 1XKP and 1XL3 (17). HHpred fold recognition (23) indicates that the
complexes HrpG/HrpV/HrpJ and YscB/SycN/TyeA/YopN potentially share the same
overall fold, with the transcriptional regulators HrpG and HrpV from the E. amylovora
T3SS corresponding to the gatekeeper chaperones YscB and SycN from Y. pestis,

FIG 3 HrpG, HrpV, and HrpJ form a 1:1:1 triple complex in solution. Separately purified HrpG/HrpV
complex (A) and HrpJ (B) were run on a Superdex 200 column, giving rise to peaks corresponding to
calculated masses of 39.6 kDa and 42.5 kDa, respectively. Following overnight coincubation (41 nmol of
the HrpG/HrpV complex and 35 nmol of HrpJ), a sample from the mixture was run on the same column,
giving rise to two distinct peaks (C), corresponding to the reconstituted HrpG/HrpV/HrpJ complex with
a calculated mass of 73.9 kDa and to the HrpG/HrpV complex with a mass of 39.3 kDa. The HrpG/HrpV
peak shows a slight, buffer-dependent shift.
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respectively. We constructed homology models for all proteins and arranged them
similarly to the YscB/SycN/TyeA/YopN complex structure with similar pairwise interac-
tions. To compare them with the experimental SAXS data, the program CORAL (24) was
used to add dummy residues that represent the excess electron density of the residues
not present in the homology models. One such model is shown in Fig. 4D. The fit to the
experimental data is satisfactory (Fig. 4B), indicating that the HrpG/HrpV/HrpJ complex
from the phytopathogenic T3SS has a structure very similar to the YscB/SycN/TyeA/
YopN complex from the T3SS of Y. pestis. The fit of SAXS data (11) from the HrpG/HrpV
complex to the respective part of the model is not as good (Fig. 4C), which may be
attributed to conformational changes when the trimeric complex is formed. Overall,
however, this analysis strongly suggests that the solution structure of the E. amylovora
HrpG/HrpV/HrpJ complex is indeed a gatekeeper complex.

The HrpG-HrcU interaction suggests that the HrpG/HrpV/HrpJ complex is
docked to the bacterial membrane. The cytoplasmic conserved domain of inner
membrane-associated T3SS proteins from the SctU family (FlhB, YscU, EscU, etc.) has
been observed to undergo a highly specific self-cleavage, which plays a role in T3SS
regulation. After cleavage, the two fragments continue to interact (25). We observed a
similar behavior for the P. syringae pv. phaseolicola family member HrcU (Fig. 5A);
self-cleavage of the heterologously produced 21-kDa cytoplasmic C-terminal domain of
HrcU produces two interacting domains of 11 and 10 kDa. The process is partial, leaving
a fraction of the protein uncleaved.

For the C-terminal domain of P. syringae pv. phaseolicola HrcU, we observed a
binding interaction with HrpG, since the two proteins comigrate in native agarose gels
(Fig. 5B) and copurify when coexpressed (Fig. 5C and S4). However, self-cleavage is not
important for this interaction, as a cleavage-resistant HrcU variant carrying a mutation
(N265A) in the specific self-cleavage (26) sequence (NPTH) of the protein still interacts
with HrpG (Fig. 5D). A complex of HrpG with C-terminal HrcU could not be isolated in
E. amylovora, although the presence of HrcU greatly improved the solubility of the
otherwise insoluble HrpG protein.

The binding of HrpG to HrcU implies, therefore, that the HrpG/HrpV/HrpJ complex
is probably located in the proximity of the inner bacterial membrane. This hypothesis

FIG 4 The 3D structure of the HrpG/HrpV/HrpJ complex of E. amylovora resembles a T3SS gatekeeper
complex. (A) Effect of concentration on the low angle region of the SAXS data of the HrpG/HrpV/HrpJ
complex. (B and C) Experimental SAXS patterns of the HrpG/HrpV/HrpJ complex (B) and of the HrpG/
HrpV subcomplex (C), shown with black circles, with the corresponding fits of the model to the
experimental data shown in red lines; the insets show the pair distance distribution functions p(r). a.u.,
absolute units. (D) Model of the HrpG/HrpV/HrpJ complex with HrpG in green, HrpV in orange, and HrpJ
in purple; dummy residues are shown as spheres.
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is supported by localization experiments performed in P. syringae pv. phaseolicola using
MS analysis, which confirm that HrpG, HrpV, and HrpJ colocalize predominantly at the
bacterial membrane (Fig. 5E). Furthermore, the anchoring of HrpG/HrpV/HrpJ to the
membrane is HrpJ dependent, as suggested by the lack of HrpG or HrpV enrichment in
the membrane fractions of an ΔhrpJ knockout mutant. This behavior could reflect a
critical contribution of HrpJ to the stabilization of the interaction between the gate-
keeper complex and HrcU.

In P. syringae pv. phaseolicola, the HrpG/HrpV/HrpJ complex orchestrates
intermediate T3SS substrate secretion, without affecting early substrates. To

assess the functional implications of the HrpG/HrpV/HrpJ complex, we investigated the

FIG 5 The P. syringae pv. phaseolicola HrpG/HrpV/HrpJ complex is docked to the bacterial membrane.
(A) Western detection of C-terminal P. syringae pv. phaseolicola HrcU (HrcUc, residues 199 to 359)
fragments from affinity chromatography samples under nondenaturing and denaturing (8 M urea)
conditions using a specific polyclonal antibody for HrcU. HT-HrcUc is self-cleaved, and the untagged
C-terminal cleavage fragment (HrcUc-C) corresponding to residues 267 to 359 copurifies with the tagged
fragments under nondenaturing conditions. Urea treatment separates the HrcUc fragments. Self-
cleavage is partial, leaving an amount of uncleaved protein. (B) A fraction of P. syringae pv. phaseolicola
HrpG comigrates with HrcUc in native agarose gel electrophoresis (arrow). (C) P. syringae pv. phaseolicola
HT-HrpG1–132 copurifies with HrcUc fragments after coexpression. (D) Coexpression and copurification of
P. syringae pv. phaseolicola HT-HrpG1–132 with the cleavage-deficient HrcUc mutant N265A. The un-
cleaved HrcUc still interacts with HT-HrpG1–132. (E) Distribution of P. syringae pv. phaseolicola HrpG, HrpV,
and HrpJ proteins in the cytosol and membrane fractions of wild-type and ΔhrpJ P. syringae pv.
phaseolicola as determined through nLC-MS/MS analysis. The normalized abundances of the three
proteins from wild type (wt) and ΔhrpJ mutant in P. syringae pv. phaseolicola cytosol (C) and membranes
(M) show a significant HrpJ-dependent enrichment of the HrpG/HrpV/HrpJ complex in membranes. Lane
labels: SN, supernatant after sonication and centrifugation; FT, column flowthrough; E (E1, E2, E3, and E4),
elution fractions; ND, nondenaturing conditions; Urea, denaturing conditions.
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secretion of three substrates, i.e., the gatekeeper HrpJ itself; the HrpA2 pilin protein, an
early substrate (12); and the harpin HrpZ1, an intermediate substrate.

In contrast to P. syringae pv. tomato DC3000 and E. amylovora, where HrpJ is found
in culture supernatants after induction of T3SS under laboratory conditions (15, 27), we
did not detect endogenous HrpJ in the secreted fraction, either in wild-type P. syringae
pv. phaseolicola or in the ΔhrpG and ΔhrpV knockout mutants (Fig. 6A). HrpJ secretion
is furthermore not affected by pH, unlike the Salmonella T3SS, where a pH shift is a
signal for secretion (28). Additionally, it accumulates late in the course of time, in line
with the recent literature in which induction of the hrpJ operon is suppressed until
high-enough levels of HrpL are expressed (29).

On the other hand, the detection of HrpA2 pilin showed quantitative inconsisten-
cies, as also observed in previous studies (15, 16). These may be attributed to pilin
aggregation and coprecipitation with the cellular fractions. This problem was overcome
by applying a mild sodium dodecyl sulfate (SDS) treatment (0.01% in phosphate-
buffered saline [PBS], pH 7.4, here called PBSS extract) of the precipitated cells, after
which most of the extracellular HrpA2 pilin was found in the PBSS extract (Fig. 6B).
Approximately equal amounts of HrpA2 were detected for all P. syringae pv. phaseoli-
cola strains tested (either wild type or ΔhrpG, ΔhrpV, and ΔhrpJ knockout mutants).
Interestingly, HrpA2 pilin was also found in the PBSS extract originating from a
secretion-incompetent ΔhrcC mutant. Since no HrpZ1 was found in this case, we can
rule out cell disruption as a cause for these observations (Fig. 6B). Since observations
of T3SS-independent HrpA2 secretion (see Fig. 6 in reference 30) exist in the literature,
though not discussed in any detail, our experiments suggest that in the absence of a
functional T3SS secretory pore (ΔhrcC mutant strains are considered incapable of type
III secretion), the accumulated HrpA2 may be exported via an unidentified, alternative,
T3SS-independent pathway, possibly in order to maintain cell viability and homeostasis.

FIG 6 In P. syringae pv. phaseolicola T3SS, HrpG/HrpV/HrpJ orchestrates intermediate substrate secre-
tion, without affecting early substrates. Western blots with HrpJ-, HrpA2-, and HrpZ1-specific polyclonal
antibodies. (A) HrpJ is not secreted in the medium after P. syringae pv. phaseolicola T3SS induction in
culture at pH 5.8 (SN) and accumulates late in the course of time in the cell fraction C. Shifting the pH
from 5.8 to 7.4 after 6 h of induction does not elicit HrpJ secretion. (B) Most of the HrpA2 protein
precipitates with the cell fraction after centrifugation in PBSS with the total levels not differing
substantially between wild-type and mutant P. syringae pv. phaseolicola strains. The ΔhrcC mutant
(negative secretion control) still secretes HrpA2 at wild-type levels, as reported previously (30). (C)
Secretion and accumulation of P. syringae pv. phaseolicola HrpZ1 are severely reduced in the ΔhrpG
mutant, the ΔhrpV mutant secretes reduced amounts of HrpZ1 compared to the wild-type P. syringae pv.
phaseolicola, and the ΔhrpJ mutant accumulates but does not secrete any HrpZ1, resembling in both
aspects the secretion-incompetent ΔhrcC mutant. The PBSS treatment does not result in cell lysis as
deduced from HrpZ1 levels of the ΔhrcC mutant. Abbreviations: SN, concentrated culture supernatant;
PBSS, PBS plus 0.1% SDS outer extract from intact cells; C, cell fraction; LD, SDS-PAGE of the total protein
loaded in cell fraction C shown for normalization purposes.
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It is noteworthy that flagellin can be exported from the T3SS (31), so one could
hypothesize that the reverse may also be true, i.e., HrpA2 may be exported by the
flagellum. Additionally, we have reported earlier the presence of a second, constitu-
tively expressed rhizobium-like T3SS in P. syringae pv. phaseolicola (32) that may act as
a conduit for HrpA2 secretion when the main secretion pore becomes unavailable. In
summary, in P. syringae pv. phaseolicola the HrpG, HrpV, and HrpJ proteins have no
influence in HrpA2 accumulation and secretion.

In contrast to the unaltered secretion profile of HrpA2, HrpZ1 showed dramatic
differences in its extracellular and intracellular detection for wild-type P. syringae pv.
phaseolicola and the ΔhrpG, ΔhrpV, or ΔhrpJ mutants (Fig. 6C). Most of the HrpZ1
protein is located extracellularly in wild-type P. syringae pv. phaseolicola, while the
ΔhrpJ mutant fails to secrete HrpZ1, similarly to the ΔhrcC strain, a secretion-
incompetent mutant. The absence of HrpZ1 secretion by a ΔhrpJ mutant had already
been reported in the literature for P. syringae pv. tomato DC3000 (15, 16). The ΔhrpG
mutant, on the other hand, exhibits a significant reduction in the total amount of HrpZ1
(intracellular and extracellular), reflecting reduced expression levels, as expected for a
T3SS which is repressed through the action of HrpV in the absence of HrpG. The
severely reduced levels of secreted HrpZ1 could be also caused by reduced gate-
keeper activity. A previous report (9) also showed that a ΔhrpG mutant of Pseudomonas
syringae pv. syringae 61 also fails to accumulate and secrete HrpZ1. On the other hand,
the ΔhrpV mutant shows a small but reproducible reduction of HrpZ1 secretion
(Fig. 6C). Finally, it is noteworthy that the ΔhrpV mutant displays increased expression
of hrpL compared to wild-type P. syringae pv. phaseolicola (as expected) in contrast to
the hrpL reduction observed on the ΔhrpJ mutant (Fig. S5). From these results, we
conclude that the HrpG/HrpV/HrpJ complex is involved in two events, i.e., in the
derepression of the HrpV/HrpS/HrpR circuit and in the promotion of HrpZ1 secretion,
probably as a result of the chaperone effects of HrpG/HrpV on HrpJ and formation of
the gatekeeper complex.

DISCUSSION

Our findings provide the basis for a model of T3SS activation, through the discovery
of protein-protein interaction networks linking two key T3SS processes, gene expres-
sion control and intermediate substrate secretion (Fig. 7). A central role in this inter-
action network is played by three proteins, HrpG, HrpV, and HrpJ. Experimental

FIG 7 The interaction network coupling T3SS expression regulation to secretion in plant-pathogenic
T3SS. (A) Repressed state of T3SS gene expression established through the HrpV action on HrpR/HrpS (6,
60). (B) Formation of the HrpG/HrpV complex and initiation of the derepression of gene expression. (C)
Formation of the HrpG/HrpV/HrpJ gatekeeper complex and HrpJ-dependent anchoring of the ternary
complex at the bacterial membranes, possibly via a HrpG/HrcUc binding. HrpS derepression is com-
pleted, and intermediate substrate secretion is allowed.
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evidence from P. syringae pv. phaseolicola and E. amylovora suggests that in phyto-
pathogenic bacteria, the HrpG and HrpV proteins, in addition to their roles in T3SS
transcription control, also act as a heterodimeric class I chaperone for the gatekeeper
HrpJ, a protein for which no interactions with chaperones were known until now.
Synteny analyses and phylogenetic studies along with protein expression, biochemical
experiments, and structural studies provide additional support for a chaperone role for
the HrpG/HrpV heterodimer in Hrc-Hrp 1 systems, associating with the HrpJ protein and
leading to the formation of a ternary gatekeeper complex.

The C-terminal domain of HrpJ is homologous to TyeA, a small T3SS protein from
bacteria such as Y. pestis, Vibrio parahaemolyticus, Pseudomonas aeruginosa, Aeromonas
salmonicida, Photorhabdus luminescens, etc. (14). The Yersinia TyeA protein anchors the
gatekeeper YopN to the cytoplasmic side of the T3SS export apparatus, blocking the
premature secretion of effectors; upon receipt of a host signal, YopN is secreted,
permitting subsequent effector secretion. A naturally occurring YopN/TyeA fusion has
been shown to block Yop effector secretion (33). �he opposite case which has been
observed by us in HrpJ, i.e., cleavage of the naturally occurring, single-chain gatekeeper
protein into two modules corresponding to YopN and TyeA (Fig. 2G), has to our
knowledge not been reported earlier. Our experiments reveal two forms of HrpJ, i.e., a
truncated form lacking the TyeA-like domain and the full-length form of the protein, in
both P. syringae pv. phaseolicola and E. amylovora. In copurification assays, the pres-
ence of HrpG/HrpV in the ternary complex appears to reduce the cleavage of the
C-terminal domain, stabilizing full-length HrpJ (Fig. 2A, B, and G). Whether this cleavage
occurs also in vivo and whether it is physiologically significant remain to be determined.

Gatekeepers are docked to the cytoplasmic side of the T3SS export channel, where
they exert their role as plugs blocking premature effector secretion (28, 34–36). In this
work, we have identified binding of the P. syringae pv. phaseolicola HrpG with the
cytoplasmic domain of HrcU, an inner membrane core component. The HrpG-HrcU
interaction, which occurs both in the self-cleaved and in the uncleaved form of HrcU,
along with our data from native localization experiments (Fig. 5), reveal that the
HrpG/HrpV/HrpJ complex resides near P. syringae pv. phaseolicola membranes. The
anchoring of the complex to the membranes is HrpJ dependent and occurs possibly via
a HrpG-HrcU interaction. Thus, the docking of the gatekeeper complex to the mem-
branes is a critical step, via which the HrpG and HrpV proteins are potentially removed
from the proximity of DNA and migrate toward the inner bacterial membrane. HrpG is
capable of relieving only part of the HrpV-mediated repression (as would be expected
for proteins expressed by the same operon) of T3SS transcription factors HrpR/HrpS (6).
Our findings open the possibility that recruitment of HrpG/HrpV by HrpJ and anchoring
to the membrane of the bacterium contribute to the derepression of the T3SS expres-
sion. This hypothesis is supported by the reduced expression of hrpL in the ΔhrpJ
mutant (see Fig. S5 in the supplemental material). From its new position, the assembled
ternary complex can exert its role on substrate secretion. The observed interactions of
HrpG with the gatekeeper and the bacterial membranes are in line with the highly
interactive nature of this protein, for which the binding to HrpF (37), an additional
negative regulator of the system and a pilin-stabilizing component, has been reported
recently. Earlier studies in P. syringae pv. tomato have shown that HrpJ is secreted in
culture after T3SS induction; its secretion is not a prerequisite, however, for harpin
secretion regulation (16), while HrpJ from E. amylovora is also secreted under inducing
conditions (27). In this work, we have shown that in P. syringae pv. phaseolicola the HrpJ
protein is not secreted under culture conditions and positively controls the secretion of
harpin HrpZ1, an intermediate T3SS substrate, while not affecting HrpA2, an early
secretion substrate (Fig. 6). Moreover, knockout mutants of HrpG and HrpV do not
affect secretion of HrpA2, but they display changes in the levels of accumulated and
secreted HrpZ1. Beyond its effects on harpins, a possible role of the HrpG/HrpV/HrpJ
complex on controlling secretion and/or accumulation of T3SS effectors needs to be
further investigated.

HrpV and HrpG are key T3SS components forming an antiactivator-antiantiactivator
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pair that regulates T3SS transcription (9). Although HrpV from E. amylovora has a low
sequence identity (17%) to the P. syringae pv. phaseolicola HrpV, the existence of the
HrpG/HrpV and HrpG/HrpV/HrpJ complexes in both bacterial species strongly suggests
a common regulation of Hrc-Hrp 1 systems, in which the proteins HrpG, HrpV, HrpS, and
HrpJ form a dynamic circuit responsible for fine-tuning transcription and secretion. This
functional coupling is a novel concept for phytopathogenic systems. Examples from
interaction analyses that remotely point to a comparable functional coupling in T3SS
can be found in animal-pathogenic bacteria (38–40) with the SepL, SepD, and CesL
proteins from enterohemorrhagic and enteropathogenic E. coli (41) representing the
closest case to our observations. In this system, SepL, a gatekeeper protein, interacts
with SepD and CesL, with the latter also having an effect on transcription. The present
analysis is the first one to accentuate a possible mechanistic coupling that is realized via
migration of T3SS components between subcellular compartments. It is not unreason-
able to expect that similar couplings, not yet identified, exist in other pathogens.

Furthermore, in P. syringae pv. phaseolicola the HrpV/HrpG double-negative regu-
latory loop is responsible for the stochastic establishment of phenotypically distinct
subpopulations differing in the expression of the T3SS (10). The results presented here
add two novel aspects to our current knowledge on phenotypic heterogeneity within
clonal populations: (i) they provide a direct link between the bistability of gene
expression and the bistability of the secretion phenotype, and (ii) by proposing distinct
cellular locations for HrpV/HrpG, one proximal to DNA and additionally a membrane-
associated one, our results have implications on how these two proteins may be
distributed between dividing cells, an important aspect determining switching be-
tween ON and OFF states at the single-cell level during cell division.

The circuit presented here fills an important gap in our understanding of the
complicated yet elegant network of the regulatory interactions occurring during phy-
topathogenic T3SS activation. The discovery of transcription-secretion coupling in
remotely related pathogens suggests that the confluence of T3SS pathways through
component migration might reflect a general and important mechanism in T3SS
activation. The junction point between these pathways probably represents an attrac-
tive target (in addition to the exposed extracellular pilus components) for the devel-
opment of antibacterial strategies affecting both the expression and secretion cascades
of T3SS.

MATERIALS AND METHODS
Protein production and purification. E. coli BL21(DE3) cells transformed with the pPROpET recom-

binant constructions bearing combinations of hrpG, hrpV, hrpJ, and hrpG1–132/hrcU199 –359 (P. syringae pv.
phaseolicola) or hrcU199 –360 (E. amylovora) genes from the two plant pathogens of this study were
induced using a standard isopropyl-�-D-1-thiogalactopyranoside (IPTG)-based protocol. Overnight satu-
rated Luria-Bertani (LB) cultures were diluted 1:20 in fresh LB, with 50 �g/ml kanamycin and 0.2%
glucose, and were grown at 37°C until an optical density at 600 nm (OD600) of 0.6 to 0.8 was reached.
IPTG was subsequently added to a final concentration of 0.3 mM to each culture, and recombinant
protein induction was performed at 23°C for 4 h. The induced cells were precipitated and, for P. syringae
pv. phaseolicola proteins, were resuspended in 100 ml lysis buffer per liter of induced culture, containing
20 mM Tris (pH 8.0), 50 mM NaCl, 10 mM imidazole, 10 mM 2-mercaptoethanol, 10% glycerol, 0.1% Triton
X-100, supplied with 1 mM phenylmethanesulfonyl fluoride (PMSF); for E. amylovora proteins, cells were
resuspended in 100 ml lysis buffer per liter of induced culture consisting of 20 mM Tris, pH 8.0, 150 mM
NaCl, 5 mM imidazole, 5% glycerol, 0.05 mM EDTA, and 10 mM �-mercaptoethanol. Cells were disrupted
with sonication in ice, 14 sonication cycles of 30 s each, with cooling intervals of 30 s. The suspension
was centrifuged at 18,000 � g for 45 min at 4°C. The supernatants were loaded onto small plastic
chromatography columns (Bio-Rad) containing 1 ml nickel-nitrilotriacetic acid (Ni-NTA) agarose (Qiagen),
preequilibrated with 10 volumes of the corresponding lysis buffer. Three washes were subsequently
applied to the column with buffers containing a gradually increasing imidazole concentration. The
complexes were eluted from the column at a concentration of 300 mM imidazole.

T3SS sample preparation for Western blotting. After T3SS induction in culture, twenty-five
milliliters per culture was processed. Cells were precipitated, the supernatant was filtered with 0.22-�m
filters, PMSF was added to a final concentration of 1 mM, and the supernatant was processed further
using a pyrogallol red-molybdate-methanol (PRMM)-employing protocol (42). The precipitated cells were
subjected to a mild treatment with 0.4 ml of PBSS, for 10 min at room temperature, followed by
centrifugation. The supernatants were transferred to microcentrifuge tubes and filtered with 0.22-�m
filters, 3 volumes of ice-cold acetone was added, and samples were incubated overnight at �20°C. The
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samples were subsequently centrifuged at 4°C, and pellets were washed once with ice-cold acetone,
dried from residual acetone, resuspended in appropriate volumes of 2� standard sample buffer
(Laemmli), and boiled for 10 min at 95°C. Cells were subsequently resuspended in PBS, pH 7.4, containing
8 M urea and incubated at room temperature for 30 min. An equal volume of 2� sample buffer was
added to the samples, and a boiling step at 95°C for 10 min followed. After boiling, the samples were
centrifuged at room temperature to precipitate the solid cellular debris.

Twenty-five milliliters of filtered supernatants were treated as described in established protocols (42);
in brief, each supernatant was mixed with an equal volume of PRMM buffer, the pH was set to ~2.8, and
mixtures were incubated with agitation for 2 h at room temperature, followed by an extra overnight
incubation step at 4°C. The samples were subsequently centrifuged for 1 h at 4°C and 12,000 � g, the
liquid was carefully discarded, and the pellet was washed twice with ice-cold acetone. Finally, the pellet
was resuspended in 2� Laemmli buffer and boiled for 10 min at 95°C. Sample normalization before gel
loading was performed as follows: from an initial culture with an OD600 of 0.3, the loading cell fraction
volume used on standard 14% SDS-PAGE gels was 30 �l (out of a total 300 �l of sample volume), and
the corresponding volumes of the SDS extracts and the supernatant samples were 20 �l (out of a total
200 �l of sample volume). Standard 14% polyacrylamide gels were run according to SDS-PAGE protocols
for Tris-glycine electrophoresis (43), under a constant voltage of 150 V. Prestained molecular weight
markers (VI from Roche, Kaleidoscope from Bio-Rad) were included in the runs.

T3SS sample preparation for proteomic analysis. Twenty-hour-induced wild-type and �hrpJ P.
syringae pv. phaseolicola cultures, 200 ml each, were centrifuged for 15 min and 8,000 � g at 4°C, and
cells were resuspended in 40 ml low-salt lysis buffer (50 mM Tris-Cl, pH 8.0, 2 mM MgCl2, 5 mM PMSF).
The cell suspensions were sonicated in 10 cycles of 30 s each, with cooling intervals of 30 s. The mixtures
were then centrifuged for 15 min at 8,000 � g at 4°C to precipitate unbroken cells. The supernatant was
transferred to ultracentrifugation tubes and fractionated at 210,000 � g for 1 h. The membrane fractions
were treated as follows: pellets from the first ultracentrifugation step were resuspended in extraction
buffer (50 mM Tris-Cl, pH 8.0, 2 mM MgCl2, 5 mM PMSF, 1% Triton X-100), incubated for 30 min at 10°C,
and ultracentrifuged as described above. The extracted membranes were then diluted to a final 0.1%
concentration of Triton X-100 and concentrated with Amicon centrifugal filters with a molecular weight
cutoff of 10,000. Protein content in all samples was measured using the Bradford protocol (44). Amounts
of 3.5 �g and 4.5 �g from each cytosolic and membrane fraction, respectively, were analyzed on an 8%
native polyacrylamide gel at a constant current of 5 mA for 4 h at 4°C. Analyzed protein complexes were
subsequently fixed with 30% methanol and 10% acetic acid, washed thoroughly with distilled water, and
finally stained with a blue-silver staining solution compatible with nanoscale liquid chromatographic
tandem mass spectrometry (nLC-MS/MS) handling.

SEC and MALLS. SEC was performed at 20°C using an ÄKTA purifier system (Amersham) and a
prepacked Hi-Prep 16/60 Sephacryl S-200 high-resolution column (GE Healthcare). Flow rate was
0.5 ml/min, and elution was monitored at 280 nm. Protein-containing fractions from Ni-NTA isolation
were pooled, concentrated to 2.5 mg/ml for HrpG/HrpV/HrpJ from P. syringae pv. phaseolicola and
8 mg/ml for HT-HrpG/HrpV/HrpJ from E. amylovora, and loaded using a 2-ml loop. The buffer used for
analysis of HrpG/HrpV/HrpJ from P. syringae pv. phaseolicola consisted of 50 mM Tris-Cl, pH 8.0, 50 mM
NaCl, and 0.5 mM EDTA; that for HrpG/HrpV/HrpJ from E. amylovora consisted of 50 mM Tris-Cl, pH 8.0,
100 mM NaCl, 2 mM dithiothreitol (DTT), and 0.5 mM EDTA. Fractions of 2 ml were collected and analyzed
using SDS-14% PAGE gels. Alternatively, SEC coupled to MALLS was performed as follows: 100 �l from
samples derived from Ni-NTA affinity chromatography was loaded onto a Superdex 200 Increase
10/300 GL SEC prepacked column (GE Healthcare) connected to a high-performance liquid chromatog-
raphy (HPLC) system (Shimadzu) operating with the LCsolution software and equipped with a solvent
delivery module (Shimadzu; LC-20AD), a UV/VIS photodiode array detector (Shimadzu; SPD-M20A)
measuring at 280 nm, a differential refractometric detector (Shimadzu; RID-10A), and a system controller
(Shimadzu; CBM-20A/20Alite) and coupled to online mass detection by an 8-angle laser light scattering
detector (Wyatt; Dawn Heleos 8�). Data were analyzed with the Astra software (ASTRA 6.1.2.84).

SAXS measurements and modeling. SAXS data were collected at the SWING beamline of the SOLEIL
synchrotron (Gif-sur-Yvette, France) using an Aviex charge-coupled device detector. The measurements
were performed at 15°C for three different concentrations of the HrpG/HrpV/HrpJ complex (6.0, 3.0, and
1.5 mg/ml) using the automatic sample changer. The highest-concentration sample was also run through
an Agilent HPLC system to assess the behavior of the complex at lower effective concentrations. The
sample-to-detector distance was 3.1 m, covering a range of momentum transfer 0.007 � q � 0.614 Å�1

(q � 4� sin�/�, where 2� is the scattering angle and � � 1.033 Å is the X-ray wavelength). Using the
Foxtrot software, the data were averaged radially and converted to absolute units, analyzed for radiation
damage, averaged, and subtracted. Subsequent analysis was performed with the ATSAS program suite
(24). PRIMUS (45) was used for the calculation of the radius of gyration Rg and the forward scattering
intensity I(0) (proportional to the number of electrons of the particle) from the slope of Guinier plot [lnI(q)
versus q2] (20). GNOM (22) was used to calculate the pair distance distribution function p(r) and to
estimate the maximum particle dimension (Dmax). The molecular mass (MM) of the solute was estimated
from the SAXS data from the I(0) (20) and from the hydrated-particle/Porod volume V (21), where
molecular mass is estimated as V/1.6. Homology modeling was conducted through the HHpred server
pipeline with MODELLER (46) or with the Sculptor utility (47) of the PHENIX program (48) based on the
TyeA/YopN/SycN/YscB complex from Y. pestis (17). The modeling of the missing residues in a way that
is compatible with SAXS data was accomplished with CORAL (24).

MS-based bottom-up proteomic analysis. The nLC-MS/MS analysis of tryptic peptide mixtures was
performed on an Easy-nLC system (Thermo Scientific; software version 2.7.6) coupled with an LTQ-
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Orbitrap XL ETD (Thermo Scientific, Bremen, Germany) through an nES ion source (Thermo Scientific,
Bremen, Germany) as described in reference 49. Samples were reconstituted in 0.5% formic acid aqueous
solution, and the tryptic peptide mixtures were separated on a reversed-phase column packed in-house
and analyzed by MS as described in references 50 and 51. The nLC-MS/MS raw data were loaded in
Proteome Discoverer 1.3.0.339 (Thermo Scientific) and run using the Mascot 2.3.02 (Matrix Science,
London, United Kingdom) search algorithm against the E. amylovora proteome (last modified 30 No-
vember 2016, version 30) containing 8,265 entries and P. syringae pv. phaseolicola (strain 1448 A/race 6)
proteome (last modified 2 November 2016, version 75) containing 5,046 entries (52). A list of common
contaminants was included in the database (53). For protein identification, the following search param-
eters were used: precursor error tolerance, 10 ppm; fragment ion tolerance, 0.8 Da; trypsin full specificity,
maximum number of missed cleavages, 3; and methionine oxidation as variable modifications. Final
peptide and protein lists were compiled in Scaffold (version 4.4.1.1; Proteome Software, Portland, OR)
employing criteria previously described (49). Protein relative quantitation was performed in Scaffold
using different integrated label-free quantitative algorithms.
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