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ABSTRACT 

Introduction  

Chronic inflammatory diseases (CIDs) cause significant morbidity and are a considerable burden for the 

patients in terms of pain, impaired function and diminished quality of life. Important progress in CID 

treatment has been obtained with biological therapies, such as Tumor-Necrosis-Factor blockers. However, 

more than a third of the patients fails to respond to these inhibitors, and are exposed to the side effects 

of treatment, without the benefits. Therefore, there is a strong interest to develop tools to predict 

response of patients to biologics. 

Areas covered 

We searched PubMed for recent studies on biomarkers for disease assessment and prediction of 

therapeutic responses, focusing on the effect of TNF blockers on immune responses in Spondyloarthritis 

(SpA), and other CID, in particular rheumatoid arthritis and inflammatory bowel disease. Conclusions will 

be drawn about the possible development of predictive biomarkers for response to treatment. 

Expert opinion 

No validated biomarker is currently available to predict treatment response in CID. New insight could be 

generated through the development of new bioinformatic modelling approaches to combine 

multidimensional biomarkers that explain the different genetic, immunological and environmental 

determinants of therapeutic responses. 

 

KEYWORDS: spondyloarthritis, ankylosing spondylitis, chronic inflammatory disease, rheumatoid 

arthritis, inflammatory bowel disease, anti-TNF therapy, biomarkers, treatment response, prediction, 

transcriptome, immune responses 

 

HIGHLIGHTS 

• Anti-TNF therapy has strong effects on several immune response pathways, modulating gene 

expression, cell population frequencies and serum protein levels. 

• Several biomarkers for disease progression in patients undergoing anti-TNF treatment have been 

identified, however no biomarker has been validated for clinical use to predict response to 

treatment at baseline. 

• Genetic biomarkers based on single nucleotide polymorphisms have demonstrated limited power to 

predict response to treatment. 

• The combination of several biomarkers may improve the prediction power of statistical models of 

response to anti-TNF therapy. In particular, the inclusion of different types of biomarkers (genetic, 
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transcriptional, protein, cellular) may be necessary to capture the biological complexity of response 

to treatment. 

• New bioinformatic tools, including machine learning approaches, are necessary to handle the 

complexity of the large data sets being currently explored. 

 

1. Introduction 

Chronic inflammatory diseases (CID), such as inflammatory bowel disease (IBD), rheumatoid arthritis 

(RA), spondyloarthritis (SpA), psoriatic arthritis (PsA), and psoriasis (Pso) are a leading cause of morbidity. 

These conditions are associated with chronic pain and important functional impairment that have a large 

impact on productivity and quality of life [1,2]. 

In this review we will focus mainly on Spondyloarthritis (SpA), but also draw parallels with the larger 

literature on RA and IBD. SpA is one of the most common chronic inflammatory rheumatic diseases, with 

a prevalence ranging from 0.5% to 1.9% [3]. In addition to the disabling rheumatic manifestations, some 

SpA patients develop severe extra-articular manifestations such as inflammatory bowel disease (IBD), 

uveitis and psoriasis (Pso) [4]. SpA mainly affects young adults and the functional consequences of 

inadequately controlled disease alter both their quality of life and their professional capacity with direct 

impact on healthcare costs [5]. Improved control of the disease for affected individuals is thus an 

important public health issue. The introduction of biological therapies, such as strategies targeting the 

proinflammatory cytokine TNF, has revolutionized the treatment of CID. However, 30 to 40% of the 

patients fail to respond or acquire resistance to TNF-blockers, and it is currently not possible to predict 

response of patients to anti-TNF therapy [6–8]. Recently, anti-IL-17A drugs have been approved as a 

biologic alternative for axial SpA (axSpA) patients with active disease that do not respond to TNF inhibitors 

(TNFi), but this treatment also fails in about a third of the patients [9]. 

As a consequence, in current clinical practice treatment failures are observed for a substantial number of 

patients, who will not be appropriately treated for several months, while being exposed to the potential 

side effects of the drugs. There is therefore an urgent medical need to develop tools to guide treatment 

decisions for patients affected by SpA and other CID. The ability to predict the response to biologics, and 

to optimize the treatment will be the challenge for the next decade in CID. 

Thus far, clinicians do not know, prior to treatment initiation, if a patient will respond or not to the 

treatment. Despite many efforts to identify predictive biomarkers of anti-TNF treatment response, there 

is still an unmet need for approaches that permit a pretreatment stratification of patients resulting in 

better patient healthcare and significant socio-economic benefits [9].  
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In this review we will explore recent work on the mechanistic action of TNF blockade in SpA, and comment 

on the latest approaches to identify predictive biomarkers. Comparison will be drawn with other CID (IBD 

and RA) for which a rich literature is available. 

We performed an extensive literature search using PubMed. Our search mainly focused on papers 

published between 2015 and December 2020, but a few previous papers relevant to our subject were also 

included. We used keywords such as “Spondylarthritis”, “Rheumatoid Arthritis”, “Inflammatory Bowel 

Disease”, “Anti-TNFa”(and single anti-TNF drugs), “Biomarkers”, “Outcome”, “Response” and 

“Prediction”. Since the literature on predictive biomarkers is still limited, we also included papers 

investigating biomarkers associated with disease activity. Only English written papers were considered for 

our review.  

 

2. Effects of anti-TNF therapy on the immune system in patients – a brief summary 

The introduction of anti-TNF therapy has been a major breakthrough for the treatment of several 

chronic inflammatory diseases, in particular rheumatoid arthritis [10] (reviewed in [11]), inflammatory 

bowel disease [12,13], ankylosing spondylitis [14](reviewed in [15]), and psoriatic arthritis and psoriasis 

[16,17]. Early mechanistic studies revealed a strong reduction of inflammatory cytokines and acute phase 

proteins, such as IL-1, IL-6 and CRP within hours after injection of a TNF inhibitor (TNFi) [18]. Furthermore, 

levels of inflammatory chemokines and VEGF were also reduced, causing reduced granulocyte recruitment 

and angiogenesis in arthritic joints [19,20] (reviewed in [21]).  

RNA sequencing technologies have become relatively affordable and permit the assessment, on a 

genome-wide level, of biomarkers within immune cells that might not be detectable in serum. mRNA 

profiling in SpA patients before and after treatment onset, may help identify molecular pathways 

associated with response to therapy. Using RNA sequencing, a gene expression analysis was performed on 

nineteen AS patients, to profile the transcriptomes of peripheral blood cells (PBMCs), and identified 656 

genes differentially expressed before and after anti-TNF treatment. Analysis of signaling pathways using 

KEGG (Kyoto Encyclopedia of Genes and Genomes) revealed an enrichment of several immune and 

inflammation regulatory pathways, as well as infection metabolism-associated pathways in genes affected 

by anti-TNF therapy [22]. Among the differentially expressed genes were also genes associated to AS in 

GWAS studies (IL6R, NOTCH1, IL10, CXCR2 and TNFRSF1A), highlighting pathogenic pathways that may be 

affected by TNF signaling. The altered expression of components of the NOTCH signaling pathway found 

in AS may be involved in osteoblast differentiation and ossification processes [23]. TNFRSF1A encodes an 

important receptor for TNF, and SNPs in the locus of the anti-inflammatory cytokine IL-10 have shown 

modest correlation with disease severity [24]. Interestingly, the study showed a distinct gene expression 

profile between male and female patients. Besides genes linked to sex chromosome, the only differentially 

expressed gene was IL17RC, which encodes an IL-17 receptor that binds IL-17A and IL-17F. This 
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proinflammatory pathway may play an important role in SpA [25]. An interesting hypothesis is that higher 

expression of IL17RC may be involved in the differences in disease severity and treatment response 

between the genders [22]. 

It is important to note that most transcriptomic studies are performed in PBMCs, and the mixture of 

different cell populations may hide biologically important features specific to a cell type. Peripheral blood 

cells may also not be representative of local inflammatory processes [26], however, biomarkers that can 

be identified in peripheral blood are worth investigating, since they are more easily applicable in large 

scale studies and in the clinics. 

Menegatti et al. have recently investigated the global impact of TNFi on immune responses to 

microbial or pathway-specific stimuli in axSpA patients. The motivation for this study was that the effects 

of TNF-blockers had been studied mostly on resting immune cells but not in the setting of an ongoing 

immune response. The goals were to enhance the understanding of the molecular mechanisms of action 

of TNF-blockers in SpA patients and to identify immunological correlates of response to TNFi. To minimize 

sources of pre-analytical variability the authors used standardized whole-blood stimulation assays 

(“TruCulture” assays) [27] and a highly sensitive and robust pipeline to assess immune functions in patients 

[28]. Proteins in supernatants of stimulated whole-blood cultures were measured in a CLIA-certified 

laboratory and gene expression was measured using nCounter assays for immune genes, a technology not 

requiring enzymatic reactions and PCR amplification, already used in the clinics for diagnostic purposes 

[29]. Up to 300 genes (depending on the stimulation) were affected by anti-TNF therapy, revealing that 

TNFi induce profound changes in patients’ innate immune responses. Stimulation of whole blood amplified 

the observable differences between samples from patients before and after TNF-blocker treatment, 

indicating that TNFi act primarily when the immune system is challenged but less in its resting state. The 

effects of TNFi on activated immune cells were detectable after a single injection of a TNF-blocker and 

persisted for 3 months of follow-up of the patients.  

To understand the molecular basis of anti-TNF therapy action on immune responses, pathway analysis 

was performed on the differentially expressed genes. Since nCounter technology does not allow a 

genome-wide gene expression analysis, the Quantitative Set Analysis for Gene Expression (QuSAGE) 

method was employed [30].  QuSAGE quantifies gene module activity as a shift in the mean differential 

expression of the individual genes included in the module and is compatible with a limited number of 

genes. Similar to other GSEA approaches, QuSAGE allows reducing the number of variables by collapsing 

sets of coordinately expressed genes into gene modules, facilitating functional interpretation of the results 

and improving robustness of biomarker signatures. Bancherau et al. have previously applied QuSAGE to 

functionally interpret gene lists associated with specific phenotypes in Lupus patients [31] and Latis et al. 

used this algorithm to compare and interpret T cell gene expression profiles in recipients after allogeneic 

hematopoietic stem cell transplantation and their sibling donors [32]. Menegatti et al. designed gene 
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modules by grouping genes belonging to specific signaling pathways, associated with particular cellular 

phenotypes, or with specific cellular functions, according to Molecular Signatures Database (MSigDB) 

annotations [33] and based on current knowledge in the literature. Since genes can play roles in distinct 

signaling pathways, a single gene could be present in several modules. The minimum size of one module 

was set to 3 genes. Fig. 1 gives an example for the influenza stimulus. The TNF module groups TNF and 

several molecules associated with its receptor.  TNF itself and many of the genes in this gene module were 

downregulated after one week of anti-TNF therapy. This is similar for the IL-1 module. In this study, IL1A 

was among the genes most strongly targeted by anti-TNF therapy. As for Toll-like-receptors (TLRs), some 

were downregulated, whereas the expression of others actually increased. Signaling through many of 

these receptors activates NF-kB regulatory kinases that phosphorylate the NF-kB inhibitor IkB and thereby 

activate NF-kB. NF-kB transcription factors, IkB and many NF-kB target genes were among the genes that 

were most profoundly downregulated by TNF blockers (Fig. 1 and 2). Since TNF itself, IL-1 and many other 

proinflammatory molecules are NF-kB target genes, one of the mechanisms by which TNFi control 

inflammation may be the disruption of an autoregulatory loop driven mainly by NF-kB [28].  

Only few gene modules showed an increased pathway activity, such as the “cytotoxic molecules” module 

and the “NK cells” (Fig. 3A). An increased fraction of CD8+ T cells following anti-TNF treatment has also 

been recently described in RA patients [34]. The analysis also indicated that TNF-blockers may skew 

monocyte/macrophage polarization towards an M2 regulatory phenotype (Fig. 3B). M2-polarized 

macrophages are implicated in the resolution of inflammation, have immunoregulatory functions and 

orchestrate tissue repair and remodeling [35,36]. On the other hand, shifting the balance from a M1-like 

to a more M2-like profile may contribute to the increased risk of Mycobacterium tuberculosis reactivation 

in patients treated with TNFi [37–39], as M1 macrophages are important for granuloma formation and M. 

tuberculosis protection [40]. 

Anti-TNF treatment did not affect the Th1 or Th17 arms of the patients’ immune response, nor IL-6 

production in cells from axSpA patients, which contrasts previous results reported for RA [18]. These data 

seem consistent with the limited therapeutic efficacy of IL-6-blockade in SpA [41] and may suggest that IL-

6 is more relevant to RA, but less to SpA pathogenesis. 

Collectively, the analysis by Menegatti et al. revealed that TNFi target several distinct signaling 

pathways that cooperate to control inflammation. Some of these pathways may be of particular relevance 

for specific diseases. PTGS2 (COX2) downregulation by TNFi  (Fig. 3C) targets PGE2 biosynthesis and is of 

particular relevance for enthesitis, a critical early pathogenic feature of SpA [42], while shifting the balance 

of macrophages from a pro-inflammatory (M1-like) phenotype to a pro-resolving (M2-like) phenotype is 

important for the resolution of synovitis, a key feature of RA. Expression of the PGE2 receptor EP4 (encoded 

by PTGER4) was also downregulated by TNFi. Signaling through the EP4 receptor upregulates IL-23R 

expression and promotes human Th17 cell development [43]. 
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3. The search for biomarkers of response 

Anti-TNF therapy is not effective in 30-40% of patients affected by chronic inflammatory diseases, but 

the mechanisms underlying primary non-response to treatment are not known. Many studies have been 

performed to identify molecules that may serve as biomarkers to predict therapeutic responses to TNF-

blockers, in particular in RA, IBD, and SpA (reviewed in [6,7,44,45]), however, no validated biomarker has 

yet emerged. In the following, we will summarize recent studies aiming at the identification of biomarkers 

for response to treatment, in particular in SpA, RA and IBD. 

 

3.1 Transcriptomic biomarkers 

To determine if therapeutic responses to TNFi were correlated with immune responses from SpA patients, 

Menegatti et al. have analyzed gene expression in whole-blood cultures stimulated with LPS or SEB from 

80 SpA patients, before initiation of anti-TNF therapy [28]. The response to therapy was evaluated as 

changes in the “Ankylosing Spondylitis Disease Activity Score” (ASDAS) at 3 months after treatment 

initiation [46,47]. Gene expression analysis of these cultures revealed that 55 genes that were differentially 

expressed between responders and non-responders (Fig. 4) [28]. 15 of these genes were associated with 

leukocyte migration and invasion, such as the genes encoding urokinase (PLAU) and its receptor (PLAUR). 

The importance of leukocyte recirculation as a determinant of treatment responses to TNFi was supported 

by the finding that several chemokines and their receptors were differentially expressed between 

responders and primary non-responders. Genes encoding the receptors for the pro-inflammatory 

cytokines TNF, IL-6 and IL-1 were also expressed at higher levels in cultures from responders, as was 

expression of NLRP3, the gene encoding the intracellular sensor NOD-, LRR- and pyrin domain-containing 

protein 3, which plays an important role in the control of caspase-1-dependent processing of pro-IL-1b 

and IL-18 into active cytokines [48]. A polymorphism in the NLRP3 gene (rs4612666) was associated with 

primary response to anti-TNF therapy in 2 independent cohorts of Ulcerative Colitis (UC) and IBD patients. 

This polymorphism is associated with reduced NLRP3 expression [49]. Only 7 differentially expressed genes 

were expressed at higher levels in non-responders, including CXCL9 (encoding a chemoattractant for 

CXCR3-expressing Th1 and other cytotoxic cells) and IFNG, encoding the signature cytokine of Th1, CD8+ T 

and NK cells.  Bank et al. previously reported that a polymorphism in the IFNG gene (rs2430561) was 

significantly associated with effective anti-TNF primary response in Crohn’s disease (CD) patients but not 

in ulcerative colitis (UC) patients. This variant is associated with decreased IFN-γ level [50]. This result was 

confirmed in another study in UC patients, where, at baseline, responders had lower mucosal mRNA 

expression of IFN-γ than non-responders [51].  In contrast, Rismo et al. reported that high mRNA 

expression of mucosal IFN-γ and IL-17A in biopsies obtained before anti-TNF therapy was associated with 
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successful therapy response in UC patients [52], suggesting that the role of IFN-γ in this context needs 

further evaluation. 

IL7R, the receptor for the homeostatic cytokine IL-7 was expressed at higher levels in stimulated immune 

cells from axSpA patients not-responding to TNFi [28](Fig. 4). A 20 genes signature of IL-7/IL-7R signaling 

has recently been analyzed in colon mucosal biopsies from previously published cohorts of IBD patients 

[53]. This study revealed that the IL-7R signaling signature is reproducibly altered in inflamed mucosa, with 

a significant accumulation of IL7R transcripts that may contribute to the maintenance of chronic 

inflammation. More interestingly, it also demonstrated that a strong colonic IL-7R signaling gene signature 

(and in particular IL7R), before initiation of therapy, is significantly and reproducibly associated with the 

absence of response to anti-TNF therapy both in UC and CD patients, identifying refractory IBD patients. 

The author showed that this is not the case for mucosal ileal biopsies, suggesting a specific association of 

the IL-7/IL-7R pathway with colonic but not ileal IBD inflammation. A combination of 10 genes (IL7R, IL2RG, 

JAK1, PIK3CA, LCK, PTK2B, EP300, NMI, CRLF2, and TSLP) from the IL-7R signaling signature was sufficient 

to discriminate anti-TNF non-responders from responders, constituting a potential new predictive 

biomarker to identify refractory patients [53]. A more recent IBD study developed a test to measure IL-7, 

together with 13 additional proteins in blood (ANG1, ANG2, CRP, SAA1, IL-7, EMMPRIN, MMP1, MMP2, 

MMP3, MMP9, TGFA, CEACAM1, and VCAM1). This signature was termed the “endoscopic healing index” 

(EHI). The EHI was used to score endoscopic disease activity in patients with CD. The EHI scores range from 

0 to 100 units, with higher scores indicating more severe CD activity, based on endoscopy findings. 

Outcome prediction based on EHI was comparable to measurement of FC (fecal calprotectin) and higher 

than measurement of serum CRP [54]. 

Transcriptomic biomarkers have also been investigated in RA, with some limited results [55]. In 

this respect, the combined analysis of gene expression and genetic data in large patient cohorts may be a 

more promising approach. Aterido et al. defined gene co-expression modules in RA synovial tissue and 

analyzed their association with response to anti-TNF treatment at the clinical and genetic level, using set-

based genetic association analysis. The analysis resulted in the identification of an 18-gene module 

expressed in synovial tissue, and significantly associated at the genetic level with response to adalimumab 

[56]. Pathway analysis showed that the module is enriched for genes involved in nucleotide metabolism, 

which plays an essential role in cell proliferation and in the synthesis of signaling molecules such as 

adenosine. Notably, adenosine signaling in macrophages has been shown to induce a switch from a pro-

inflammatory M1 phenotype to an M2 regulatory phenotype [57,58]. 

Cherlin et al. applied the PrediXcan algorithm on genetic data from the MATURA consortium [59] 

to identify genes that are associated with changes in the erythrocyte sedimentation rate (ESR) in patients 

treated with TNF blockers. The prediction model identified the IL18RAP gene as a predictor of changes in 

ESR after treatment [60] . In a replication cohort, the expression of IL18RAP in whole blood at baseline 
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correlated with changes in ESR at 6-month follow-up, and a correlation was observed between IL18RAP 

expression in blood and in synovial tissue [60]. IL18RAP is important for IL-18 signaling, a pathway 

implicated in inflammation, and a potential treatment target in RA [61]. The association of IL18RAP with 

treatment outcome is not specific to one drug type, making it an interesting biomarker to explore for 

treatment responses in RA. 

In IBD patients, analyses of gene expression in inflamed tissue and immune cells also proved useful 

in the understanding of the immunopathogenesis of IBD and prediction of therapy outcome. In a study by 

Arijs et al. baseline gene expression levels in mucosal biopsies could distinguish responders from non-

responders to infliximab. The microarray analysis identified a set of 5 genes (TNFAIP6, S100A8, IL11, G0S2, 

and S100A9) that could be used to predict the response to anti-TNF treatment with 100% accuracy [62]. A 

subsequent genetic study demonstrated that haplotype differences in the loci of these 5 genes 

differentiated responders from non-responders to infliximab [63]. The same group identified also a panel 

of 5 genes that can be used to predict response to anti-TNF treatment in UC patient (OPG, STC1, PTGS2, 

IL13RA2, IL11) [64].  

 

3.2 Genetic biomarkers 

Explorative studies of genetic biomarkers to predict anti-TNF therapeutic outcome use genotyping 

technologies in order to associate genotype with good or bad response to treatment. Genotyping has been 

performed either on a genome-wide scale (GWAS), or on a narrower scale, by targeting a specific set of 

single nucleotide polymorphisms (SNPs), selected for their previous association with disease susceptibility 

or with proposed correlation with anti-TNF response. Results from GWAS performed on rheumatic 

diseases suggest that disease susceptibility and treatment response are influenced by the action of many 

genetic variants with modest effects, rather than a few variants with large effects. Thus, polygenic risk 

scores, based on the combination of several potentially predictive gene variants are expected to be more 

efficient in predicting treatment response than individual risk variants [65,66].  

Overall, genetic biomarkers are particularly interesting as early predictive biomarkers: they are 

invariable, they precede disease onset and use affordable technologies. Pharmacogenomic profiling has 

shown important results in predicting treatment outcome in cancer biotherapy treated patients [67,68] 

and has also been considered for chronic rheumatic diseases such as SpA. In CIDs, the absence of common 

SNPs with a strong effect, and non-genetic sources of patients’ heterogeneity suggest that studies with 

very large numbers of patients would be necessary to obtain a solid correlation of genetic variation with 

clinical outcome [69,70]. 

To date, only a few studies have suggested an association between anti-TNF responses in SpA 

patients and genetic variants, in particular in the TNF and TLR pathways, and downstream NF-kB signaling 

(Table 1). A number of these variants and genes have also been associated with clinical parameters of 

remission or low disease in RA (Table 2), supporting the importance of these molecular pathways in the 
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mechanisms of action of TNF-blockers. However, the reduced number of studies, the limited size of the 

cohorts analyzed, and the lack of robust replicated results limit the exploitation of these findings in a 

clinical setting. 

 
Table 1. Response biomarkers in Spondyloarthritis (SpA). 
 

Study Disease 
(cohort) 

Treatment Biomarkers Pathways Outcome 

GENETIC 
Seitz (2007) 
[71] 

AS (22) 
RA (54) 
PsA (10) 

IFX, ADA, 
ETN 

TNFα - 308 G/G TNF/TNFR Associates with good response 
(DAS28 or BASDAI at 24weeks) 

Liu J (2016) [72] SpA, IBD, 
Ps, PsA. 
(1016) 

TNFi TNFα − 308 A/G  
TNFα – 238 A/G 
 

TNF/TNFR G/G predicts good response to TNFi 
(ASAS20, ASAS40, BASDAI20,BASDAI50 at 12 
weeks)  

Fabris M (2016)  
[73] 

SpA (187) ADA, IFX, 
GOL, ETN 

TNFα -308 A/G 
IL6-174 C/G 

TNF/TNFR 
IL-6 signaling 

G/G predicts survival of the first TNFi 
(BASDAI, DAS28-EULAR) 

Aita A (2018) 
[74]  

SpA (137) IFX, ADA, 
ETN, GOL 

TNFRSF1A c.625+10 G TNF/TNFR 
 

Associates with late response to TNFi 
(BASDAI < 4) 

Murdaca G 
(2014) [75] 

57 (PsA) ETN 
ADA 
IFX 

TNFα + 489 A/G TNF/TNFR A allele associates with the response to ETN. 
(PASI, ACR criteria, DAS28, and HAQ at 
baseline, 3 and 6 months) 

Liu J (2019) [76] AS (92) ETN MYOM2-rs2294066  Associates with response (ASASAS40) 
Borda (2019) 
[77] 

SpA (118) IFX, ADA, 
ETN, GOL 

CHUK rs11591741  
MAPKAPK2 rs4240847 
TLR10 rs11096957 
IRAK3 rs11541076 

NFκB  
TLR4 
TLR10 
NFKB/TLR4 

Associates with non-response 
(BASDAI, BASFI and DAS28-CRP) 

EPIGENETIC 
Ovejero-Benito  
(2018) [78] 

Ps (39) ADA H3 and H4 acetylation,  
H3K4 and H3K27 
methylation 

 Changes in H3K4 were found between Rs 
and NR 
(PASI75 at 3 and 6 months) 

Ciechomska M 
(2018) [79] 

AS (13) 
RA (10) 
 

TNFi Serum miRNA-5196 BCR signaling  
MHC-I antigen 
processing. 
 

Changes in miRNA-5196 can be used as 
predictive marker of reduced disease 
activity. 
Better correlation with changes in DAS20 
and ASDAS than CRP. 

PROTEINS 
Arends (2011) 
[80] 

AS (92) ETN MMP-3 MMPs MMP-3 decreases with TNFi.  
Change in MMP-3 serum levels are not 
useful for predicting response to ETN. 
(ASAS20 and ASA40 at 3 and 12 months) 

Wagner C 
(2012) [81] 

AS (100) GOL 92 Proteins  
profiling  

acute 
inflammation,  
bone 
metabolism, 
coagulation, 
metabolic 
factors 

Baseline and change in combination of 
biomarkers demonstrated stronger 
prediction for clinical efficacy than CRP. 
(ASAS20 at week 14) 

Ademowo OS 
(2016) [82] 

PsA (25) ADA 57 proteins panel Acute 
inflammation,  
tissue repair,  
coagulation 

New biomarker panel that can be measured 
at baseline to predict PsA patients’ response 
to biologics.  
(DAS28 at 12 weeks)  

Turina (2014)  
[83] 
 
 

SpA (78) 
 

IFX, ETN Calprotectin 
MMP3, hsCRP, IL-6, 
pentraxin-3, Alpha-2-
macroglobulin, VEGF 

Acute phase 
reactants 
IL-6 signaling 
TLR 
MMPs 

Calprotectin and hs-CRP are good 
biomarkers with high sensitivity to change 
upon treatment. 

Østgård RD 
(2017) [84] 

AS (30)  ADA fecal Calprotectin TLR Elevated baseline fecal calprotectin may 
predict better treatment response.  
(ASDAS at weeks 12,20 and 52) 
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Hu H (2019) 
[85]  

AS (262) TNFi  
NSAID 
DMARD 

Serum Calprotectin TLR Change of calprotectin during first month 
could predict patients achieving ASAS 40 
with AUC of 0.691. 

Jarlborg M 
(2020) [86] 

AxSpA(451) 
RA(969) 
PsA(237) 

TNFi Serum Calprotectin  TLR Calprotectin serum levels associate with 
disease activity in RA, SpA but not in PsA. 
(SJC, DAS, HAQ, joint radiographs, USPD,  
BASDAI, ASDAS, SJC, DAPSA) 

Baraliakos X 
(2019) [87] 

AS (867) ETN C-reactive protein CRP IL-6 signaling  
Complement 
triggering  

Very high baseline CRP is a predictor for 
week-12 outcomes 
(ASAS20, ASAS50, ASDAS-CRP at week 12) 

Hokstad I 
(2019) [88] 

SpA (51) TNFi Complement activation 
(sC5b-9 serum levels) 

Complement 
pathway 

Decrease from baseline to 6 weeks of TNFi 

Chimenti  MS 
(2012) [89] 

PsA (55) ETN 
ADA 

Plasma complement 
C3, C4, and B 

Complement 
pathway 

High baseline C3 levels predict non-response. 
(DAS28 and EULAR at baseline and 22 weeks) 

TRANSCRIPTS 
Wang XB (2017) 
[22] 

AS (19) 
(PBMC) 

TNFi 656 DEG :  
CXCR2,  
NOTCH1,  
TNFRSF1A, 
IL6R,  
IL10 

Chemokines 
NOTCH 
signaling  
TNF/TNFR 
IL-6 signaling 
IL-10 

It was not possible to develop a predictive 
algorithm for TNFi response 
(BASDAI, CRP and ESR) 

Dolcino M 
(2017)  
[90] 

AS (10) 
(PBMC) 

ADA Assessed 14500 DEG in 
AS patients before and 
after ADA treatment 

TLR signaling, 
TNF signaling, 
IFN Type I  
Wnt signaling, 

ADA treatment modified 44% of DEGs in Rs 
compared to 12% in NR. 
(BASDAI6) 

IMMUNE CELL POPULATIONS 
Enginar AU 
(2019) [91] 

AS (203) 
RA (68) 
 

TNFi NLR 
PLR 

Neutrophils 
Lymphocytes  
Platelets  

NLR and PLR are strongly correlated with 
disease activity, ESR and CRP and decrease 
with anti-TNF treatment. 
(BASDAI/DAS28 at 3 and 6 months) 

Miyagawa I 
(2019) [92] 

PsA (26) ADA 
IFX 
UST 
SEC 

Th1 type 
Th17 type 
Th1/Th17 high 
Th1/Th17 low 

 T cells bDMARD therapy selected strategically 
based on the results of peripheral blood 
lymphocyte phenotyping.  
(CRP, ESR, SDAI, DAS28 and PASI at baseline 
and 6 months) 

Schulte-Wrede 
U (2018) [93] 

AS (31) ADA, 
ETN 

NK CD8+ cells NK cells Composition of NK cell compartment 
predicts therapeutic outcome. 
(BASDAI50 between baseline and 1 to 6 
months) 

Dulic S(2018) 
[94] 

AS (22) TNFi T cell repertoire 
 

T cells Increase in CD4HLADR, CD8HLADR and 
CD4CD25 cells in Rs. 
(ASAS) 

Xueyi L (2013) 
[95] 

AS (222) TNFi Th17 and Treg T cells Higher baseline Th17 in AS vs controls. 
Th17 significantly decreased in Rs, increased 
in NR. 
Treg increased in Rs and decreased in NR. 
(ASAS at 6 months) 

Andersen T 
(2019) [96] 

SpA (30) TNFi Th17 and Th22 T cells Associates with good clinical response to 
TNFi at 1 year. 
(ΔASDAS, ΔBASDAI from 0 to 12 months, 
MRI) 

Yang M (2020) 
[97] 

AS (177) ETN 28 T lymphocyte and  
12 B lymphocyte 
subsets 

T cells 
B cells 

Baseline: imbalance of T and B cell subsets in 
AS patients. 
After TNFi: decreased naïve CD4+ cells, 
increased Treg and B10 cells,   
Treg increase positively correlated with CRP 
decrease.  
(CRP, ASDAS, BASDAI at 12 weeks) 

 
Abbreviations: SpA, Spondyloarthritis; AS, Ankylosing Spondylitis; RA, Rheumatoid Arthritis; PsA, Psoriatic 
Arthritis; IBD, Inflammatory Bowel Disease; ADA, adalimumab; ETN, etanercept; GOL, golimumab; IFX, 
infliximab; TNFi, UST, ustekinumab; SEC, secukinumab; TNF-inhibitors; HC, healthy controls; Rs, 
responders; NR, non-responders; MiRNA, Micro RNA; BCR, B cell receptor; NLR, neutrophils/lymphocytes 
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ratio; PLR: platelet/lymphocyte ratio, CRP, C-reactive protein; hsCRP, High sensitivity C-reactive protein; 
SDAI, simplified disease activity index; VEGF, vascular endothelial growth factor; ESR, erythrocyte 
sedimentation rate; DAS28, disease activity score 28; ASDAS, Ankylosing Spondylitis Disease Activity Score; 
MMPs, Matrix Metalloproteinases; TLR, Toll like receptor; DEG, differentially expressed genes; SJC, swollen 
joint count; DAS, Disease Activity Score; HAQ, Health Assessment questionnaire; USPD, ultrasound power 
Doppler; BASDAI, Bath Ankylosing Spondylitis Disease Activity Index; DAPSA, Disease Activity Index for 
Psoriatic Arthritis. 
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Table 2. Biomarkers in Rheumathoid Arthritis (RA). 

 
Study Disease 

(Cohort) 
Treatment Biomarkers Pathway Outcome 

GENETIC 
Pavy S (2010) 
[98] 

RA (1721,  
12 cohorts) 
meta-
analysis 
 

TNFi G-308A TNFα TNF 
 

No association with treatment response 
(deltaDAS28 at 12 weeks) 

Zeng Z (2013) 
[99] 

RA (2127, 
15 cohorts) 
meta-
analysis 
 

TNFi G-308A TNFα TNF Patients with the G allele respond better 
to treatment 
(DAS28/ACR) 
 

Cui J (2013) 
[100] 

RA (2706) 
 

IFX ADA ETN rs6427528 CD84 
 

SLAM family  Association with response to ETN 
(EULAR criteria at 3-12 months) 

RA (390) ETN 
Swierkot J 
(2013) [101] 

RA (280) IFX ADA ETN TNFR1A G36A TNF Associated with remission or low 
disease activity (EULAR criteria at 6 
months) 

TNFA C-857T Associated with DAS28 at 6 months 
treatment 

Ferreiro-Iglesias 
A (2016) [102] 

RA (755) IFX ADA ETN rs10919563 PTPRC 
(CD45) 
rs1800896 IL10 
rs11591741 CHUK 

CD45 
IL10 
NFKB 

associated with response to treatment 
(EULAR criteria at 3-6 months) 

Honne K (2016) 
[103] 

RA (487) IFX ADA ETN rs284511 MAP3K7 TGFbeta, BMP associated with treatment response 
(deltaDAS28-CRP at 3-6 months) 
 

Julià A (2016) 
[104] 

RA (372) IFX ADA ETN rs11387825 MED15 PC2, 
transcriptional 
activation 

Association with response to ETN 
(EULAR criteria at 3 months) 

RA (245) rs11387825 MED15 
rs6065221 MAFB 

transcriptional 
activation 

Association with response to ETN 
 
Association with response to ETN IFX 

Cui J (2017) 
[105] 

RA (1094) IFX ADA ETN NFKBIA 
AICDA 
 
 
 
CDK6 

NFkB, 
somatic 
hypermutation 
class-switch 
recombination 
cell cycle 

No association with response at genome 
wide significance. Three genes with 
individual P values of <0.01 
(EULAR criteria at 3-6 months) 

Marwa OS 
(2017) [106] 

RA (108) 
HC (202) 

ETN IFX rs763780 IL17F 7488 
A/G  
rs2397084 IL17F 7383 
A/G 

IL-17 Association with response. 
Serum levels of IL-17 higher in RA versus 
HC 
(DAS28) 

Sieberts SK 
(2016) [107] 

RA (2706 
training) 
RA (591 
validation) 

TNFi Published SNP data 
predicting response to 
TNFi 
Meta-analysis 

 no significant genetic contribution to 
prediction accuracy of response 
(deltaDAS28 at 3-12 months) 

Cherlin S (2018) 
[108] 

RA (1819) TNFi GWAS data from 
Matura consortium 

 poor prediction of response using 11 
different statistical methods  
(delta CRP, delta ESR, delta SJC28 
at 3-6 months) 

RA (657) MTX 

Guan (2019) 
[109] 

RA (2706 
training) 
RA (591 
validation) 

TNFi rs1990099 MAGI2 
rs10833455 NELL1 
rs10833456 NELL1 

small GTPase 
signalling 
osteochondro-
genesis 

clinical and SNP data modelled to 
predict treatment response. Genetic 
information only marginally improves 
the prediction 
(deltaDAS28 at 3-12 months) 
 

Ferreiro-Iglesias 
A (2019) [110] 

RA (3978, IFX ETN ADA rs2378945 NUBPL NADH 
dehydrogenase 

association with response to ETN 
(EULAR criteria at 3 months) 
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755 
replication) 

rs12142623  
rs4651370 PLA2G4A 

arachidonic 
acid pathway 

Bai M (2019) 
[111] 

RA (507) 
HC (499) 

 rs969129 IL7R 
rs6451231 IL7R 

IL-7 Association with RA risk 

EPIGENETIC 
Castro-Villegas C 
(2015) [112] 

RA (95) IFX ADA ETN Serum microRNAs 
signature (miR-23 and 
miR-223) 
 

Putative 
targets: CHUK, 
IL6R, IRAK2, 
BMPR2 

miR-23 and miR-223 baseline levels 
correlate with treatment response 
(EULAR criteria at 6 months) 
 
 

Krintel SB (2015) 
[113] 

RA (180) ADA microRNA in pre-
treatment whole blood 

ER alpha 
extracellular 
matrix (Cyr61) 
Chemokines 
(CXCL12) 

low expression of miR-22 and high 
expression of miR-886.3p is associated 
with response (EULAR criteria at 3 
months) 

TRANSCRIPTS 
Oswald M (2015) 
[114] 

RA (240) IFX ADA ETN 
GOL CTZ 

gene modules for 
plasmacells, 
B cells, MHC/ribosome 
proteins, T cells  

B cells 
T cells 

increased expression after TNFi in 
responders. No baseline difference 
between Rs and NRs 
(EULAR criteria at 14 weeks) 

Huang Q-I (2017) 
[115] 

RA (384, 
8 cohorts) 
meta-
analysis 

IFX FKBP1A  
FGF12 
ANO1 
LRRC31 
AKR1D1 

regulation of 
trans-
membrane 
transport 

Logistic regression model of the 5 genes 
predicts IFX response. 
(EULAR/ACR criteria at week 6, 14, 22) 

Byng-Maddick R 
(2017) [116] 

RA (37) 
HC (13) 

IFX ETN ADA TNF-inducible genes TNF TNFi do not affect TNF-inducible gene 
expression at the site of acute immune 
challenge (tuberculin test).  TNF-
dependent gene expression decreased 
in blood sample from treated patients 

PROTEIN 
 Shi R (2018) 
[117] 
 
 

RA (69) ETN IL-6 
survivin 

IL-6 
apoptosis 

Baseline serum IL-6 increased in Rs to 
ETN, baseline survivin decreased.  Only 
survivin and CRP are independent 
predictive factors 

 BK Han (2016) 
[118] 

RA (29) TNFi Serum CXCL10 and 
CXCL13 
 

chemokines Rs have higher baseline levels of CXCL10 
and CXCL13 compared to NRs 
(EULAR criteria at week 14) 

Haschka J (2016) 
[119] 

RA in 
DAS28 
remission 
(101) 
 

conventional 
and/or 
biological 
DMARD, 
randomized to 
tapering 

anticitrullinated 
protein antibodies 
(ACPA) 
 

 ACPA positivity independently 
associated with relapse 
 

 Curtis JR (2012) 
[120] 

RA (230) 
RA (45) 
(treatment 
response) 

MTX 
anti-TNFa 

Multi-biomarker 
disease activity 
(MBDA) score : EGF, 
VEGF-A, leptin, IL-6, 
SAA, CRP, VCAM-1, 
MMP-1, MMP-3, 
TNFRI, YKL-40, and 
resistin 

EGF 
TNF 
IL-6 
VEGF 
Integrins 
MMPs 
Apolipo-
proteins 

significant association with DAS28-CRP. 
Changes in MBDA score discriminates 
clinical Rs from NRs 
(ACR20 week 6-12, deltaDAS28-CRP 
week 6-12) 

Centola M 
(2013) [121] 

RA (676, 
5 cohorts) 

Conventional 
and biological 
DMARDs 

MBDA 
 

MBDA 
pathways 

Discriminates patients with low vs. 
moderate/high clinical disease activity. 
Tracks changes in DAS28-CRP 

Hirata S (2015) 
[122] 

RA (84) ADA ETN IFX MBDA 
 

MBDA 
pathways 

MBDA scores correlate with disease 
activity. 
Tracks response to treatment 
(deltaDAS28-CRP, deltaDAS28-ESR, at 24 
and 52 weeks) 

Hirata S (2016) 
[123] 

RA (83) ADA ETN IFX MBDA MBDA 
pathways 

MBDA score and DAS28 at week 24 are 
significant predictors of radiographic 
progression at week 52 

Li W (2016) 
[124] 

RA (163)  MBDA MBDA 
pathways 

MBDA score is independently associated 
with radiographic progression.  
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Significantly discriminates patients with 
low CRP and high risk of progression. 

Fleischmann R 
(2016) [125] 

RA (241) 
RA (251) 

ABC 
ADA 

MBDA MBDA 
pathways 

MBDA does not reflect the status of 
radiographic progression, nor disease 
activity 

Hambardzumyan 
K (2016) [126] 

RA (205) MTX+IFX, 
conventional 
DMARDs 

MBDA MBDA 
pathways 

MBDA score at baseline, month 3 and 
year 1 is correlated with subsequent 
rapid radiographic progression 
 

Rech J (2016) 
[127] 

RA (94) conventional 
and/or 
biological 
DMARD  
(tapering) 

MBDA MBDA 
pathways 

Higher baseline MBDA scores 
significantly associated with relapse. 
ACPA positivity and MBDA are 
independent predictors of relapse. 

Hambardzumyan 
K (2017) [128] 

RA (157) MTX+IFX, 
conventional 
DMARDs 

MBDA MBDA 
pathways 

MBDA score is associated with response 
to second-line therapy and with 
response to IFX 
(EULAR criteria at 3 and 12 months) 
 

Krabbe S (2017) 
[129] 

RA (52) ADA MBDA MBDA 
pathways 

High MBDA in patients with structural 
progression 
 

Bouman CAM 
(2017) [130] 

RA (171) ADA ETN 
randomized 
discontinuation  

MBDA MBDA 
pathways 

Baseline MBDA score is not predictive 
for clinical outcome in the taper group, 
but predicts major flares in the usual 
care group.  Radiographic progression 
was minimal and not predicted by 
MDBA score. 

Ghiti-Moghadam 
M (2018) [131] 

RA (439) 
Low disease 
activity 

TNFi 
randomized 
discontinuation  

MBDA MBDA 
pathways 

Low MDBA score independently 
associated with successful 
discontinuation 

Bechman K 
(2018) 
[132] 

RA (152) conventional 
and/or 
biological 
DMARD  

MBDA MBDA 
pathways 

Baseline MBDA score not predictive of 
flares 

Curtis JR (2019) 
[133] 

RA (929,  
5 cohorts) 
Meta-
analysis 

MTX, ADA, IFX, 
ABA 

MBDA MBDA 
pathways 

High negative predictive value of MBDA 
score for radiographic progression 

Brahe CH (2019) 
[133] 

early RA 
(180) 

MTX 
MTX+ADA 

MBDA MBDA 
pathways 

Baseline MBDA was associated with 
radiographic progression at 1 year, delta 
MBDA (baseline to 3 months) with 
clinical remission at 6 months 
(DAS28-CRP≤2.6) 

Cuppen B (2018) 
[134] 

RA (65 
training) 
RA (185 
validation) 

IFX ADA ETN 
GOL CTZ 

CCL3, CCL17, CCL19, 
CCL22, IL-4, IL-6, IL-7, 
IL-15, sCD14, sCD74, 
sIL-1R1, sTNFRII 

Chemokines 
IL6 
IL1 
TNF 

The protein score marginally improves 
prediction of DAS28 at 3 months after 
treatment, compared to clinical scores 

Choi IY (2015) 
[135] 

RA (170) ADA IFX RIX  Serum calprotectin 
(MRP8/14, S100A8/A9) 

TLR Baseline calprotectin serum levels are 
higher in responders. Levels in Rs 
decrease after treatment 
(EULAR criteria at 16 weeks) 

Nair SC (2016) 
[136] 

RA (170) ADA IFX RIX  Serum calprotectin 
(MRP8/14, S100A8/A9) 

TLR Logistic regression model of baseline 
calprotectin serum levels predicts 
response 
(EULAR criteria at 16 weeks) 

Nordal HH 
(2016) [137] 

RA (39) IFX Serum calprotectin 
(MRP8/14, S100A8/A9) 

TLR Weak association of baseline 
calprotectin levels with radiographic 
progression. No predictive power for 
outcome. 

Smith SL (2017) 
[138] 

RA (236) ETN Serum S100A9 TLR No association with response, nor 
clinical parameters of disease activity 
(EULAR criteria at 6 months) 

Inciarte-Mundo J 
(2018) [139] 

RA (47) 
PsA (56) 

IFX ADA ETN Serum calprotectin 
(MRP8/14, S100A8/A9) 

TLR Baseline calprotectin serum 
independently predicts relapse 
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Tweehuysen L 
(2018) [140] 

RA (125) 
 

ADA ETN 
starting 

Serum calprotectin 
(MRP8/14, S100A8/A9) 

TLR Baseline calprotectin levels predictive of 
response only in one cohort.  No 
predictive advantage over clinical 
factors  
(EULAR criteria at 6 months) 

RA (102) tapering 

Yunchun L 
(2018) [141] 

RA (180) rhTNFR-Fc 
 

Serum calprotectin 
(MRP8/14, S100A8/A9) 

TLR Rapid decrease of calprotectin levels is 
associated with a positive clinical 
response (ACR20).  Levels decrease 
during treatment. 

De Moel EC 
(2019) [142] 

RA (104) 
RA (57) 

tapering 
DMARDs or 
biologics 

Serum calprotectin 
(MRP8/14, S100A8/A9) 

TLR Higher calprotectin is associated with 
increased risk of relapse after TNFi  
tapering  

IMMUNE CELL POPULATIONS 
Daien CI (2014) 
[143] 

RA (96) 
HC (31) 

TNFi memory B cells in 
peripheral blood 

B cells CD27+ cells produced three times more 
TNFα than did naïve B cells. 
Higher proportion of CD27+ memory B 
cells at baseline is associated with 
response to TNFi  
(EULAR criteria at 3 months) 

Citro A (2015) 
[144] 

RA (16) ETN CD8+ T cells CD8+ T cells Percentage apoptotic epitope-specific 
effector CD8+ T cells is more elevated in 
Rs 
(EULAR criteria at 6 months) 

Hull DN (2016) 
[145] 

RA (25) ADA ETN  Th17 cells at baseline Th17 Higher frequencies of baseline Th17 
cells is associated with worse response 
defined by ultrasonography (synovitis).  
Th17 frequency increases with TNFi 
therapy 

Salomon S 
(2017) [146] 

RA (31) 
HC (17) 

TNFi ABT TCZ CD24hiCD27+ Breg 
Th17 cells 

B cells 
Th17 

Higher levels of Breg at baseline is 
associated with DAS28 remission at 6 
months (ABT) 
Lower baseline Th17 is associated with a 
good response at 6 months. 
RA have reduced Breg, Th17 

Khanniche A 
(2018) [34] 

RA (49) 
HC (65) 

GOL, MTX Increased effector 
memory and 
decreased central 
memory CD8+ and 
CD4+ T cells after TNFi 

CD8, CD4 T 
cells 

Increased effector CD8+ T cells 
responses to viral antigens in GOL 
treated patients 
 

Lee HN (2019) 
[147] 

RA (82) 
HC (328) 

ADA ETN IFX Neutrophil/ 
lymphocyte ratio (NLR) 
Platelet/ 
lymphocyte ratio (PLR)  

Neutrophils 
Lymphocytes 
platelets 

High NLR and PLR at baseline correlated 
with treatment response at 12, but not 
at 24 weeks 
(EULAR criteria, DAS28-ESR) 

Cianciotti BC 
(2020) [148] 

RA (27) 
HC (20) 

ETN CD45RA+CD62L+CD96+ Tscm 
IL-17 
 

Expansion of citrullinated vimentin 
specific Tscm in RA, reduction after 
TNFi.  Expansion of Th17 and IL-17+ 
Tscm in RA, reduction after TNFi 

Rodriguez-
Martin E (2020) 
[149] 

RA (98) TNFi 
MTX, PREDN 

CD19+CD27- Naïve B cells Modest positive correlation of B/T cell 
ratio with clinical outcome 
(DAS28≤2.6 at 6 months) 

MULTIDIMENSIONAL PARAMETERS 
IMMUNE CELLS and PROTEINS 

Bystrom J (2017) 
[150] 

RA (97) ADA ETN GOL 
CTZ, MTX 

GM-CSF, IL-1beta 
 

GM-CSF, IL1 
 

GM-CSF mostly produced by T cells. GM-
CSF+ T cells are TNFa positive and IL-17 
negative. High pre-treatment blood 
levels of GM-CSF are predictive of 
response to TNFi  (EULAR criteria at 3 
months) 

IMMUNE CELLS and TRANSCRIPTS 
Lewis MJ (2019) 
[26] 

RA (90) Conventional 
DMARDs 

Synovial pathotypes 
determined by 
immunohisto-

Type I IFN 
signature, 
chemokine 
modules, 

Synovial gene modules correlate with 
DAS28-CRP, and with delta DAS28-CRP 
at 6 months 
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chemistry and synovial 
gene expression 

monocyte, DC 
and B cell 
modules 

Lliso-Ribera G 
(2019) [151] 

early RA 
(200) 

Conventional 
DMARDs 

Synovial pathotypes 
determined by 
immunohisto-
chemistry and synovial 
gene expression 

Neutrophils 
lymphocytes 

Baseline lympho-myeloid pathotype is 
significantly associated with 
requirement for biologics at 12 months.  
These patients have higher expression 
of genes regulating B and T cell 
differentiation/ activation, MMP1, 
TIMP1, TNFA 

GENETIC and TRANSCRIPTS 
Aterido A (2019) 
[56] 

RA (11) 
RA (384 
exploration) 
RA (2706 
validation) 

IFX ADA ETN synovial gene 
coexpression module 
(18 genes) 

Nucleotide 
metabolism 
IL-7 

The gene coexpression module is 
associated with response to ADA 
(EULAR criteria at week 14) 

Cherlin S (2020) 
[60] 

RA (4741) 
RA (90 
replication) 

IFX ETN ADA 
GOL CTZ 

IL18RAP IL-18 Transcript levels in blood correlate with 
ESR changes after treatment 

GENETIC and EPIGENETIC  
Massey J (2018) 
[152] 

RA (1752) 
 

IFX ADA ETN rs7195994 FTO 
rs2540767 
rs11599217 DOCK1 
rs10739537 BRINP1 
rs948138 
MMP20/MMP27 
rs2187874 
ZNF595,ZNF718 

Phagocytosis, 
cell migration, 
 
FoxP3, Treg 
 
MMPs 

Association with response to TNFi 
(delta DAS28-ESR at 3-6 months) 
 

TRANSCRIPT and PROTEIN 
Farutin V (2019) 
[153] 

RA (40) 
RA (36) 

ADA IFX increased innate cell 
signature at baseline in 
Rs, increased adaptive 
cell signature in NRs 

Myeloid cells Downregulation of myeloid and 
platelets genes, upregulation of T and B 
cell markers after TNFi. 
Increased NLR at baseline correlates 
with increased probability of response 
(EULAR criteria at 3 months) 

RA (1962) NLR 

TRANSCRIPTS and EPIGENETICS 
Tao W (2020) 
[154] 

RA (89) ADA, ETN Gene expression and 
DNA methylation 
profiling 

 Random Forest model based on 
differentially expressed genes or DNA 
methylation predicts response to ADA or 
ETN (DAS28 at 6 months) 

GENETIC , EPIGENETICS, TRANSCRIPTS 
Spiliopoulou A 
(2019) [155] 

 

RA (2938) 
 

ADA ETN CTZ CD39 CD40 CD39/CD73 
pathway 
 
T cell 
costimulation 

RA risk score at the CD40 locus, and 
expression score for CD39 on CD4 T cells 
are associated with response to TNFi 
(delta SJC, delta ESR at 6 months) 

GENETIC , TRANSCRIPTS, PROTEINS 
Folkersen L 
(2016) [156] 

RA (185, of 
which 59 
with TNFi) 
 
HC (61) 
 

MTX, TNFi SORBS3, AKAP9, 
CYP4F12, MUSTN, 
CX3CR1, SLC2A3, 
C21orf58,TBC1D8 
sICAM1, CXCL13  
rs6028945 
rs7305646 lncRNA 

ICAM1 
chemokines 

The combined variables explain half of 
the variation in ΔDAS28-CRP in the TNFi 
group. Most of the prediction comes 
from sICAM1, CXCL13, CX3CR1 and 
SLC2A3 
(EULAR criteria, deltaDAS28-CRP at 3 
months) 

TRANSCRIPTS  PROTEINS,  IMMUNE CELLS 
Tasaki S (2018) 
[157] 

RA (45) 
HC (35) 

MTX IFX TCZ whole blood 
transcriptome, serum 
proteome, cell counts 
 

Neutrophils, 
NK 
 
complement 
(C3) 

After treatment: decreased neutrophils, 
increased NK (gene expression and cell 
counts), normalization of complement 
pathway proteins 

 
Abbreviations: ABA, abatacept; ADA, adalimumab; CTZ, certolizumab; ETN, etanercept; GOL, golimumab; 
IFX, infliximab; MTX, methotrexate; DMARD, disease-modifying antirheumatic drugs; TNFi, TNF-inhibitors; 
HC, healthy controls; Rs, responders; NRs, non-responders; NLR, neutrophils/lymphocyte ratio; PLR: 
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platelet/lymphocyte ratio, CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; DAS28, disease 
activity score 28; SJC, swollen joint counts, EULAR, European League Against Rheumatism. 
 

A recent community-based effort has assessed the use of available SNP data to predict clinical 

outcome of TNF inhibition in RA patients, using machine learning algorithms [107]. Despite a significant 

estimate of heritability of the treatment response, none of the proposed models could demonstrate a 

significant contribution of genetic variants to response prediction, over the conventional clinical 

parameters [107]. A useful strategy to improve the power of the predictive models could be the 

combination of different types of biomarkers that better capture the non-genetic components of response 

to therapy. 

In the context of IBD, an association study highlighted polymorphisms in the TLR2 gene that are 

associated with response to anti-TNF therapy. rs3804099 and rs1816702 were associated with beneficial 

response to treatment in CD patients, suggesting that genetically determined increased TLR2 levels were 

associated with beneficial response among patients with CD [50]. However, the rs11938228 and 

rs4696480 polymorphism at the TLR2 locus were associated with nonresponse to treatment in the UC 

patients [50].  Another recent study from Bank  et al. showed that polymorphisms in genes involved in the 

regulation of the NFκB pathway (TLR2, TLR4, and NFKBIA), the TNF-α signaling pathway (TNFRSF1A), and 

other cytokine pathways (NLRP3, IL1RN, IL18, and i) were associated with primary response to anti-TNF 

therapy in IBD patients [49]. 

Another recent genetic association study in two independent large IBD cohorts successfully replicated 2 

variants (rs116724455 in TNFSF4/18, rs2228416 in PLIN2), which may predict anti-TNF response in patients 

with IBD at genome-wide significance. The minor alleles of the two polymorphisms were associated with 

refractory response to anti-TNF agents [158]. 

 

3.3 Epigenetic biomarkers 

Pharmacoepigenetic profiling may also add another layer of complexity to the relation between 

genetics and variations in drug responses [159]. Only a few studies in the literature have explored the 

epigenetic modifications of chromatin before and after anti-TNF treatment in order to identify epigenetic 

biomarkers that may predict treatment responses in patients affected by rheumatic diseases. To date, 

most of the epigenomic studies were designed to identify diagnosis biomarkers or new therapeutic targets, 

and only few were aimed at the identification of biomarkers predictive of anti-TNF outcome. In an attempt 

to identify epigenetic biomarkers that could predict response to biological drugs, including adalimumab, 

in psoriasis and psoriatic arthritis patients, Ovejero-Benito et al. assessed 4 histone modifications (H3 and 

H4 acetylation, H3K4 and H3K27methylation) in PBMC of 39 psoriasis patients using an ELISA technique, 

before and after treatment initiation. Significant changes in histone H3 and H4 acetylation and H3K4 

methylation were observed between psoriasis patients and controls, however, no changes in histone 
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modification were seen upon treatment, except for a decrease in H3K27 methylation in responders 

compared to non-responders [78]. Although this study presents many limitations, including the fact that 

the small number of patients were treated with different biologicals and that a mixture of immune cell 

populations was analyzed, it is one of very few studies that tried to identify epigenetic biomarkers to 

predict treatment outcome in rheumatic diseases, and it set the basis for other similar studies on larger 

cohorts. 

Most of the epigenetic studies performed on SpA have focused on miRNA, very few on DNA 

methylation and even fewer on histone modifications [160]. miRNAs are regulatory non-coding RNA 

molecules; their expression may be modified under pathophysiological stress conditions, disease or 

treatment [161]. In a small exploratory study, miRNA-5196 expression levels in serum were measured 

using real-time PCR. The analysis of samples from 10 RA patients and 13 AS patients, before and after anti-

TNF-α therapy, revealed that changes in miRNA-5196 expression positively correlated with the decrease 

in disease activity scores in patients following anti-TNF-α therapy, suggesting that MiRNA-5196 may be an 

interesting biomarker to assess treatment response [79]. In silico analysis identify the Fra2 transcription 

factor, Matrix Metalloproteinase 15 (MMP-15) and the IL-1 receptor as possible targets of MiRNA-5196. 

The possible biological role of MiRNA-5196 in AS and RA, as well its utility as a clinical biomarker, need 

confirmative replication studies in larger cohorts. 

Baseline serum or whole blood MiRNA signature associated with treatment responses have also 

been explored in RA patients treated with TNF-blockers. Among the putative targets of differentially 

expressed MiRNA were molecules of the IL6 and NF-kB pathways, chemokines, and extracellular matrix 

proteins [112,113]. Although these studies included a larger number of patients (Table 2), validation in a 

replication cohort is still lacking. 

In a recent study, Tao et al. analyzed both gene expression and DNA methylation profiles in peripheral 

blood mononuclear cells, and in CD4+ T cells and monocytes isolated from RA patients before anti-TNF 

treatment [154]. The authors identified a large number of genes differentially expressed (DEG) between 

responders and non-responders at baseline, as well as differentially methylated regions (DMR), although 

the majority of DEG and DMR were not significant after correction for multiple testing, and the overlap of 

DEG with those identified previously was small [162]. Notably, both DEG and DMR were specific not only 

to the cell population studied, but also to the type of anti-TNF treatment (etanercept versus adalimumab). 

Among the DEG identified in this study were transcription factors (such as IRF1, FOXO3 and FOXO4), genes 

of the TNF and JAK/STAT signaling pathways, and IL18R1. The authors applied random forest-based 

algorithms with internal cross-validation, in order to construct predictive models for response to 

adalimumab or etanercept. The models were subsequently tested in a small replication cohort (9 patients) 

and in patients assigned to a second TNFi treatment. The prediction accuracy of the models were different 

for each cell population, treatment and type of data, and the model based on methylation data for 

response to adalimumab reached the highest accuracy of 88% [154]. Although these results require 
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replication in an independent patient cohort, this study underlines the importance of exploring several 

approaches to identify predictive biomarkers, and of analyzing patients treated with different drugs 

separately. 

Spiliopoulos et al. also tested different parameters to construct predictive models for response to TNFi in 

RA patients [155]. The authors took advantage of the new GENOSCORE platform to create genetic scores 

for RA associated loci, for immune cell traits and for the expression or methylation of a set of genes whose 

expression levels were previously associated with treatment response. The genotypic scores for each type 

of intermediate trait was evaluated for its ability to improve predictive models when added to clinical 

parameters. Genotypic scores for RA risk improved response prediction, however explained less than 1% 

of the variance in phenotype, suggesting only a marginal overlap of the genetics of RA disease risk and of 

response to TNFi. The effect was driven mainly by regional score at the CD40 locus. Among the scores for 

immune cell traits, expression levels of CD39 on CD4+ T cells were associated with worse response. The 

inclusion of scores linked to expression (eQTL) quantitative trait loci also resulted in a small improvement 

of the prediction performance of the model, but further addition of methylation QTLs had no effect, 

suggesting that eQTLs and mQTLs provide overlapping information. 

Overall, integrative approaches for prediction of anti-TNF treatment outcome are still poorly explored. A 

proof of concept for this strategy in RA patients was provided by Folkersen et al., who constructed 

prediction models based on selected SNP, transcripts or protein biomarkers which had been associated 

with response to therapy in the literature [156]. The model combining all three different type of 

biomarkers explained 51% of the variation in DAS28-CRP after TNFi therapy, and resulted in an improved 

AUC, compared to the model with protein biomarkers alone [156]. 

 

3.4 Cellular profiling  

Explorative studies to identify cell-based biomarkers that can be used to predict response to TNF 

inhibitors have used flow cytometry-based approaches to identify qualitatively and/or quantitatively 

modified cell populations before and after treatment onset.  

An interplay of several innate and adaptive immune cell populations may be involved in SpA pathogenesis 

[163], and it has been reported that TNFi impact T cell populations in SpA patients [94–97]. All these 

observations suggest that analyzing changes in immune cells populations in SpA patients undergoing 

treatment may be of interest to explore disease mechanisms and therapeutic correlations.  

Ursula Schulte-Wrede et al [93] performed a deep profiling of peripheral leukocytes in 31 AS 

patients under adalimumab or etanercept, using an integrated, multi-parametric flow cytometric 

approach to analyze 50 different surface antigens. The authors then applied an automated cell clustering 

approach (immunoClust) to identify immunophenotypic signatures predictive of response. The baseline 

frequencies of CD8+ NK cell subsets turned out to carry the best predictive power for therapeutic outcome 

in AS patients, with pre-treatment frequency of CD8+ NK cells significantly higher in responders compared 
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with non-responders, in particular for etanercept-treated patients. Although further validation of NK cell 

subsets for clinical prediction of TNF inhibitor outcome is necessary, this study suggests that cellular 

response signatures can be identified in peripheral blood using extensive immunophenotyping approaches 

[93]. 

Increased effector responses after TNFi treatment has also been observed in RA patients (Table 

2). Patients treated with golimumab showed an increase in the CD8+ T cell effector population, 

accompanied by increased responses to viral antigens, suggesting that TNF blockade, while broadly 

suppressing inflammation, does not induce generalized immunosuppression, but rather may “normalize” 

immune responses [34]. In agreement with this concept, anti-TNF treatment did not affect the expression 

of TNF-inducible genes in the site of acute inflammatory challenge (tuberculin injection), while decreasing 

the inducibility of these genes in blood samples [116]. 

Many studies have suggested a role for effector T cell populations such as Th1 and Th17 in SpA 

pathogenesis and disease activity [164]. In a targeted cellular profiling approach, some studies focused on 

specific effector cell subsets, such as Th1, Th17, and Treg cell populations. The evaluation of these cell 

subsets before and after anti-TNF treatment is so far rather inconclusive, perhaps due to the difficulties of 

reliably quantifying small cell populations by immunophenotyping large cohorts of patients.  Xueyi et al 

[95] analysed Th17 and Treg populations in 222 AS patients at baseline and after anti-TNF treatment. At 

baseline, significantly higher Th17 frequencies and lower Treg frequencies were observed relative to 

healthy controls, independently of future response to treatment. Baseline frequencies of Th17 cells, and 

baseline levels of Th17-related cytokines were positively correlated with the BASDAI disease score. After 

anti-TNF therapy Th17 cell frequencies declined significantly only in responders, while increasing in non-

responders. In the same study, the authors found that also serum levels of IL-6, IL-17 and IL-23 significantly 

decreased only in responders [95]. On the contrary, an increase in IL-17+ and in IL-22+ cells after 

adalimumab treatment was reported by Andersen et al. in 30 SpA patients [96]. 

An increase of Th17 frequency in patients’ blood after TNF inhibition was also observed in a study 

on 25 RA patients. This study also reported that higher Th17 frequencies at baseline correlated with worse 

response to anti-TNF therapy, as defined by ultrasonographic measure of synovial thickening [145]. 

Alterations in blood cell counts may occur in inflammatory disorders, and ratios of circulating 

blood cell components can be used to assess inflammatory activity. Neutrophil-lymphocyte ratio (NLR), 

monocyte-lymphocyte ratio (MLR) and platelet-lymphocyte ratio (PLR) have been found to correlate with 

the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels, suggesting their use as 

markers of systemic inflammation for the prognosis of chronic inflammatory diseases [91,165]. Enginar 

and Kacar [91] retrospectively evaluated 68 RA patients and 203 AS patients on anti-TNF medication for at 

least 6 months. NLR and PLR correlated with disease activity in both RA and SpA patients. Other studies 

performed on RA and AS patients have also found similar results [166,167].  
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Despite growing evidence of the association of NLR and PLR with disease activity, the association 

of baseline NLR and PLR with response to treatment is less clear. In UC patients with moderate to severe 

disease, high baseline neutrophil to lymphocyte ratio (NLR), reflecting a high neutrophil count, is an 

indicator of loss of response to infliximab in patients with moderate-to-severe active UC [168]. 

Similarly, Han-Na Lee et al. found that, in 82 RA patients, high baseline NLR and PLR were independently 

associated with a higher risk of non-response to anti-TNF treatment at 12 weeks, but not at 24 weeks 

[147]. 

On the other hand, Farutin et al., in a combined whole blood transcriptome and plasma proteome analysis 

of RA patients, identified the downregulation of myeloid cells and platelet genes as a molecular signature 

of anti-TNF treatment. This signature was present in both responders and non-responders. However, at 

baseline, the top differentially expressed genes between responders and non-responders included 

markers of myeloid cells, which were higher in good responders. The association between higher NLR and 

good response was also confirmed by the analysis of the NLR in a cohort of 1962 RA patients [153].  The 

discrepancies observed in the relationship of the NLR with therapeutic responses may be due not only to 

the limited number of patients in some studies, but also to heterogeneity in the timing of the observation, 

and in the measures of clinical outcome. As cellular ratios are simple to measure, inexpensive, and easily 

accessible parameters, further exploring their significance in response prediction may still be a reasonable 

strategy.  

A particularly informative approach may be the analysis of cell populations in the inflamed tissue, 

when obtaining tissue biopsies is possible. The combined immunohistochemical and gene expression 

analysis of synovial tissue from early RA patients showed that detection of a lympho-myeloid pathotype 

before treatment is significantly associated with disease progression requiring biologics at 12 months from 

the diagnosis [151]. Several synovial gene expression modules, including type I IFN and antiviral modules, 

B cells and dendritic cell modules, correlated with response to treatment [26]. 

In ileal Crohn’s disease patients, a recent single cell analysis of the inflamed ileal tissue indicated that a 

subgroup of patients presented a distinct cellular pattern, called the GIMATS module, which included IgG+ 

plasma cells, inflammatory macrophages and activated dendritic cells, activated T cells, and stroma cells 

(activated fibroblasts, and endothelial cells). The enrichment of this cellular module before anti-TNF 

therapy was predictive of resistance to anti-TNF therapy [169].  

 

3.5 Protein biomarkers

Studies relative to protein biomarkers for TNF inhibitors treatment in SpA have been largely 

focused on candidate proteins selected for their known role in inflammation and/or bone metabolism, 

such as acute phase proteins or cytokines. Many studies have shown that anti TNF treatments are effective 

in modulating acute inflammation proteins [83,170–172]. However, if the baseline serum levels of these 

proteins can be used to prospectively predict response to treatment needs to be confirmed. In addition, 
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these markers may lack specificity and be elevated in other inflammatory processes unrelated to SpA. To 

date, CRP is the most important marker of inflammation in rheumatology and is the only biomarker 

currently used in clinical practice to select SpA patients for treatment and to predict TNFi therapy outcome 

[173]. Using a large dataset of 867 AS patients treated with Etanercept, Baraliakos et al. found that 

categorization of CRP levels prior to treatment initiation is a highly significant predictor of treatment 

outcome at 12 weeks, with higher baseline CRP categories predictive of a greater proportion of 

responders, and decreases from very high to normal CRP levels after treatment start, predictive of the 

future course of TNFi treatment [87]. 

Many studies have shown that anti TNF treatments are effective in modulating acute inflammation 

proteins [83,170–172] and several studies attempted to correlate baseline serum levels of biomarkers in 

TNF naïve patients with treatment outcome [170]. However, at date there is no robust replicated evidence 

that permits to extrapolate the results to all SpA patients, in particular because baseline inflammatory 

protein levels fluctuate among patients and depend on disease activity status. An alternative approach is 

the use of short-term changes in serum biomarkers levels upon anti-TNF treatment to predict long term 

response to treatment. A common conclusion for both approaches is that combining markers yields a 

stronger predictive power than the use of an individual marker [65].   

Wagner et al. tested serum samples collected at baseline, 4 and 14 weeks from 100 active AS patients 

randomized to receive golimumab. Selected inflammatory, bone and cartilage markers were analyzed, and 

profiling of 92 different proteins was performed [81]. The levels of many of these markers was affected by 

TNF inhibition, including a number of acute phase reactants, bone metabolism factors, coagulation factors 

(eg. C3), inflammatory chemokines (eg. RANTES and MIP1b), matrix metalloproteinase pathways (eg. 

MMP3). A robust logistic regression analysis associated baseline biomarkers levels of insulin, leptin, 

apolipoprotein C3, IL-6, osteocalcin, N-terminal propeptide of type 1 collagen (P1NP) with ASAS 20 

response at week 14. The combination of baseline levels of insulin and P1NP was a stronger predictor of 

response than CRP levels [81].  

Leptin, IL-6 and MMP3 are also included in the 12-proteins Multi-Biomarker Disease Activity score, 

or MBDA. The MBDA score was originally aimed to assess disease activity, and was developed through a 

multi-step approach of candidate biomarker prioritization and algorithm development [121]. Of the 130 

putative protein biomarkers tested, 12 were retained in the final multi-biomarker statistical model. Eleven 

of these (tumor necrosis factor receptor I (TNF-RI), IL-6, vascular cell adhesion molecule 1 (VCAM-1), 

epidermal growth factor (EGF), VEGF-A, cartilage glycoprotein 39 (YKL40), matrix metalloproteinase 1 

(MMP1), MMP3, serum amyloid A (SAA), leptin, and resistin) were modelled to predict disease activity 

scores, and then combined with CRP to produce the final MBDA score. These proteins are involved in a 

variety of innate and adaptive immune pathways, in systemic inflammation and bone/cartilage 

metabolism [121]. The MBDA score was significantly correlated with Disease Activity Score 28-CRP (DAS28-
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CRP), as well as with additional measures of joint inflammation and structural progression by 

ultrasonography and radiography [122]. 

The potential of the MBDA score in predicting disease progression has also been extensively analyzed 

(Table 2), with low MBDA score, in particular, showing good negative predictive power for structural 

progression [133]. MBDA scores at baseline have been associated with patients’ response to anti-TNF 

therapy (Table 2). On the other hand, a randomized prospective study did not find a correlation between 

MBDA score and different clinical scores in patients treated with adalimumab or abatacept [125], and the 

contribution of the MBDA score to personalized patient management is still under discussion [174–176]. 

The score may perhaps find its most informative application in the detection of subclinical inflammation 

in patients with low disease activity by conventional parameters, such as patients in DAS28-CRP remission 

[177], or low CRP [124], and may therefore play a complementary role to these measures. 

Calprotectin is another inflammation marker particularly studied in CID such as SpA, RA, and IBD. 

Calprotectin may be a promising candidate biomarker to monitor disease activity, bone damage 

progression and predict response to anti-TNF therapy [178]. This protein is a heterodimeric complex of the 

S100A8 and S100A9 proteins (also called myeloid-related protein MRP8 and MRP14), and is a damage 

associated molecular pattern (DAMP) that triggers the innate immunity receptor TLR4, and the Receptor 

for Advanced Glycation Endproducts (RAGE) [179]. Calprotectin is produced by monocytes and neutrophils 

locally, suggesting it may be a good marker of tissue inflammation. Both serum and faecal calprotectin 

levels are increased in SpA patients compared to healthy controls and are associated with CRP, ESR, and 

disease scores in SpA [85]. Serum calprotectin levels decreased with anti TNF treatment and early changes 

in calprotectin levels could predict patients achieving ASAS40 with an AUC of 0.691 [85]. In a similar study 

on faecal calprotectin, Østgård et al. found that high faecal calprotectin levels accurately identified SpA 

patients with intestinal inflammation. This group of patients was more likely to respond better to 

Adalimumab treatment, as evaluated by changes in the ASDAS. Faecal calprotectin also associated with 

stronger inflammation in the sacroiliac joint, as shown by MRI [84]. Turina et al identified Calprotectin as 

the most promising biomarker of treatment response in SpA and PsA patients, compared to high-sensitive 

CRP (hsCRP), MMP3 and IL-6. With the highest sensitivity to change upon clinical effective treatment, 

calprotectin outperformed hsCRP, suggesting it may be a useful maker of disease in CRP-negative patients 

[83]. Whether baseline concentrations of calprotectin in serum, synovial fluid or faeces can predict 

treatment responses needs to be confirmed by replication studies on larger cohorts and using 

standardized methodologies. 

Also in RA, serum levels of calprotectin correlate well with disease activity, and are potentially a 

predictive marker for response (Table 2). Higher baseline calprotectin levels were found to correlate with 

treatment response [135,136], with relapse after remission [139] and flares after tapering or 

discontinuation of TNF blockers [142]. However, inconsistencies for this marker have also been reported, 
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since some studies failed to find a correlation with clinical response [138], or obtained different results in 

different cohorts [140]. 

Matrix Metalloproteinases (MMPs), and MMP3 in particular, are reported biomarkers of synovial 

inflammation and cartilage turnover in inflammatory joint diseases, such as SpA and RA [180]. MMP3 

baseline serum levels are elevated in SpA patients compared to healthy controls and correlate with disease 

activity [181–183]. In the Turina et al study [83], MMP3 showed a statistically significant decrease after 

two weeks of anti-TNF treatment, however, the effects of treatment were modest and less consistent 

across different subtypes of SpA. The impact of TNF inhibition on MMP3 levels is so far inconclusive with 

opposing results from different studies [184], raising the question of whether MMP3 can be used as a 

predictive biomarker for anti-TNF response. Some studies found a good predictive value for either baseline 

serum levels and/or reduction over time of MMP3 in SpA and PsA patients under anti-TNF [185,186], 

Arends et al. [80], however, showed that changes in MMP-3 levels after treatment correlated with disease 

activity, but baseline MMP3 levels had no predictive value for treatment response.  

 Tissue biomarkers are OSM (encoding the cytokine oncostatin-M) and its receptor OSMR, which 

were overexpressed in the intestinal mucosa of patients with active IBD (5 different cohorts, 227 patients) 

[187]. Neither OSM nor OSMR expression was correlated with standard clinical parameters, including CRP. 

However, OSM and OSMR expression was increased in patients with IBD who required surgery. High 

baseline OSM expression in the intestinal mucosa was reproducibly associated with resistance to anti-TNF 

therapy in IBD [187]. Two additional studies found that high plasma OSM was associated with non-

response to anti-TNF treatment in CD patients [188,189]. Oncostatin M is a cytokine produced by T cells 

and innate immune cells, including monocytes and neutrophils. The OSM receptor is expressed on non-

hematopoietic cells, such epithelial cells, fibroblasts and endothelial cells, and the OSM/OSMR axis may 

therefore be crucial for the cross-talk between stroma and immune cells [190]. 

 

4. Conclusions 

The past years have been marked by a major increase of our understanding of the cellular and 

molecular mechanisms of TNF-blocker action in patients affected by chronic inflammatory diseases. 

However, despite substantial efforts, a validated biomarker predicting therapeutic responses of patients 

to TNFi has not yet been identified.  

There are several reasons that may explain our limited success to identify validated biomarkers 

that can inform treatment choices. Many studies reported in the literature have been underpowered and 

patients have not been appropriately stratified. An important issue that is more difficult to tackle is that 

currently used clinical outcome measures, in particular for SpA, extensively rely on self-reporting. It will 

be of critical importance to move from self-reporting to objective and quantifiable outcome measures. 

Furthermore, it is now well appreciated that the biology of treatment failures and development of 
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resistance to treatment is highly complex, as it is influenced by multiple patient-intrinsic, drug-specific and 

environmental parameters. To account for this complexity, it may be necessary to develop multi-

dimensional biomarkers. However, the general use of biomarkers in the clinics requires that they rely on 

robust and inexpensive, non-invasive procedures. 

Several biomarker candidates to predict treatment responses have emerged recently, in particular 

OSM and IL7R, whose expression is negatively correlated with response to anti-TNF therapy in IBD. Further 

studies are needed to validate these candidates, and to test their potential relevance for other diseases. 
 
5. Expert Opinion 

The introduction of biologic therapies, such as TNF-blockers, has been a major breakthrough in the 

treatment of CID. However, these therapies are effective only in a sub-population of patients, and it is 

currently not possible to predict which patients will not respond to the treatment. In clinical practice, 

patients non-responsive to a TNF-blocker are treated with a different TNF inhibitor until an effective 

therapeutic agent is identified. This procedure is expensive and may take a long time, during which the 

patient is not appropriately treated and is exposed to side effects without clinical benefit. The negative 

impact of unsuccessful therapy on patients’ quality of life, adds to the negative impact on society, due to 

the associated high costs of treatment. 

A reason for the lack of a “personalized” approach to treatment is the insufficient understanding of what 

determines the individual predisposition to disease and the mechanisms associated with the response to 

a specific therapy. In the past years there have been multiple efforts to identify biomarkers that predict 

response to biological therapies in SpA, RA, IBD and other CID. The results have been, however, rather 

limited.  Some of these biomarkers appear to be highly promising (for example Oncostatin M, in the case 

of IBD), however, none has been validated yet as a tool to inform treatment choices. The search for 

biomarkers that correlate with disease activity has been more successful: the Endoscopic Healing Index 

(EHI) Score has been developed commercially as a tool to monitor disease activity in Crohn’s disease 

patients, and the MBDA blood test is commercialized as a biomarker for disease activity in RA, although 

their use is still considered investigational. These biomarkers have also been proposed to predict 

treatment outcome, but this application remains to be validated.  

Several hurdles to the prediction of treatment responses have emerged, such as the limited size and the 

heterogeneity of cohorts, in terms of patients’ characteristics and treatment (for example, patients treated 

with different anti-TNF compounds are often analyzed together). There is also a lack of adequate 

replication studies in different patient populations. In addition, a key issue is the suitability of the current 

clinical outcome measures, in particular for SpA. The BASDAI score is exclusively based on subjective 

parameters of self-reporting, and the ASDAS, is a composite of self-reporting and CRP levels. In the case 

of RA, the DAS28 may represent a more robust outcome measure, since it combines the subjective 
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measure of tender joint counts (TJC) with the objective observation of swollen joints (SJC). However, even 

the DAS28 may not constitute a reliable end-point measure [45]. In addition, these scores are usually 

determined at single time points: integration of longitudinal monitoring would be needed to smoothen 

score fluctuations.  

Genetic biomarkers are attractive, because they are robust, do not vary and are easily measured. However, 

none of the proposed candidates have been validated to date: the identification may be hindered by the 

small effect size of common SNPs, which would require studies on very large cohorts to determine an 

extended panel of SNPs that, combined, have an impact on treatment outcome. Additional complications 

for the use of SNPs as response biomarkers are the effects of population ancestry, and the fact that they 

do not address the non-genetic contribution to disease and response to therapy. 

Blood biomarkers are ideal for clinical applications, for the ease of sampling. This is especially true for 

pathologies (such as axSpA) where routine access to diseased tissues is difficult. To date, no robust blood 

response biomarker has been identified in SpA and in other CID, possibly because of the fluctuation of 

biomarker levels with time, and the fact that they may not quantitatively reflect pathological processes in 

tissue. 

Immune biomarkers are also strongly impacted by many variables such as age and sex, or environmental 

factors (for example smoking or CMV infection), introducing another layer of variability that has to be 

taken into account in the study design, by providing adequate patient stratification. 

For the years to come, a key issue will be the constitution of large and highly annotated longitudinal 

cohorts. These resources are now widely available in the cancer field (examples are The Cancer Genome 

Atlas, TCGA, and the International Cancer Genome Consortium, ICGC). Standardization of procedures for 

the collection and management of demographic and clinical data will facilitate comparison of biomarker 

studies performed in different clinical centers. In addition, the importance of the application of 

standardized and robust methodology for sample analysis cannot be overstated.  

Finally, the combination of different biomarkers that capture the biological complexity of the disease and 

of the effect of treatment may be necessary to successfully stratify patients to the most appropriate 

treatment. In this respect, we believe that the combination of multi-dimensional biomarkers and the 

development of mathematical models (such as deep learning tools) to capture all the 

biological/environmental influences on treatment outcomes will be an important driver of progress in this 

area. Finally, it will be important to move towards “objective” outcome measures (including imaging 

technology) and molecular biomarkers to develop objective and reliable criteria to help clinical decision 

making.   
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Figure legends 

Figure 1. Design of gene modules for Quantitative Set Analysis for Gene Expression (QuSAGE). 

The design the 45 gene modules was based on the deconvolution of cell signaling pathways. The NF-kB 

signaling pathway was decomposed to create modules dedicated to the genes coding for transmembrane 

proteins forming the receptors and the genes encoding their ligands. Other modules group intermediate 

intracellular kinases (NF-kB regulators), which, once activated, phosphorylate IκBα (inhibitor of NF-κB α-

subunit), and NF-kB inhibitors and transcription factors.  

Figure 2. Analysis of signaling pathways reveals multiple mechanisms of TNF-blocker action in SpA. 

Shown are the effects of anti-TNF therapy on the “pathway activity” of 45 gene modules generated from 

594 immune-related genes. Peripheral blood samples were obtained from 17 axSpA patients before (D0) 

and 7 days (D7) after the first injection of a TNF-blocker. Whole-blood cultures were stimulated with 

Candida albicans and RNA was extracted after a 22-hour culture. Gene expression was measured using 

Immunology_v2 nCounter panel (Nanostring). For each gene module, the mean activity fold-change and 

95% confidence interval are plotted and color-coded according to their FDR-corrected P-values (means 

compared to fold-change zero). Confidence intervals overlapping the horizontal dotted line indicate 

statistically significant increased or decreased module activity at D7 as compared to D0. 

Figure 3. Detailed gene activity for 3 representative modules.  

Shown is the “gene activity” for individual genes from 3 modules shown in Fig. 2. A, Cytotoxic molecules; 

B, M2 macrophages; and C, Pro-inflammatory molecules. Whole-blood cultures were stimulated with 

Candida albicans as in Fig. 2. The horizontal dashed blue line and the grey band indicate the mean 

differential expression of all genes in the module at D7 versus D0, and the 95% confidence interval. 

Figure 4. A gene expression signature associated with therapeutic responses to anti-TNF therapy in 

axSpA.  

Shown is a heat map representation of genes differentially expressed between axSpA patients with a major 

response to anti-TNF therapy (delta ASDAS ≥ 2, green squares) and non-responders (delta ASDAS < 1.1, 

red squares) in whole-blood cultures stimulated with LPS or SEB before initiation of therapy. The heatmap 

shows the levels of differentially secreted genes (red indicates higher and green lower levels of protein 

secretion, LIMMA analysis, adjusted p-value < 0.05). Gene-stimulus combinations were ranked by 

decreasing fold-change. Expression levels and fold-change values of the 58 gene-stimulus combinations 

(corresponding to 55 genes) that are the most differentially expressed between responders and non-

responders are reported in [28]. 
  



 29 

Funding 

I.M. is supported by the Pasteur - Paris University (PPU) International PhD Program. Work in the authors’ 

laboratory is supported by grants from Institut Pasteur, FOREUM Foundation for Research in 

Rheumatology, MSD Avenir (Project iCARE-SpA), and a Sanofi Innovation Award Europe. 

Declaration of interest 

The authors declare no competing financial interest. 

ORCID 

Ikram Mezghiche: https://orcid.org/0000-0001-7730-3251 

Hanane Yahia-Cherbal: https://orcid.org/0000-0002-6288-5209 

Lars Rogge: http://orcid.org/0000-0003-1262-9204 

Elisabetta Bianchi: https://orcid.org/0000-0001-6612-8881 

 

References 
[1]  El-Gabalawy H, Guenther LC, Bernstein CN. Epidemiology of immune-mediated 

inflammatory diseases: incidence, prevalence, natural history, and comorbidities. J 
Rheumatol Suppl. 2–1085 (2010). 

[2]  Jacobs P, Bissonnette R, Guenther LC. Socioeconomic burden of immune-mediated 
inflammatory diseases--focusing on work productivity and disability. J Rheumatol Suppl. 
55–6188 (2011). 

[3]  Braun J, Listing J, Sieper J. Reply. Arthritis Rheum. 4049–405052 (2005). 

[4]  Taurog JD, Chhabra A, Colbert RA. Ankylosing Spondylitis and Axial Spondyloarthritis. 
N Engl J Med. 2563–2574374 (2016). 

[5]  Sieper J, Braun J, Dougados M, et al. Axial spondyloarthritis. Nat Rev Primer. 150131 
(2015). 

[6]  Ermann J, Rao DA, Teslovich NC, et al. Immune cell profiling to guide therapeutic 
decisions in rheumatic diseases. Nat Rev Rheumatol. 541–55111 (2015). 

[7]  Reveille JD. Biomarkers for diagnosis, monitoring of progression, and treatment 
responses in ankylosing spondylitis and axial spondyloarthritis. Clin Rheumatol. 1009–
101834 (2015). 

[8]  Heiberg MS, Koldingsnes W, Mikkelsen K, et al. The comparative one-year performance 
of anti-tumor necrosis factor alpha drugs in patients with rheumatoid arthritis, psoriatic 
arthritis, and ankylosing spondylitis: results from a longitudinal, observational, 
multicenter study. Arthritis Rheum. 234–24059 (2008). 



 30 

[9]  Baeten D, Sieper J, Braun J, et al. Secukinumab, an Interleukin-17A Inhibitor, in 
Ankylosing Spondylitis. N Engl J Med. 2534–2548373 (2015). 

[10]  Elliott MJ, Maini RN, Feldmann M, et al. Treatment of rheumatoid arthritis with chimeric 
monoclonal antibodies to tumor necrosis factor alpha. Arthritis Rheum. 1681–169036 
(1993). 

[11]  Feldmann M, Maini RN. Anti-TNF alpha therapy of rheumatoid arthritis: what have we 
learned? Annu Rev Immunol. 163–19619 (2001). 

[12]  Present DH, Rutgeerts P, Targan S, et al. Infliximab for the treatment of fistulas in 
patients with Crohn’s disease. N Engl J Med. 1999/05/06. 1398–1405340 (1999). 

[13]  van Dullemen HM, van Deventer SJ, Hommes DW, et al. Treatment of Crohn’s disease 
with anti-tumor necrosis factor chimeric monoclonal antibody (cA2). Gastroenterology. 
1995/07/01. 129–135109 (1995). 

[14]  Brandt J, Haibel H, Cornely D, et al. Successful treatment of active ankylosing 
spondylitis with the anti-tumor necrosis factor alpha monoclonal antibody infliximab. 
Arthritis Rheum. 1346–135243 (2000). 

[15]  Menegatti S, Bianchi E, Rogge L. Anti-TNF Therapy in Spondyloarthritis and Related 
Diseases, Impact on the Immune System and Prediction of Treatment Responses. Front 
Immunol. 38210 (2019). 

[16]  Chaudhari U, Romano P, Mulcahy LD, et al. Efficacy and safety of infliximab 
monotherapy for plaque-type psoriasis: a randomised trial. Lancet. 2001/06/19. 1842–
1847357 (2001). 

[17]  Mease PJ, Goffe BS, Metz J, et al. Etanercept in the treatment of psoriatic arthritis and 
psoriasis: a randomised trial. Lancet. 2000/09/06. 385–390356 (2000). 

[18]  Charles P, Elliott MJ, Davis D, et al. Regulation of cytokines, cytokine inhibitors, and 
acute-phase proteins following anti-TNF-alpha therapy in rheumatoid arthritis. J 
Immunol. 1521–1528163 (1999). 

[19]  Taylor PC, Peters AM, Paleolog E, et al. Reduction of chemokine levels and leukocyte 
traffic to joints by tumor necrosis factor alpha blockade in patients with rheumatoid 
arthritis. Arthritis Rheum. 2000/01/22. 38–4743 (2000). 

[20]  Paleolog EM, Young S, Stark AC, et al. Modulation of angiogenic vascular endothelial 
growth factor by tumor necrosis factor alpha and interleukin-1 in rheumatoid arthritis. 
Arthritis Rheum. 1998/07/15. 1258–126541 (1998). 

[21]  Tracey D, Klareskog L, Sasso EH, et al. Tumor necrosis factor antagonist mechanisms of 
action: a comprehensive review. Pharmacol Ther. 244–279117 (2008). 



 31 

[22]  Wang XB, Ellis JJ, Pennisi DJ, et al. Transcriptome analysis of ankylosing spondylitis 
patients before and after TNF-alpha inhibitor therapy reveals the pathways affected. 
Genes Immun. 184–19018 (2017). 

[23]  Xu L, Sun Q, Jiang S, et al. Changes in gene expression profiles of the hip joint ligament 
of patients with ankylosing spondylitis revealed by DNA chip. Clin Rheumatol. 1479–
149131 (2012). 

[24]  Goedecke V, Crane AM, Jaakkola E, et al. Interleukin 10 polymorphisms in ankylosing 
spondylitis. Genes Immun. 74–764 (2003). 

[25]  Tsukazaki H, Kaito T. The Role of the IL-23/IL-17 Pathway in the Pathogenesis of 
Spondyloarthritis. Int J Mol Sci. 640121 (2020). 

[26]  Lewis MJ, Barnes MR, Blighe K, et al. Molecular Portraits of Early Rheumatoid Arthritis 
Identify Clinical and Treatment Response Phenotypes. Cell Rep. 2455-2470.e528 (2019). 

[27]  Duffy D, Rouilly V, Libri V, et al. Functional Analysis via Standardized Whole-Blood 
Stimulation Systems Defines the Boundaries of a Healthy Immune Response to Complex 
Stimuli. Immunity. 436–45040 (2014). 

[28]  Menegatti S, Guillemot V, Latis E, et al. Immune response profiling of patients with 
spondyloarthritis reveals signalling networks mediating TNF-blocker function in vivo. 
Ann Rheum Dis. (2020). 

** The study uses gene pathway analysis to explore the impact of anti-TNF therapy on stimulated 
immune responses in SpA. Differential expression of genes in responders versus non-responders 
before treatment suggests this approach may identify signaling pathways associated with 
response to therapy. 

 
[29]  Nielsen T, Wallden B, Schaper C, et al. Analytical validation of the PAM50-based 

Prosigna Breast Cancer Prognostic Gene Signature Assay and nCounter Analysis System 
using formalin-fixed paraffin-embedded breast tumor specimens. BMC Cancer. 17714 
(2014). 

[30]  Yaari G, Bolen CR, Thakar J, et al. Quantitative set analysis for gene expression: a 
method to quantify gene set differential expression including gene-gene correlations. 
Nucleic Acids Res. e17041 (2013). 

[31]  Banchereau R, Hong S, Cantarel B, et al. Personalized Immunomonitoring Uncovers 
Molecular Networks that Stratify Lupus Patients. Cell. 2016/06/04. 1548–1550165 
(2016). 

[32]  Latis E, Michonneau D, Leloup C, et al. Cellular and molecular profiling of T-cell subsets 
at the onset of human acute GVHD. Blood Adv. 2020/08/21. 3927–39424 (2020). 

[33]  Liberzon A, Birger C, Thorvaldsdottir H, et al. The Molecular Signatures Database 
(MSigDB) hallmark gene set collection. Cell Syst. 417–4251 (2015). 



 32 

[34]  Khanniche A, Zhou L, Jiang B, et al. Restored and Enhanced Memory T Cell Immunity 
in Rheumatoid Arthritis After TNFα Blocker Treatment. Front Immunol. 88710 (2019). 

[35]  Schett G, Neurath MF. Resolution of chronic inflammatory disease: universal and tissue-
specific concepts. Nat Commun. 32619 (2018). 

[36]  Udalova IA, Mantovani A, Feldmann M. Macrophage heterogeneity in the context of 
rheumatoid arthritis. Nat Rev Rheumatol. 472–48512 (2016). 

[37]  Bongartz T, Sutton AJ, Sweeting MJ, et al. Anti-TNF antibody therapy in rheumatoid 
arthritis and the risk of serious infections and malignancies: systematic review and meta-
analysis of rare harmful effects in randomized controlled trials. JAMA. 2006/05/18. 
2275–2285295 (2006). 

[38]  Keane J, Gershon S, Wise RP, et al. Tuberculosis associated with infliximab, a tumor 
necrosis factor alpha-neutralizing agent. N Engl J Med. 1098–1104345 (2001). 

[39]  Tubach F, Salmon D, Ravaud P, et al. Risk of tuberculosis is higher with anti-tumor 
necrosis factor monoclonal antibody therapy than with soluble tumor necrosis factor 
receptor therapy: The three-year prospective French Research Axed on Tolerance of 
Biotherapies registry. Arthritis Rheum. 2009/07/01. 1884–189460 (2009). 

[40]  Marino S, Cilfone NA, Mattila JT, et al. Macrophage polarization drives granuloma 
outcome during Mycobacterium tuberculosis infection. Infect Immun. 2014/11/05. 324–
33883 (2015). 

[41]  Sieper J, Braun J, Kay J, et al. Sarilumab for the treatment of ankylosing spondylitis: 
results of a Phase II, randomised, double-blind, placebo-controlled study (ALIGN). Ann 
Rheum Dis. 1051–105774 (2015). 

[42]  Schett G, Lories RJ, D’Agostino MA, et al. Enthesitis: from pathophysiology to 
treatment. Nat Rev Rheumatol. 2017/11/22. 731–74113 (2017). 

[43]  Boniface K, Bak-Jensen KS, Li Y, et al. Prostaglandin E2 regulates Th17 cell 
differentiation and function through cyclic AMP and EP2/EP4 receptor signaling. J Exp 
Med. 2009/03/11. 535–548206 (2009). 

[44]  Atreya R, Neurath MF, Siegmund B. Personalizing Treatment in IBD: Hype or Reality in 
2020? Can We Predict Response to Anti-TNF? Front Med Lausanne. 2020/09/29. 5177 
(2020). 

[45]  Sutcliffe M, Radley G, Barton A. Personalized medicine in rheumatic diseases: how close 
are we to being able to use genetic biomarkers to predict response to TNF inhibitors? 
Expert Rev Clin Immunol. 389–39616 (2020). 

[46]  Machado P, Landewe R, Lie E, et al. Ankylosing Spondylitis Disease Activity Score 
(ASDAS): defining cut-off values for disease activity states and improvement scores. 
Ann Rheum Dis. 47–5370 (2011). 



 33 

[47]  Machado P, Navarro-Compan V, Landewe R, et al. Calculating the ankylosing 
spondylitis disease activity score if the conventional c-reactive protein level is below the 
limit of detection or if high-sensitivity c-reactive protein is used: an analysis in the 
DESIR cohort. Arthritis Rheumatol. 408–41367 (2015). 

[48]  Swanson KV, Deng M, Ting JP-Y. The NLRP3 inflammasome: molecular activation and 
regulation to therapeutics. Nat Rev Immunol. 477–48919 (2019). 

[49]  Bank S, Julsgaard M, Abed OK, et al. Polymorphisms in the NFkB, TNF-alpha, IL-1beta, 
and IL-18 pathways are associated with response to anti-TNF therapy in Danish patients 
with inflammatory bowel disease. Aliment Pharmacol Ther. 890–90349 (2019). 

[50]  Bank S, Andersen PS, Burisch J, et al. Associations between functional polymorphisms in 
the NFκB signaling pathway and response to anti-TNF treatment in Danish patients with 
inflammatory bowel disease. Pharmacogenomics J. 526–53414 (2014). 

[51]  Dahlén R, Magnusson MK, Bajor A, et al. Global mucosal and serum cytokine profile in 
patients with ulcerative colitis undergoing anti-TNF therapy. Scand J Gastroenterol. 
1118–112650 (2015). 

[52]  Rismo R, Olsen T, Cui G, et al. Mucosal cytokine gene expression profiles as biomarkers 
of response to infliximab in ulcerative colitis. Scand J Gastroenterol. 538–54747 (2012). 

[53]  Belarif L, Danger R, Kermarrec L, et al. IL-7 receptor influences anti-TNF 
responsiveness and T cell gut homing in inflammatory bowel disease. J Clin Invest. 
1910–1925129 (2019). 

** Overexpression of IL-7R signaling pathway is associated with failure of anti-TNF treatment for 
CD and UC and this study point to IL-7R as a relevant therapeutic target and potential biomarker 
in clinical IBD detection and treatment. 

 
 
[54]  D’Haens G, Kelly O, Battat R, et al. Development and Validation of a Test to Monitor 

Endoscopic Activity in Patients With Crohn’s Disease Based on Serum Levels of 
Proteins. Gastroenterology. 515-526.e10158 (2020). 

[55]  Xie X, Li F, Li S, et al. Application of omics in predicting anti-TNF efficacy in 
rheumatoid arthritis. Clin Rheumatol. 13–2337 (2018). 

[56]  Aterido A, Cañete JD, Tornero J, et al. A Combined Transcriptomic and Genomic 
Analysis Identifies a Gene Signature Associated With the Response to Anti-TNF Therapy 
in Rheumatoid Arthritis. Front Immunol. 145910 (2019). 

[57]  Barberà-Cremades M, Baroja-Mazo A, Pelegrín P. Purinergic signaling during 
macrophage differentiation results in M2 alternative activated macrophages. J Leukoc 
Biol. 289–29999 (2016). 



 34 

[58]  Bours MJL, Swennen ELR, Di Virgilio F, et al. Adenosine 5′-triphosphate and adenosine 
as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther. 358–
404112 (2006). 

[59]  Barton A, Pitzalis C. Stratified medicine in rheumatoid arthritis-the MATURA 
programme. Rheumatol Oxf Engl. 1247–125056 (2017). 

[60]  Cherlin S, Lewis MJ, Plant D, et al. Investigation of genetically regulated gene expression 
and response to treatment in rheumatoid arthritis highlights an association between 
IL18RAP expression and treatment response. Ann Rheum Dis. 1446–145279 (2020). 

[61]  Volin MV, Koch AE. Interleukin-18: a mediator of inflammation and angiogenesis in 
rheumatoid arthritis. J Interferon Cytokine Res Off J Int Soc Interferon Cytokine Res. 
745–75131 (2011). 

[62]  Arijs I, Quintens R, Van Lommel L, et al. Predictive value of epithelial gene expression 
profiles for response to infliximab in Crohn’s disease. Inflamm Bowel Dis. 2090–209816 
(2010). 

[63]  Medrano LM, Taxonera C, González-Artacho C, et al. Response to Infliximab in Crohn’s 
Disease: Genetic Analysis Supporting Expression Profile. Mediators Inflamm. 
3182072015 (2015). 

[64]  Arijs I, Li K, Toedter G, et al. Mucosal gene signatures to predict response to infliximab 
in patients with ulcerative colitis. Gut. 1612–161958 (2009). 

[65]  Brown MA, Li Z, Cao K-AL. Biomarker development for axial spondyloarthritis. Nat 
Rev Rheumatol. 448–46316 (2020). 

[66]  Gibson G. On the utilization of polygenic risk scores for therapeutic targeting. Barsh GS, 
editor. PLOS Genet. e100806015 (2019). 

[67]  Janiaud P, Serghiou S, Ioannidis JPA. New clinical trial designs in the era of precision 
medicine: An overview of definitions, strengths, weaknesses, and current use in 
oncology. Cancer Treat Rev. 20–3073 (2019). 

[68]  Jurgensmeier JM, Eder JP, Herbst RS. New Strategies in Personalized Medicine for Solid 
Tumors: Molecular Markers and Clinical Trial Designs. Clin Cancer Res. 4425–443520 
(2014). 

[69]  Wray NR, Yang J, Hayes BJ, et al. Pitfalls of predicting complex traits from SNPs. Nat 
Rev Genet. 507–51514 (2013). 

[70]  Frazer KA, Murray SS, Schork NJ, et al. Human genetic variation and its contribution to 
complex traits. Nat Rev Genet. 241–25110 (2009). 



 35 

[71]  Seitz M, Wirthmuller U, Moller B, et al. The -308 tumour necrosis factor- gene 
polymorphism predicts therapeutic response to TNF -blockers in rheumatoid arthritis and 
spondyloarthritis patients. Rheumatology. 93–9646 (2007). 

[72]  Liu J, Dong Z, Zhu Q, et al. TNF-α Promoter Polymorphisms Predict the Response to 
Etanercept More Powerfully than that to Infliximab/Adalimumab in Spondyloarthritis. 
Sci Rep. 322026 (2016). 

[73]  Fabris M, Quartuccio L, Fabro C, et al. The -308 TNFα and the -174 IL-6 promoter 
polymorphisms associate with effective anti-TNFα treatment in seronegative 
spondyloarthritis. Pharmacogenomics J. 238–24216 (2016). 

[74]  Aita A, Basso D, Ramonda R, et al. Genetics in TNF-TNFR pathway: A complex 
network causing spondyloarthritis and conditioning response to anti-TNFα therapy. 
Chang Y-J, editor. PLOS ONE. e019469313 (2018). 

[75]  Murdaca G, Gulli R, Spanò F, et al. TNF-α Gene Polymorphisms: Association with 
Disease Susceptibility and Response to Anti-TNF-α Treatment in Psoriatic Arthritis. J 
Invest Dermatol. 2503–2509134 (2014). 

[76]  Liu J, Zhu Q, Han J, et al. IgG Galactosylation status combined with MYOM2-rs2294066 
precisely predicts anti-TNF response in ankylosing spondylitis. Mol Med [Internet]. 25 
(2019) [cited (2020  Dec  14)]. Available from: 
https://molmed.biomedcentral.com/articles/10.1186/s10020-019-0093-2. 

[77]  Borda JP y L, Campos J, Sanz J, et al. Predictive clinical-genetic model of long-term non-
response to tumor necrosis factor-alpha inhibitor therapy in spondyloarthritis. Int J 
Rheum Dis. 1529–153722 (2019). 

[78]  Ovejero-Benito MC, Reolid A, Sánchez-Jiménez P, et al. Histone modifications 
associated with biological drug response in moderate-to-severe psoriasis. Exp Dermatol. 
1361–137127 (2018). 

[79]  Ciechomska M, Bonek K, Merdas M, et al. Changes in MiRNA-5196 Expression as a 
Potential Biomarker of Anti-TNF-α Therapy in Rheumatoid Arthritis and Ankylosing 
Spondylitis Patients. Arch Immunol Ther Exp (Warsz). 389–39766 (2018). 

[80]  Arends S, van der Veer E, Groen H, et al. Serum MMP-3 level as a biomarker for 
monitoring and predicting response to etanercept treatment in ankylosing spondylitis. J 
Rheumatol. 1644–165038 (2011). 

[81]  Wagner C, Visvanathan S, Braun J, et al. Serum markers associated with clinical 
improvement in patients with ankylosing spondylitis treated with golimumab. Ann 
Rheum Dis. 674–68071 (2012). 

[82]  Ademowo OS, Hernandez B, Collins E, et al. Discovery and confirmation of a protein 
biomarker panel with potential to predict response to biological therapy in psoriatic 
arthritis. Ann Rheum Dis. 234–24175 (2016). 



 36 

[83]  Turina MC, Yeremenko N, Paramarta JE, et al. Calprotectin (S100A8/9) as serum 
biomarker for clinical response in proof-of-concept trials in axial and peripheral 
spondyloarthritis. Arthritis Res Ther. 41316 (2014). 

[84]  Østgård R, Deleuran B, Dam M, et al. Faecal calprotectin detects subclinical bowel 
inflammation and may predict treatment response in spondyloarthritis. Scand J 
Rheumatol. 48–5547 (2018). 

[85]  Hu H, Du F, Zhang S, et al. Serum calprotectin correlates with risk and disease severity of 
ankylosing spondylitis and its change during first month might predict favorable response 
to treatment. Mod Rheumatol. 836–84229 (2019). 

[86]  Jarlborg M, Courvoisier DS, Lamacchia C, et al. Serum calprotectin: a promising 
biomarker in rheumatoid arthritis and axial spondyloarthritis. Arthritis Res Ther. 10522 
(2020). 

[87]  Baraliakos X, Szumski A, Koenig AS, et al. The role of C-reactive protein as a predictor 
of treatment response in patients with ankylosing spondylitis. Semin Arthritis Rheum. 
997–100448 (2019). 

[88]  Hokstad I, Deyab G, Wang Fagerland M, et al. Tumor necrosis factor inhibitors are 
associated with reduced complement activation in spondylarthropathies: An observational 
study. Miyabe Y, editor. PLOS ONE. e022007914 (2019). 

[89]  Chimenti MS, Perricone C, Graceffa D, et al. Complement system in psoriatic arthritis: a 
useful marker in response prediction and monitoring of anti-TNF treatment. Clin Exp 
Rheumatol. 23–3030 (2012). 

[90]  Dolcino M, Tinazzi E, Pelosi A, et al. Gene Expression Analysis before and after 
Treatment with Adalimumab in Patients with Ankylosing Spondylitis Identifies 
Molecular Pathways Associated with Response to Therapy. Genes. 1278 (2017). 

[91]  Enginar AU, Kacar C. Neutrophil-lymphocyte and platelet-lymphocyte rate and their 
seasonal differences in ankylosing spondylitis and rheumatoid arthritis patients using 
anti-TNF medication. Bratisl Med J. 586–592120 (2019). 

[92]  Miyagawa I, Nakayamada S, Nakano K, et al. Precision medicine using different 
biological DMARDs based on characteristic phenotypes of peripheral T helper cells in 
psoriatic arthritis. Rheumatology. 336–34458 (2019). 

[93]  Schulte-Wrede U, Sörensen T, Grün JR, et al. An explorative study on deep profiling of 
peripheral leukocytes to identify predictors for responsiveness to anti-tumour necrosis 
factor alpha therapies in ankylosing spondylitis: natural killer cells in focus. Arthritis Res 
Ther [Internet]. 20 (2018) [cited (2020  Dec  14)]. Available from: https://arthritis-
research.biomedcentral.com/articles/10.1186/s13075-018-1692-y. 

[94]  Dulic S, Vasarhelyi Z, Bajnok A, et al. The Impact of Anti-TNF Therapy on CD4+ and 
CD8+ Cell Subsets in Ankylosing Spondylitis. Pathobiology. 201–21085 (2018). 



 37 

[95]  Xueyi L, Lina C, Zhenbiao W, et al. Levels of Circulating Th17 Cells and Regulatory T 
Cells in Ankylosing Spondylitis Patients with an Inadequate Response to Anti−TNF-α 
Therapy. J Clin Immunol. 151–16133 (2013). 

[96]  Andersen T, Østgård RD, Aspari MP, et al. Anti-tumor necrosis factor treatment increases 
both the Th17 and Th22 T helper subsets in spondyloarthritis. APMIS. 789–796127 
(2019). 

[97]  Yang M, Lv Q, Wei Q, et al. TNF-α inhibitor therapy can improve the immune imbalance 
of CD4+ T cells and negative regulatory cells but not CD8+ T cells in ankylosing 
spondylitis. Arthritis Res Ther. 14922 (2020). 

[98]  Pavy S, Toonen EJM, Miceli-Richard C, et al. Tumour necrosis factor alpha -308G->A 
polymorphism is not associated with response to TNFalpha blockers in Caucasian 
patients with rheumatoid arthritis: systematic review and meta-analysis. Ann Rheum Dis. 
1022–102869 (2010). 

[99]  Zeng Z, Duan Z, Zhang T, et al. Association between tumor necrosis factor-α (TNF-α) 
promoter -308 G/A and response to TNF-α blockers in rheumatoid arthritis: a meta-
analysis. Mod Rheumatol. 489–49523 (2013). 

[100]  Cui J, Stahl EA, Saevarsdottir S, et al. Genome-wide association study and gene 
expression analysis identifies CD84 as a predictor of response to etanercept therapy in 
rheumatoid arthritis. PLoS Genet. e10033949 (2013). 

[101]  Swierkot J, Bogunia-Kubik K, Nowak B, et al. Analysis of associations between 
polymorphisms within genes coding for tumour necrosis factor (TNF)-alpha and TNF 
receptors and responsiveness to TNF-alpha blockers in patients with rheumatoid arthritis. 
Joint Bone Spine. 94–9982 (2015). 

[102]  Ferreiro-Iglesias A, Montes A, Perez-Pampin E, et al. Replication of PTPRC as genetic 
biomarker of response to TNF inhibitors in patients with rheumatoid arthritis. 
Pharmacogenomics J. 137–14016 (2016). 

[103]  Honne K, Hallgrímsdóttir I, Wu C, et al. A longitudinal genome-wide association study 
of anti-tumor necrosis factor response among Japanese patients with rheumatoid arthritis. 
Arthritis Res Ther. 1218 (2016). 

[104]  Julià A, Fernandez-Nebro A, Blanco F, et al. A genome-wide association study identifies 
a new locus associated with the response to anti-TNF therapy in rheumatoid arthritis. 
Pharmacogenomics J. 147–15016 (2016). 

[105]  Cui J, Diogo D, Stahl EA, et al. Brief Report: The Role of Rare Protein-Coding Variants 
in Anti-Tumor Necrosis Factor Treatment Response in Rheumatoid Arthritis. Arthritis 
Rheumatol Hoboken NJ. 735–74169 (2017). 



 38 

[106]  Marwa OS, Kalthoum T, Wajih K, et al. Association of IL17A and IL17F genes with 
rheumatoid arthritis disease and the impact of genetic polymorphisms on response to 
treatment. Immunol Lett. 24–36183 (2017). 

[107]  Sieberts SK, Zhu F, García-García J, et al. Crowdsourced assessment of common genetic 
contribution to predicting anti-TNF treatment response in rheumatoid arthritis. Nat 
Commun. 124607 (2016). 

** Community-based effort to assess the use of SNP data to predict clinical outcome of TNF 
inhibition in RA, using machine learning algorithms. The study found that the genetic data to the 
prediction contributed marginally to the predictive power, compared to the clinical data. 

 
[108]  Cherlin S, Plant D, Taylor JC, et al. Prediction of treatment response in rheumatoid 

arthritis patients using genome-wide SNP data. Genet Epidemiol. 754–77142 (2018). 

[109]  Guan Y, Zhang H, Quang D, et al. Machine Learning to Predict Anti-Tumor Necrosis 
Factor Drug Responses of Rheumatoid Arthritis Patients by Integrating Clinical and 
Genetic Markers. Arthritis Rheumatol Hoboken NJ. 1987–199671 (2019). 

[110]  Ferreiro-Iglesias A, Montes A, Perez-Pampin E, et al. Evaluation of 12 GWAS-drawn 
SNPs as biomarkers of rheumatoid arthritis response to TNF inhibitors. A potential SNP 
association with response to etanercept. PloS One. e021307314 (2019). 

[111]  Bai M, He X, He Y, et al. IL-7R gene polymorphisms among patients with rheumatoid 
arthritis: A case-control study. Mol Genet Genomic Med. e007387 (2019). 

[112]  Castro-Villegas C, Pérez-Sánchez C, Escudero A, et al. Circulating miRNAs as potential 
biomarkers of therapy effectiveness in rheumatoid arthritis patients treated with anti-
TNFα. Arthritis Res Ther. 4917 (2015). 

[113]  Krintel SB, Dehlendorff C, Hetland ML, et al. Prediction of treatment response to 
adalimumab: a double-blind placebo-controlled study of circulating microRNA in 
patients with early rheumatoid arthritis. Pharmacogenomics J. 141–14616 (2016). 

[114]  Oswald M, Curran ME, Lamberth SL, et al. Modular analysis of peripheral blood gene 
expression in rheumatoid arthritis captures reproducible gene expression changes in 
tumor necrosis factor responders. Arthritis Rheumatol Hoboken NJ. 344–35167 (2015). 

[115]  Huang Q-L, Zhou F-J, Wu C-B, et al. Circulating Biomarkers for Predicting Infliximab 
Response in Rheumatoid Arthritis: A Systematic Bioinformatics Analysis. Med Sci Monit 
Int Med J Exp Clin Res. 1849–185523 (2017). 

[116]  Byng-Maddick R, Turner CT, Pollara G, et al. Tumor Necrosis Factor (TNF) Bioactivity 
at the Site of an Acute Cell-Mediated Immune Response Is Preserved in Rheumatoid 
Arthritis Patients Responding to Anti-TNF Therapy. Front Immunol. 9328 (2017). 



 39 

[117]  Shi R, Chen M, Litifu B. Serum interleukin-6 and survivin levels predict clinical response 
to etanercept treatment in patients with established rheumatoid arthritis. Mod Rheumatol. 
126–13228 (2018). 

[118]  Han BK, Kuzin I, Gaughan JP, et al. Baseline CXCL10 and CXCL13 levels are predictive 
biomarkers for tumor necrosis factor inhibitor therapy in patients with moderate to severe 
rheumatoid arthritis: a pilot, prospective study. Arthritis Res Ther. 9318 (2016). 

[119]  Haschka J, Englbrecht M, Hueber AJ, et al. Relapse rates in patients with rheumatoid 
arthritis in stable remission tapering or stopping antirheumatic therapy: interim results 
from the prospective randomised controlled RETRO study. Ann Rheum Dis. 45–5175 
(2016). 

[120]  Curtis JR, van der Helm-van Mil AH, Knevel R, et al. Validation of a novel 
multibiomarker test to assess rheumatoid arthritis disease activity. Arthritis Care Res. 
1794–180364 (2012). 

[121]  Centola M, Cavet G, Shen Y, et al. Development of a multi-biomarker disease activity 
test for rheumatoid arthritis. PloS One. e606358 (2013). 

[122]  Hirata S, Li W, Defranoux N, et al. A multi-biomarker disease activity score tracks 
clinical response consistently in patients with rheumatoid arthritis treated with different 
anti-tumor necrosis factor therapies: A retrospective observational study. Mod 
Rheumatol. 344–34925 (2015). 

[123]  Hirata S, Li W, Kubo S, et al. Association of the multi-biomarker disease activity score 
with joint destruction in patients with rheumatoid arthritis receiving tumor necrosis 
factor-alpha inhibitor treatment in clinical practice. Mod Rheumatol. 850–85626 (2016). 

[124]  Li W, Sasso EH, van der Helm-van Mil AHM, et al. Relationship of multi-biomarker 
disease activity score and other risk factors with radiographic progression in an 
observational study of patients with rheumatoid arthritis. Rheumatol Oxf Engl. 357–
36655 (2016). 

[125]  Fleischmann R, Connolly SE, Maldonado MA, et al. Brief Report: Estimating Disease 
Activity Using Multi-Biomarker Disease Activity Scores in Rheumatoid Arthritis Patients 
Treated With Abatacept or Adalimumab. Arthritis Rheumatol Hoboken NJ. 2083–208968 
(2016). 

[126]  Hambardzumyan K, Bolce RJ, Saevarsdottir S, et al. Association of a multibiomarker 
disease activity score at multiple time-points with radiographic progression in rheumatoid 
arthritis: results from the SWEFOT trial. RMD Open. e0001972 (2016). 

[127]  Rech J, Hueber AJ, Finzel S, et al. Prediction of disease relapses by multibiomarker 
disease activity and autoantibody status in patients with rheumatoid arthritis on tapering 
DMARD treatment. Ann Rheum Dis. 1637–164475 (2016). 



 40 

[128]  Hambardzumyan K, Saevarsdottir S, Forslind K, et al. A Multi-Biomarker Disease 
Activity Score and the Choice of Second-Line Therapy in Early Rheumatoid Arthritis 
After Methotrexate Failure. Arthritis Rheumatol Hoboken NJ. 953–96369 (2017). 

[129]  Krabbe S, Bolce R, Brahe CH, et al. Investigation of a multi-biomarker disease activity 
score in rheumatoid arthritis by comparison with magnetic resonance imaging, computed 
tomography, ultrasonography, and radiography parameters of inflammation and damage. 
Scand J Rheumatol. 353–35846 (2017). 

[130]  Bouman CAM, van der Maas A, van Herwaarden N, et al. A multi-biomarker score 
measuring disease activity in rheumatoid arthritis patients tapering adalimumab or 
etanercept: predictive value for clinical and radiographic outcomes. Rheumatol Oxf Engl. 
973–98056 (2017). 

[131]  Ghiti Moghadam M, Lamers-Karnebeek FBG, Vonkeman HE, et al. Multi-biomarker 
disease activity score as a predictor of disease relapse in patients with rheumatoid arthritis 
stopping TNF inhibitor treatment. PloS One. e019242513 (2018). 

[132]  Bechman K, Tweehuysen L, Garrood T, et al. Flares in Rheumatoid Arthritis Patients 
with Low Disease Activity: Predictability and Association with Worse Clinical 
Outcomes. J Rheumatol. 1515–152145 (2018). 

[133]  Curtis JR, Brahe CH, Østergaard M, et al. Predicting risk for radiographic damage in 
rheumatoid arthritis: comparative analysis of the multi-biomarker disease activity score 
and conventional measures of disease activity in multiple studies. Curr Med Res Opin. 
1483–149335 (2019). 

[134]  Cuppen B, Fritsch-Stork R, Eekhout I, et al. Proteomics to predict the response to tumour 
necrosis factor-α inhibitors in rheumatoid arthritis using a supervised cluster-analysis 
based protein score. Scand J Rheumatol. 12–2147 (2018). 

[135]  Choi IY, Gerlag DM, Herenius MJ, et al. MRP8/14 serum levels as a strong predictor of 
response to biological treatments in patients with rheumatoid arthritis. Ann Rheum Dis. 
499–50574 (2015). 

[136]  Nair SC, Welsing PMJ, Choi IYK, et al. A Personalized Approach to Biological Therapy 
Using Prediction of Clinical Response Based on MRP8/14 Serum Complex Levels in 
Rheumatoid Arthritis Patients. PloS One. e015236211 (2016). 

[137]  Nordal HH, Brun JG, Hordvik M, et al. Calprotectin (S100A8/A9) and S100A12 are 
associated with measures of disease activity in a longitudinal study of patients with 
rheumatoid arthritis treated with infliximab. Scand J Rheumatol. 274–28145 (2016). 

[138]  Smith SL, Plant D, Eyre S, et al. The predictive value of serum S100A9 and response to 
etanercept is not confirmed in a large UK rheumatoid arthritis cohort. Rheumatol Oxf 
Engl. 1019–102456 (2017). 



 41 

[139]  Inciarte-Mundo J, Ramirez J, Hernández MV, et al. Calprotectin strongly and 
independently predicts relapse in rheumatoid arthritis and polyarticular psoriatic arthritis 
patients treated with tumor necrosis factor inhibitors: a 1-year prospective cohort study. 
Arthritis Res Ther. 27520 (2018). 

[140]  Tweehuysen L, den Broeder N, van Herwaarden N, et al. Predictive value of serum 
calprotectin (S100A8/A9) for clinical response after starting or tapering anti-TNF 
treatment in patients with rheumatoid arthritis. RMD Open. e0006544 (2018). 

[141]  Yunchun L, Yue W, Jun FZ, et al. Clinical Significance of Myeloid-Related Protein 8/14 
as a Predictor for Biological Treatment and Disease Activity in Rheumatoid Arthritis. 
Ann Clin Lab Sci. 63–6848 (2018). 

[142]  de Moel EC, Rech J, Mahler M, et al. Circulating calprotectin (S100A8/A9) is higher in 
rheumatoid arthritis patients that relapse within 12 months of tapering anti-rheumatic 
drugs. Arthritis Res Ther. 26821 (2019). 

[143]  Daien CI, Gailhac S, Mura T, et al. High levels of memory B cells are associated with 
response to a first tumor necrosis factor inhibitor in patients with rheumatoid arthritis in a 
longitudinal prospective study. Arthritis Res Ther. R9516 (2014). 

[144]  Citro A, Scrivo R, Martini H, et al. CD8+ T Cells Specific to Apoptosis-Associated 
Antigens Predict the Response to Tumor Necrosis Factor Inhibitor Therapy in 
Rheumatoid Arthritis. PloS One. e012860710 (2015). 

[145]  Hull DN, Cooksley H, Chokshi S, et al. Increase in circulating Th17 cells during anti-
TNF therapy is associated with ultrasonographic improvement of synovitis in rheumatoid 
arthritis. Arthritis Res Ther. 30318 (2016). 

[146]  Salomon S, Guignant C, Morel P, et al. Th17 and CD24hiCD27+ regulatory B 
lymphocytes are biomarkers of response to biologics in rheumatoid arthritis. Arthritis Res 
Ther. 3319 (2017). 

[147]  Lee H-N, Kim Y-K, Kim G-T, et al. Neutrophil-to-lymphocyte and platelet-to-
lymphocyte ratio as predictors of 12-week treatment response and drug persistence of 
anti-tumor necrosis factor-α agents in patients with rheumatoid arthritis: a retrospective 
chart review analysis. Rheumatol Int. 859–86839 (2019). 

[148]  Cianciotti BC, Ruggiero E, Campochiaro C, et al. CD4+ Memory Stem T Cells 
Recognizing Citrullinated Epitopes Are Expanded in Patients With Rheumatoid Arthritis 
and Sensitive to Tumor Necrosis Factor Blockade. Arthritis Rheumatol Hoboken NJ. 
565–57572 (2020). 

[149]  Rodríguez-Martín E, Nieto-Gañán I, Hernández-Breijo B, et al. Blood Lymphocyte 
Subsets for Early Identification of Non-Remission to TNF Inhibitors in Rheumatoid 
Arthritis. Front Immunol. 191311 (2020). 



 42 

[150]  Bystrom J, Clanchy FI, Taher TE, et al. Response to Treatment with TNFα Inhibitors in 
Rheumatoid Arthritis Is Associated with High Levels of GM-CSF and GM-CSF+ T 
Lymphocytes. Clin Rev Allergy Immunol. 265–27653 (2017). 

[151]  Lliso-Ribera G, Humby F, Lewis M, et al. Synovial tissue signatures enhance clinical 
classification and prognostic/treatment response algorithms in early inflammatory 
arthritis and predict requirement for subsequent biological therapy: results from the 
pathobiology of early arthritis cohort (PEAC). Ann Rheum Dis. 1642–165278 (2019). 

[152]  Massey J, Plant D, Hyrich K, et al. Genome-wide association study of response to tumour 
necrosis factor inhibitor therapy in rheumatoid arthritis. Pharmacogenomics J. 657–66418 
(2018). 

[153]  Farutin V, Prod’homme T, McConnell K, et al. Molecular profiling of rheumatoid 
arthritis patients reveals an association between innate and adaptive cell populations and 
response to anti-tumor necrosis factor. Arthritis Res Ther. 21621 (2019). 

* Combines whole blood transcriptome and plasma proteome analysis of RA patients to identify 
molecular signatures of anti-TNF treatment. 

 
[154]  Tao W, Concepcion AN, Vianen M, et al. Multiomics and Machine Learning Accurately 

Predict Clinical Response to Adalimumab and Etanercept Therapy in Patients With 
Rheumatoid Arthritis. Arthritis Rheumatol Hoboken NJ. (2020). 

* This paper explores the ability of random forest-based algorithms to model gene expression and 
DNA methylation data in order to predict therapeutic responses in RA. 

 
[155]  Spiliopoulou A, Colombo M, Plant D, et al. Association of response to TNF inhibitors in 

rheumatoid arthritis with quantitative trait loci for CD40 and CD39. Ann Rheum Dis. 
1055–106178 (2019). 

** Analysis of genotypic scores for RA associated loci, for immune cell traits, and for gene 
expression or methylation to construct predictive models for response to TNF inhibitors. 

 
[156]  Folkersen L, Brynedal B, Diaz-Gallo LM, et al. Integration of known DNA, RNA and 

protein biomarkers provides prediction of anti-TNF response in rheumatoid arthritis: 
results from the COMBINE study. Mol Med Camb Mass. 322–32822 (2016). 

** This study exemplifies the increased power resulting from the integration of different types of 
biomarkers (transcript levels, proteins, SNPs) in predictive models of therapeutic response in RA. 

 
[157]  Tasaki S, Suzuki K, Kassai Y, et al. Multi-omics monitoring of drug response in 

rheumatoid arthritis in pursuit of molecular remission. Nat Commun. 27559 (2018). 

[158]  Wang M-H, Friton JJ, Raffals LE, et al. Novel Genetic Risk Variants Can Predict Anti-
TNF Agent Response in Patients With Inflammatory Bowel Disease. J Crohns Colitis. 
1036–104313 (2019). 



 43 

[159]  Gomez A, Ingelman-Sundberg M. Pharmacoepigenetics: Its Role in Interindividual 
Differences in Drug Response. Clin Pharmacol Ther. 426–43085 (2009). 

[160]  Cherqaoui B, Crémazy F, Hue C, et al. Epigenetics of spondyloarthritis. Joint Bone 
Spine. 565–57187 (2020). 

[161]  Aslani S, Mahmoudi M, Karami J, et al. Epigenetic alterations underlying autoimmune 
diseases. Autoimmunity. 69–8349 (2016). 

[162]  Toonen EJM, Gilissen C, Franke B, et al. Validation study of existing gene expression 
signatures for anti-TNF treatment in patients with rheumatoid arthritis. PloS One. 
e331997 (2012). 

[163]  Reinhardt A, Prinz I. Whodunit? The Contribution of Interleukin (IL)-17/IL-22-
Producing γδ T Cells, αβ T Cells, and Innate Lymphoid Cells to the Pathogenesis of 
Spondyloarthritis. Front Immunol. 8859 (2018). 

[164]  Tsukazaki H, Kaito T. The Role of the IL-23/IL-17 Pathway in the Pathogenesis of 
Spondyloarthritis. Int J Mol Sci. 640121 (2020). 

[165]  Huang Y, Deng W, Zheng S, et al. Relationship between monocytes to lymphocytes ratio 
and axial spondyloarthritis. Int Immunopharmacol. 43–4657 (2018). 

[166]  Uslu AU, Küçük A, Şahin A, et al. Two new inflammatory markers associated with 
Disease Activity Score-28 in patients with rheumatoid arthritis: neutrophil-lymphocyte 
ratio and platelet-lymphocyte ratio. Int J Rheum Dis. 731–73518 (2015). 

[167]  Mercan R, Bitik B, Tufan A, et al. The Association Between Neutrophil/Lymphocyte 
Ratio and Disease Activity in Rheumatoid Arthritis and Ankylosing Spondylitis. J Clin 
Lab Anal. 597–60130 (2016). 

[168]  Nishida Y, Hosomi S, Yamagami H, et al. Neutrophil-to-Lymphocyte Ratio for 
Predicting Loss of Response to Infliximab in Ulcerative Colitis. PLOS ONE. e016984512 
(2017). 

[169]  Martin JC, Chang C, Boschetti G, et al. Single-Cell Analysis of Crohn’s Disease Lesions 
Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF 
Therapy. Cell. 1493-1508.e20178 (2019). 

[170]  Lorenzin M, Ometto F, Ortolan A, et al. An update on serum biomarkers to assess axial 
spondyloarthritis and to guide treatment decision. Ther Adv Musculoskelet Dis. 
1759720X209342712 (2020). 

[171]  Bal A, Unlu E, Bahar G, et al. Comparison of serum IL-1 beta, sIL-2R, IL-6, and TNF-
alpha levels with disease activity parameters in ankylosing spondylitis. Clin Rheumatol. 
211–21526 (2007). 



 44 

[172]  Arends S, van der Veer E, Kallenberg CGM, et al. Baseline predictors of response to 
TNF-α blocking therapy in ankylosing spondylitis. Curr Opin Rheumatol. 290–29824 
(2012). 

[173]  Maksymowych WP. Biomarkers for Diagnosis of Axial Spondyloarthritis, Disease 
Activity, Prognosis, and Prediction of Response to Therapy. Front Immunol [Internet]. 10 
(2019) [cited (2020  Nov  1)]. Available from: 
https://www.frontiersin.org/articles/10.3389/fimmu.2019.00305/full. 

[174]  Fleischmann R. Value of the Multibiomarker Disease Activity Score to Predict Remission 
in RA: What Does the Evidence Show? J Rheumatol. 443–44646 (2019). 

[175]  Calabrese LH. MBDA: A Valuable Tool for Medical Decision Making. J Rheumatol. 
164246 (2019). 

[176]  Masi AT. What further data are needed to value the Multi-Biomarker Disease Activity 
score for measuring rheumatoid arthritis disease activity: comment on the article by 
Johnson et al. Arthritis Care Res. 1339–134072 (2020). 

[177]  van der Helm-van Mil AHM, Knevel R, Cavet G, et al. An evaluation of molecular and 
clinical remission in rheumatoid arthritis by assessing radiographic progression. 
Rheumatol Oxf Engl. 839–84652 (2013). 

[178]  Romand X, Bernardy C, Nguyen MVC, et al. Systemic calprotectin and chronic 
inflammatory rheumatic diseases. Joint Bone Spine. 691–69886 (2019). 

[179]  Austermann J, Spiekermann C, Roth J. S100 proteins in rheumatic diseases. Nat Rev 
Rheumatol. 528–54114 (2018). 

[180]  Sun S, Bay-Jensen A-C, Karsdal MA, et al. The active form of MMP-3 is a marker of 
synovial inflammation and cartilage turnover in inflammatory joint diseases. BMC 
Musculoskelet Disord. 9315 (2014). 

[181]  Gao JW, Zhang KF, Lu JS, et al. Serum matrix metalloproteinases-3 levels in patients 
with ankylosing spondylitis. Genet Mol Res GMR. 17068–1707814 (2015). 

[182]  Mou Y-K, Zhang P-P, Li Q-X, et al. Changes of serum levels of MMP-3, sRANKL, and 
OPG in juvenile-onset ankylosing spondylitis patients carrying different HLA-B27 
subtypes. Clin Rheumatol. 1085–108934 (2015). 

[183]  Jadon DR, Sengupta R, Nightingale A, et al. Serum bone-turnover biomarkers are 
associated with the occurrence of peripheral and axial arthritis in psoriatic disease: a 
prospective cross-sectional comparative study. Arthritis Res Ther. 21019 (2017). 

[184]  Moz S, Aita A, Basso D, et al. Spondyloarthritis: Matrix Metalloproteinasesas 
Biomarkers of Pathogenesis and Response to Tumor Necrosis Factor (TNF) Inhibitors. 
Int J Mol Sci. 83018 (2017). 



 45 

[185]  Pedersen SJ, Hetland ML, Sørensen IJ, et al. Circulating levels of interleukin-6, vascular 
endothelial growth factor, YKL-40, matrix metalloproteinase-3, and total aggrecan in 
spondyloarthritis patients during 3 years of treatment with TNFα inhibitors. Clin 
Rheumatol. 1301–130929 (2010). 

[186]  Chandran V, Shen H, Pollock RA, et al. Soluble Biomarkers Associated with Response to 
Treatment with Tumor Necrosis Factor Inhibitors in Psoriatic Arthritis. J Rheumatol. 
866–87140 (2013). 

[187]  Bertani L, Fornai M, Fornili M, et al. Serum oncostatin M at baseline predicts mucosal 
healing in Crohn’s disease patients treated with infliximab. Aliment Pharmacol Ther. 
284–29152 (2020). 

[188]  Minar P, Lehn C, Tsai Y-T, et al. Elevated Pretreatment Plasma Oncostatin M Is 
Associated With Poor Biochemical Response to Infliximab. Crohns Colitis 360 [Internet]. 
1 (2019) [cited (2020  Dec  10)]. Available from: 
https://academic.oup.com/crohnscolitis360/article/1/3/otz026/5551502. 

[189]  West NR, Hegazy AN, Owens BMJ, et al. Oncostatin M drives intestinal inflammation 
and predicts response to tumor necrosis factor-neutralizing therapy in patients with 
inflammatory bowel disease. Nat Med. 579–58923 (2017). 

[190]  West NR. Coordination of Immune-Stroma Crosstalk by IL-6 Family Cytokines. Front 
Immunol [Internet]. 10 (2019) [cited (2020  Dec  15)]. Available from: 
https://www.frontiersin.org/articles/10.3389/fimmu.2019.01093/full. 

** OSM and OSMR are overexpressed in the majority of active IBD mucosa, particularly in patients 
resistant to anti-TNF. OSM could therefore be a novel predictive biomarker for anti-TNF and 
therapeutic target for this clinically challenging population. 

 
  

 

 



Figure 1

TNF TLR TCR

IL-6

NF-kB regulators

NF-kB transcription 
factors and inhibitors

NF-kB target genes

Day 0 (before treatment)
Day 7 (after treatment)

Fold-change
(before vs after
TNF blocker)

IL-1



Figure 2

Pa
th

w
ay

 A
ct

iv
ity

-1.0

-0.5

0.0

0.5

cy
to
to
xic
_m

ol
ec
ul
es

M
2_
lik
e_
m
ac
ro
ph
ag
es

lym
ph
op
oi
es
is

re
gu
lat
or
y_
B_
ce
lls

T_
ce
ll_
sig
na
llin

g

M
HC
_p
re
se
nt
at
io
n

ub
iq
ui
tin
_p
ro
te
as
om

e
ch
em

ot
ax
is

Tc
ell
_in

hi
bi
to
ry
_s
ign

als

ty
pe
_1
_im

m
un
ity

ad
he
sio
n_
m
ol
ec
ul
es

au
to
ph
ag
y

Tr
eg
ul
at
or
y_
ce
lls

NL
R_
in
fla
m
m
as
om

es
ty
pe
_1
7_
im
m
un
ity

pr
oi
nf
lam

m
at
or
y_
m
ol
ec
ul
es

IFN
_t
ar
ge
ts

NF
kB
_r
eg
ul
at
or
s

co
m
pl
em

en
t

co
sti
m
ul
at
or
y_
m
ol
ec
ul
es

ty
pe
_2
_im

m
un
ity

JA
K_
ST
AT

gr
an
ul
oc
yt
es

ph
ag
oc
yt
os
is

In
na
te
im
m
un
e r
es
po
ns
e

M
1_
lik
e_
m
ac
ro
ph
ag
es

NF
kB
_t
ar
ge
t_
ge
ne
s

NF
kB
_t
ra
ns
cr
ip
tio
n_
fa
ct
or
s

NF
kB
_in

hi
bi
to
rs

NK
ce
lls

AP
C

os
te
oc
las
t

Bc
ell
s

TG
FB

all
er
gy

ap
op
to
sis

M
AP
K

NO
TC
H

ce
ll_
cy
cle IL1 TN
F

TL
R

de
ct
in

NO
D IL6

-0
.0

01
-0

.0
05

-0
.0

1
-0

.0
5

-0
.1 1

0.
1

0.
05

0.
01

0.
00

5
0.

00
1

Candida stimulation



Cytotoxic molecules
G
en
e

Ac
tiv

ity

x
x

x x x
x x

x

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
KL

RF
1

GZ
M

A

PR
F1

KL
RD

1

GZ
M

B

GZ
M

K

GN
LY

IF
NG

G
en
e
Ac
tiv
ity

x
x

x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x
-2

-1

0

1

2

3

CC
L8

CC
L7

CM
KL

R1
CC

L2
CC

R2
CX

CR
2

CC
R5

CD
16

3
IL

32
LI

LR
A5

CS
F2

CS
F1

R
CC

L1
8

CS
F1

CC
L1

9
CC

L5
CC

L2
2

CC
L1

3
IL

6S
T

IL
6R

CC
R1

CX
CR

4
CC

L2
4

S1
00

A8
S1

00
A9

PT
GE

R4 M
IF

TN
F

LI
TA

F
CX

CL
2

CX
CL

1
IL

1B IL
8

CC
L3

PT
AF

R
IL

6
CC

L4
CC

L2
0

CX
CR

1
CC

L2
3

PT
GS

2

M2 macrophages

G
en

e 
Ac
tiv
ity

x x
x x x x x x x x x x x x x x x x x x x

-2

-1

0

1

2

M
SR

1

CD
20

9

CC
L2

FC
ER

1A

CD
36

M
RC

1

CD
16

3

EG
R2

CC
L1

8

IL
21

R

CC
L2

2

IR
F4

CC
L1

3

IL
1R

N

FN
1

IL
10

CL
EC

7A

CC
L2

4

IL
1R

2

IL
4R

IL
1R

AP

Proinflammatory molecules

A

B

C

Figure 3



LIF_LPS

IL1R1_LPS

CLEC5A_LPS

CXCR1_LPS

LTB4R_LPS

SPP1_SEB

CCL20_LPS

IL8_LPS

ICAM5_SEB

BST1_LPS

CD14_LPS

IL1RAP_LPS

IL1R2_LPS

CXCL2_LPS

PLAU_LPS

IL8_SEB

PLAUR_LPS

CLEC7A_LPS

CXCL1_LPS

DUSP4_LPS

PECAM1_LPS

ITGAX_LPS

IRAK3_LPS

NLRP3_LPS

IL6R_LPS

PRKCD_LPS

ZEB1_LPS

IRAK1_LPS

FCGRT_LPS

TNFRSF8_LPS

TLR2_LPS

IFNGR1_LPS

CRADD_SEB

NFIL3_LPS

ITGB1_LPS

TNFRSF1B_LPS

PLAUR_SEB

CEBPB_LPS

ITGA5_LPS

CD58_LPS

CXCR4_LPS

FCGR2A_LPS

IGF2R_LPS

FCER1G_LPS

ATG7_LPS

MAP4K4_LPS

IRAK1_SEB

MBP_LPS

APP_LPS

SKI_LPS

CTNNB1_LPS

IKZF3_LPS

TP53_LPS

IL7R_SEB

ITGA6_SEB

LTA_LPS

IFNG_LPS

CXCL9_LPS

responseASDAS_complete

Figure 4


	Mezghiche et al Exp Rev Crit Immunol 2021 accepted
	Figure_1+2_Mezghiche
	Figure_3+4_Mezghiche

