Novel approaches to develop biomarkers predicting treatment responses to TNF-blockers
Ikram Mezghiche, Hanane Yahia-Cherbal, Lars Rogge, Elisabetta Bianchi

To cite this version:

HAL Id: pasteur-03258281
https://pasteur.hal.science/pasteur-03258281
Submitted on 11 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License
Review

Novel approaches to develop biomarkers predicting treatment responses to TNF-blockers.

Ikram Mezghichea,b, Hanane Yahia-Cherbala,c, Lars Roggea,d,* and Elisabetta Bianchia,d,*

a Immunoregulation Unit, Institut Pasteur, Department of Immunology, Paris, France.
b Université de Paris, Sorbonne Paris Cité, Paris, France.
c Fondation AP-HP, Paris, France.
d Unité Mixte AP-HP/Institut Pasteur, Institut Pasteur, Paris, France.

* Corresponding authors: Elisabetta Bianchi, MD
Institut Pasteur, Immunoregulation Unit, Department of Immunology
25, rue du Dr. Roux, 75724 Paris, France
Phone: +33-1-40613827, mail: elisabetta.bianchi@pasteur.fr

Lars Rogge, PhD
Institut Pasteur, Immunoregulation Unit, Department of Immunology
25, rue du Dr. Roux, 75724 Paris, France
Phone: +33-1-40613822, mail: lars.rogge@pasteur.fr
ORCID ID: 0000-0003-1262-9204
ABSTRACT

Introduction

Chronic inflammatory diseases (CIDs) cause significant morbidity and are a considerable burden for the patients in terms of pain, impaired function and diminished quality of life. Important progress in CID treatment has been obtained with biological therapies, such as Tumor-Necrosis-Factor blockers. However, more than a third of the patients fails to respond to these inhibitors, and are exposed to the side effects of treatment, without the benefits. Therefore, there is a strong interest to develop tools to predict response of patients to biologics.

Areas covered

We searched PubMed for recent studies on biomarkers for disease assessment and prediction of therapeutic responses, focusing on the effect of TNF blockers on immune responses in Spondyloarthritis (SpA), and other CID, in particular rheumatoid arthritis and inflammatory bowel disease. Conclusions will be drawn about the possible development of predictive biomarkers for response to treatment.

Expert opinion

No validated biomarker is currently available to predict treatment response in CID. New insight could be generated through the development of new bioinformatic modelling approaches to combine multidimensional biomarkers that explain the different genetic, immunological and environmental determinants of therapeutic responses.

KEYWORDS: spondyloarthritis, ankylosing spondylitis, chronic inflammatory disease, rheumatoid arthritis, inflammatory bowel disease, anti-TNF therapy, biomarkers, treatment response, prediction, transcriptome, immune responses

HIGHLIGHTS

- Anti-TNF therapy has strong effects on several immune response pathways, modulating gene expression, cell population frequencies and serum protein levels.
- Several biomarkers for disease progression in patients undergoing anti-TNF treatment have been identified, however no biomarker has been validated for clinical use to predict response to treatment at baseline.
- Genetic biomarkers based on single nucleotide polymorphisms have demonstrated limited power to predict response to treatment.
- The combination of several biomarkers may improve the prediction power of statistical models of response to anti-TNF therapy. In particular, the inclusion of different types of biomarkers (genetic,
transcriptional, protein, cellular) may be necessary to capture the biological complexity of response to treatment.

- New bioinformatic tools, including machine learning approaches, are necessary to handle the complexity of the large data sets being currently explored.

1. Introduction

Chronic inflammatory diseases (CID), such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), spondyloarthritis (SpA), psoriatic arthritis (PsA), and psoriasis (Pso) are a leading cause of morbidity. These conditions are associated with chronic pain and important functional impairment that have a large impact on productivity and quality of life [1,2].

In this review we will focus mainly on Spondyloarthritis (SpA), but also draw parallels with the larger literature on RA and IBD. SpA is one of the most common chronic inflammatory rheumatic diseases, with a prevalence ranging from 0.5% to 1.9% [3]. In addition to the disabling rheumatic manifestations, some SpA patients develop severe extra-articular manifestations such as inflammatory bowel disease (IBD), uveitis and psoriasis (Pso) [4]. SpA mainly affects young adults and the functional consequences of inadequately controlled disease alter both their quality of life and their professional capacity with direct impact on healthcare costs [5]. Improved control of the disease for affected individuals is thus an important public health issue. The introduction of biological therapies, such as strategies targeting the proinflammatory cytokine TNF, has revolutionized the treatment of CID. However, 30 to 40% of the patients fail to respond or acquire resistance to TNF-blockers, and it is currently not possible to predict response of patients to anti-TNF therapy [6–8]. Recently, anti-IL-17A drugs have been approved as a biologic alternative for axial SpA (axSpA) patients with active disease that do not respond to TNF inhibitors (TNFi), but this treatment also fails in about a third of the patients [9].

As a consequence, in current clinical practice treatment failures are observed for a substantial number of patients, who will not be appropriately treated for several months, while being exposed to the potential side effects of the drugs. There is therefore an urgent medical need to develop tools to guide treatment decisions for patients affected by SpA and other CID. The ability to predict the response to biologics, and to optimize the treatment will be the challenge for the next decade in CID.

Thus far, clinicians do not know, prior to treatment initiation, if a patient will respond or not to the treatment. Despite many efforts to identify predictive biomarkers of anti-TNF treatment response, there is still an unmet need for approaches that permit a pretreatment stratification of patients resulting in better patient healthcare and significant socio-economic benefits [9].
In this review we will explore recent work on the mechanistic action of TNF blockade in SpA, and comment on the latest approaches to identify predictive biomarkers. Comparison will be drawn with other CID (IBD and RA) for which a rich literature is available.

We performed an extensive literature search using PubMed. Our search mainly focused on papers published between 2015 and December 2020, but a few previous papers relevant to our subject were also included. We used keywords such as “Spondylarthritis”, “Rheumatoid Arthritis”, “Inflammatory Bowel Disease”, “Anti-TNFα” (and single anti-TNF drugs), “Biomarkers”, “Outcome”, “Response” and “Prediction”. Since the literature on predictive biomarkers is still limited, we also included papers investigating biomarkers associated with disease activity. Only English written papers were considered for our review.

2. Effects of anti-TNF therapy on the immune system in patients – a brief summary

The introduction of anti-TNF therapy has been a major breakthrough for the treatment of several chronic inflammatory diseases, in particular rheumatoid arthritis [10] (reviewed in [11]), inflammatory bowel disease [12,13], ankylosing spondylitis [14] (reviewed in [15]), and psoriatic arthritis and psoriasis [16,17]. Early mechanistic studies revealed a strong reduction of inflammatory cytokines and acute phase proteins, such as IL-1, IL-6 and CRP within hours after injection of a TNF inhibitor (TNFi) [18]. Furthermore, levels of inflammatory chemokines and VEGF were also reduced, causing reduced granulocyte recruitment and angiogenesis in arthritic joints [19,20] (reviewed in [21]).

RNA sequencing technologies have become relatively affordable and permit the assessment, on a genome-wide level, of biomarkers within immune cells that might not be detectable in serum. mRNA profiling in SpA patients before and after treatment onset, may help identify molecular pathways associated with response to therapy. Using RNA sequencing, a gene expression analysis was performed on nineteen AS patients, to profile the transcriptomes of peripheral blood cells (PBMCs), and identified 656 genes differentially expressed before and after anti-TNF treatment. Analysis of signaling pathways using KEGG (Kyoto Encyclopedia of Genes and Genomes) revealed an enrichment of several immune and inflammation regulatory pathways, as well as infection metabolism-associated pathways in genes affected by anti-TNF therapy [22]. Among the differentially expressed genes were also genes associated to AS in GWAS studies (IL6R, NOTCH1, IL10, CXCR2 and TNFRSF1A), highlighting pathogenic pathways that may be affected by TNF signaling. The altered expression of components of the NOTCH signaling pathway found in AS may be involved in osteoblast differentiation and ossification processes [23]. TNFRSF1A encodes an important receptor for TNF, and SNPs in the locus of the anti-inflammatory cytokine IL-10 have shown modest correlation with disease severity [24]. Interestingly, the study showed a distinct gene expression profile between male and female patients. Besides genes linked to sex chromosome, the only differentially expressed gene was IL17RC, which encodes an IL-17 receptor that binds IL-17A and IL-17F. This
The proinflammatory pathway may play an important role in SpA [25]. An interesting hypothesis is that higher expression of IL17RC may be involved in the differences in disease severity and treatment response between the genders [22].

It is important to note that most transcriptomic studies are performed in PBMCs, and the mixture of different cell populations may hide biologically important features specific to a cell type. Peripheral blood cells may also not be representative of local inflammatory processes [26], however, biomarkers that can be identified in peripheral blood are worth investigating, since they are more easily applicable in large scale studies and in the clinics.

Menegatti et al. have recently investigated the global impact of TNFi on immune responses to microbial or pathway-specific stimuli in axSpA patients. The motivation for this study was that the effects of TNF-blockers had been studied mostly on resting immune cells but not in the setting of an ongoing immune response. The goals were to enhance the understanding of the molecular mechanisms of action of TNF-blockers in SpA patients and to identify immunological correlates of response to TNFi. To minimize sources of pre-analytical variability the authors used standardized whole-blood stimulation assays (“TruCulture” assays) [27] and a highly sensitive and robust pipeline to assess immune functions in patients [28]. Proteins in supernatants of stimulated whole-blood cultures were measured in a CLIA-certified laboratory and gene expression was measured using nCounter assays for immune genes, a technology not requiring enzymatic reactions and PCR amplification, already used in the clinics for diagnostic purposes [29]. Up to 300 genes (depending on the stimulation) were affected by anti-TNF therapy, revealing that TNFi induce profound changes in patients’ innate immune responses. Stimulation of whole blood amplified the observable differences between samples from patients before and after TNF-blocker treatment, indicating that TNFi act primarily when the immune system is challenged but less in its resting state. The effects of TNFi on activated immune cells were detectable after a single injection of a TNF-blocker and persisted for 3 months of follow-up of the patients.

To understand the molecular basis of anti-TNF therapy action on immune responses, pathway analysis was performed on the differentially expressed genes. Since nCounter technology does not allow a genome-wide gene expression analysis, the Quantitative Set Analysis for Gene Expression (QuSAGE) method was employed [30]. QuSAGE quantifies gene module activity as a shift in the mean differential expression of the individual genes included in the module and is compatible with a limited number of genes. Similar to other GSEA approaches, QuSAGE allows reducing the number of variables by collapsing sets of coordinately expressed genes into gene modules, facilitating functional interpretation of the results and improving robustness of biomarker signatures. Bancherau et al. have previously applied QuSAGE to functionally interpret gene lists associated with specific phenotypes in Lupus patients [31] and Latis et al. used this algorithm to compare and interpret T cell gene expression profiles in recipients after allogeneic hematopoietic stem cell transplantation and their sibling donors [32].
modules by grouping genes belonging to specific signaling pathways, associated with particular cellular phenotypes, or with specific cellular functions, according to Molecular Signatures Database (MSigDB) annotations [33] and based on current knowledge in the literature. Since genes can play roles in distinct signaling pathways, a single gene could be present in several modules. The minimum size of one module was set to 3 genes. Fig. 1 gives an example for the influenza stimulus. The TNF module groups TNF and several molecules associated with its receptor. TNF itself and many of the genes in this gene module were downregulated after one week of anti-TNF therapy. This is similar for the IL-1 module. In this study, IL1A was among the genes most strongly targeted by anti-TNF therapy. As for Toll-like-receptors (TLRs), some were downregulated, whereas the expression of others actually increased. Signaling through many of these receptors activates NF-kB regulatory kinases that phosphorylate the NF-kB inhibitor IkB and thereby activate NF-kB. NF-kB transcription factors, IkB and many NF-kB target genes were among the genes that were most profoundly downregulated by TNF blockers (Fig. 1 and 2). Since TNF itself, IL-1 and many other proinflammatory molecules are NF-kB target genes, one of the mechanisms by which TNFi control inflammation may be the disruption of an autoregulatory loop driven mainly by NF-kB [28].

Only few gene modules showed an increased pathway activity, such as the “cytotoxic molecules” module and the “NK cells” (Fig. 3A). An increased fraction of CD8+ T cells following anti-TNF treatment has also been recently described in RA patients [34]. The analysis also indicated that TNF-blockers may skew monocyte/macrophage polarization towards an M2 regulatory phenotype (Fig. 3B). M2-polarized macrophages are implicated in the resolution of inflammation, have immunoregulatory functions and orchestrate tissue repair and remodeling [35,36]. On the other hand, shifting the balance from a M1-like to a more M2-like profile may contribute to the increased risk of Mycobacterium tuberculosis reactivation in patients treated with TNFi [37–39], as M1 macrophages are important for granuloma formation and M. tuberculosis protection [40].

Anti-TNF treatment did not affect the Th1 or Th17 arms of the patients’ immune response, nor IL-6 production in cells from axSpA patients, which contrasts previous results reported for RA [18]. These data seem consistent with the limited therapeutic efficacy of IL-6-blockade in SpA [41] and may suggest that IL-6 is more relevant to RA, but less to SpA pathogenesis.

Collectively, the analysis by Menegatti et al. revealed that TNFi target several distinct signaling pathways that cooperate to control inflammation. Some of these pathways may be of particular relevance for specific diseases. PTGS2 (COX2) downregulation by TNFi (Fig. 3C) targets PGE2 biosynthesis and is of particular relevance for enthesitis, a critical early pathogenic feature of SpA [42], while shifting the balance of macrophages from a pro-inflammatory (M1-like) phenotype to a pro-resolving (M2-like) phenotype is important for the resolution of synovitis, a key feature of RA. Expression of the PGE2 receptor EP4 (encoded by PTGER4) was also downregulated by TNFi. Signaling through the EP4 receptor upregulates IL-23R expression and promotes human Th17 cell development [43].
3. The search for biomarkers of response

Anti-TNF therapy is not effective in 30-40% of patients affected by chronic inflammatory diseases, but the mechanisms underlying primary non-response to treatment are not known. Many studies have been performed to identify molecules that may serve as biomarkers to predict therapeutic responses to TNF-blockers, in particular in RA, IBD, and SpA (reviewed in [6,7,44,45]), however, no validated biomarker has yet emerged. In the following, we will summarize recent studies aiming at the identification of biomarkers for response to treatment, in particular in SpA, RA and IBD.

3.1 Transcriptomic biomarkers

To determine if therapeutic responses to TNFi were correlated with immune responses from SpA patients, Menegatti et al. have analyzed gene expression in whole-blood cultures stimulated with LPS or SEB from 80 SpA patients, before initiation of anti-TNF therapy [28]. The response to therapy was evaluated as changes in the “Ankylosing Spondylitis Disease Activity Score” (ASDAS) at 3 months after treatment initiation [46,47]. Gene expression analysis of these cultures revealed that 55 genes that were differentially expressed between responders and non-responders (Fig. 4) [28]. 15 of these genes were associated with leukocyte migration and invasion, such as the genes encoding urokinase (PLAU) and its receptor (PLAUR).

The importance of leukocyte recirculation as a determinant of treatment responses to TNFi was supported by the finding that several chemokines and their receptors were differentially expressed between responders and primary non-responders. Genes encoding the receptors for the pro-inflammatory cytokines TNF, IL-6 and IL-1 were also expressed at higher levels in cultures from responders, as was expression of NLRP3, the gene encoding the intracellular sensor NOD-, LRR- and pyrin domain-containing protein 3, which plays an important role in the control of caspase-1-dependent processing of pro-IL-1β and IL-18 into active cytokines [48]. A polymorphism in the NLRP3 gene (rs4612666) was associated with primary response to anti-TNF therapy in 2 independent cohorts of Ulcerative Colitis (UC) and IBD patients. This polymorphism is associated with reduced NLRP3 expression [49]. Only 7 differentially expressed genes were expressed at higher levels in non-responders, including CXCL9 (encoding a chemoattractant for CXCR3-expressing Th1 and other cytotoxic cells) and IFNG, encoding the signature cytokine of Th1, CD8+ T and NK cells. Bank et al. previously reported that a polymorphism in the IFNG gene (rs2430561) was significantly associated with effective anti-TNF primary response in Crohn’s disease (CD) patients but not in ulcerative colitis (UC) patients. This variant is associated with decreased IFN-γ level [50]. This result was confirmed in another study in UC patients, where, at baseline, responders had lower mucosal mRNA expression of IFN-γ than non-responders [51]. In contrast, Rismo et al. reported that high mRNA expression of mucosal IFN-γ and IL-17A in biopsies obtained before anti-TNF therapy was associated with
successful therapy response in UC patients [52], suggesting that the role of IFN-γ in this context needs further evaluation.

IL7R, the receptor for the homeostatic cytokine IL-7 was expressed at higher levels in stimulated immune cells from axSpA patients not-responding to TNFi [28][Fig. 4]. A 20 genes signature of IL-7/IL-7R signaling has recently been analyzed in colon mucosal biopsies from previously published cohorts of IBD patients [53]. This study revealed that the IL-7R signaling signature is reproducibly altered in inflamed mucosa, with a significant accumulation of IL7R transcripts that may contribute to the maintenance of chronic inflammation. More interestingly, it also demonstrated that a strong colonic IL-7R signaling gene signature (and in particular IL7R), before initiation of therapy, is significantly and reproducibly associated with the absence of response to anti-TNF therapy both in UC and CD patients, identifying refractory IBD patients. The author showed that this is not the case for mucosal ileal biopsies, suggesting a specific association of the IL-7/IL-7R pathway with colonic but not ileal IBD inflammation. A combination of 10 genes (IL7R, IL2RG, JAK1, PIK3CA, LCK, PTK2B, EP300, NMI, CRLF2, and TSLP) from the IL-7R signaling signature was sufficient to discriminate anti-TNF non-responders from responders, constituting a potential new predictive biomarker to identify refractory patients [53]. A more recent IBD study developed a test to measure IL-7, together with 13 additional proteins in blood (ANG1, ANG2, CRP, SAA1, IL-7, EMMPRIN, MMP1, MMP2, MMP3, MMP9, TGFA, CEACAM1, and VCAM1). This signature was termed the “endoscopic healing index” (EHI). The EHI was used to score endoscopic disease activity in patients with CD. The EHI scores range from 0 to 100 units, with higher scores indicating more severe CD activity, based on endoscopy findings. Outcome prediction based on EHI was comparable to measurement of FC (fecal calprotectin) and higher than measurement of serum CRP [54].

Transcriptomic biomarkers have also been investigated in RA, with some limited results [55]. In this respect, the combined analysis of gene expression and genetic data in large patient cohorts may be a more promising approach. Aterido et al. defined gene co-expression modules in RA synovial tissue and analyzed their association with response to anti-TNF treatment at the clinical and genetic level, using set-based genetic association analysis. The analysis resulted in the identification of an 18-gene module expressed in synovial tissue, and significantly associated at the genetic level with response to adalimumab [56]. Pathway analysis showed that the module is enriched for genes involved in nucleotide metabolism, which plays an essential role in cell proliferation and in the synthesis of signaling molecules such as adenosine. Notably, adenosine signaling in macrophages has been shown to induce a switch from a pro-inflammatory M1 phenotype to an M2 regulatory phenotype [57,58].

Cherlin et al. applied the PrediXcan algorithm on genetic data from the MATURA consortium [59] to identify genes that are associated with changes in the erythrocyte sedimentation rate (ESR) in patients treated with TNF blockers. The prediction model identified the IL18RAP gene as a predictor of changes in ESR after treatment [60]. In a replication cohort, the expression of IL18RAP in whole blood at baseline
correlated with changes in ESR at 6-month follow-up, and a correlation was observed between *IL18RAP* expression in blood and in synovial tissue [60]. *IL18RAP* is important for IL-18 signaling, a pathway implicated in inflammation, and a potential treatment target in RA [61]. The association of *IL18RAP* with treatment outcome is not specific to one drug type, making it an interesting biomarker to explore for treatment responses in RA.

In IBD patients, analyses of gene expression in inflamed tissue and immune cells also proved useful in the understanding of the immunopathogenesis of IBD and prediction of therapy outcome. In a study by Arijs et al. baseline gene expression levels in mucosal biopsies could distinguish responders from non-responders to infliximab. The microarray analysis identified a set of 5 genes (*TNFAIP6, S100A8, IL11, GOS2*, and *S100A9*) that could be used to predict the response to anti-TNF treatment with 100% accuracy [62]. A subsequent genetic study demonstrated that haplotype differences in the loci of these 5 genes differentiated responders from non-responders to infliximab [63]. The same group identified also a panel of 5 genes that can be used to predict response to anti-TNF treatment in UC patient (*OPG, STC1, PTGS2, IL13RA2, IL11*) [64].

3.2 Genetic biomarkers

Explorative studies of genetic biomarkers to predict anti-TNF therapeutic outcome use genotyping technologies in order to associate genotype with good or bad response to treatment. Genotyping has been performed either on a genome-wide scale (GWAS), or on a narrower scale, by targeting a specific set of single nucleotide polymorphisms (SNPs), selected for their previous association with disease susceptibility or with proposed correlation with anti-TNF response. Results from GWAS performed on rheumatic diseases suggest that disease susceptibility and treatment response are influenced by the action of many genetic variants with modest effects, rather than a few variants with large effects. Thus, polygenic risk scores, based on the combination of several potentially predictive gene variants are expected to be more efficient in predicting treatment response than individual risk variants [65,66].

Overall, genetic biomarkers are particularly interesting as early predictive biomarkers: they are invariable, they precede disease onset and use affordable technologies. Pharmacogenomic profiling has shown important results in predicting treatment outcome in cancer biotherapy treated patients [67,68] and has also been considered for chronic rheumatic diseases such as SpA. In CIDs, the absence of common SNPs with a strong effect, and non-genetic sources of patients’ heterogeneity suggest that studies with very large numbers of patients would be necessary to obtain a solid correlation of genetic variation with clinical outcome [69,70].

To date, only a few studies have suggested an association between anti-TNF responses in SpA patients and genetic variants, in particular in the TNF and TLR pathways, and downstream NF-kB signaling (Table 1). A number of these variants and genes have also been associated with clinical parameters of remission or low disease in RA (Table 2), supporting the importance of these molecular pathways in the
mechanisms of action of TNF-blockers. However, the reduced number of studies, the limited size of the cohorts analyzed, and the lack of robust replicated results limit the exploitation of these findings in a clinical setting.

Table 1. Response biomarkers in Spondyloarthritis (SpA).

<table>
<thead>
<tr>
<th>Study Year</th>
<th>Study Design</th>
<th>Disease</th>
<th>Treatment</th>
<th>Biomarkers</th>
<th>Pathways</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seitz (2007) [71]</td>
<td>AS (22), RA (54), PsA (10)</td>
<td>IFX, ADA, ETN</td>
<td>TNFα - 308 G/G</td>
<td>TNF/TNFR</td>
<td>Associates with good response (DAS28 or BASDAI at 24 weeks)</td>
<td></td>
</tr>
<tr>
<td>Liu J (2016) [72]</td>
<td>SpA, IBD, Ps, PsA, (1016)</td>
<td>TNFi</td>
<td>TNFα – 308 A/G, TNFα – 238 A/G</td>
<td>TNF/TNFR</td>
<td>G/G predicts good response to TNFi (ASAS20, ASAS40, BASDAI20, BASDAI50 at 12 weeks)</td>
<td></td>
</tr>
<tr>
<td>Fabris M (2016) [73]</td>
<td>SpA (187)</td>
<td>ADA, IFX, GOL, ETN</td>
<td>TNFα -308 A/G, IL6-174 C/G</td>
<td>TNF/TNFR</td>
<td>IL-6 signaling G/G predicts survival of the first TNFi (BASDAI, DAS28-ACR)</td>
<td></td>
</tr>
<tr>
<td>Aita A (2018) [74]</td>
<td>SpA (137)</td>
<td>IFX, ADA, ETN, GOL</td>
<td>TNFRSF1A c.625+10 G</td>
<td>IL6 -174 C/G</td>
<td>IL-6 signaling G/G predicts survival of the first TNFi (BASDAI, DAS28-ACR)</td>
<td></td>
</tr>
<tr>
<td>Murdaca G (2014) [75]</td>
<td>57 (PsA)</td>
<td>ETN, ADA</td>
<td>TNFα + 489 A/G</td>
<td>TNF/TNFR</td>
<td>A allele associates with the response to ETN (PASI, ACR criteria, DAS28, and HAQ at baseline, 3 and 6 months)</td>
<td></td>
</tr>
<tr>
<td>Liu J (2019) [76]</td>
<td>AS (92)</td>
<td>ETN</td>
<td>MYOM2-rs2294066</td>
<td>TNF/TNFR</td>
<td>Associates with response (ASAS20)</td>
<td></td>
</tr>
<tr>
<td>Borda (2019) [77]</td>
<td>92 Proteins profiling</td>
<td>ETN, ADA, IFX</td>
<td>CHUK rs11591741, MAPKAPK2 rs4240847, TLR10 rs11096957, IRAK3 rs11541076</td>
<td>MMPs</td>
<td>Associates with non-response (BASDAI, BASFI and DAS28-CRP)</td>
<td></td>
</tr>
<tr>
<td>Ovejero-Benito (2018) [78]</td>
<td>Ps (39)</td>
<td>ADA</td>
<td>H3 and H4 acetylation, H3K4 and H3K27 methylation</td>
<td>Changes in H3K4 were found between Rs and NR (PASI at 3 and 6 months)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ciechomska M (2018) [79]</td>
<td>AS (13), RA (10)</td>
<td>TNFi</td>
<td>Serum miRNA-5196</td>
<td>BCR signaling MHC-I antigen processing.</td>
<td>Changes in miRNA-5196 can be used as predictive marker of reduced disease activity. Better correlation with changes in DAS20 and ASDAS than CRP.</td>
<td></td>
</tr>
<tr>
<td>Arends (2011) [80]</td>
<td>AS (92)</td>
<td>ETN</td>
<td>MMP-3</td>
<td>MMPs</td>
<td>MMP-3 decreases with TNFi. Change in MMP-3 serum levels are not useful for predicting response to ETN. (ASAS20 and ASAS40 at 3 and 12 months)</td>
<td></td>
</tr>
<tr>
<td>Wagner C (2012) [81]</td>
<td>AS (100)</td>
<td>GOL</td>
<td>92 Proteins profiling</td>
<td>acute inflammation, bone metabolism, coagulation, metabolic factors</td>
<td>Baseline and change in combination of biomarkers demonstrated stronger prediction for clinical efficacy than CRP. (ASAS20 at week 14)</td>
<td></td>
</tr>
<tr>
<td>Ademowo OS (2016) [82]</td>
<td>PsA (25)</td>
<td>ADA</td>
<td>57 proteins panel</td>
<td>New biomarker panel that can be measured at baseline to predict PsA patients' response to biologics. (DAS28 at 12 weeks)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turina (2014) [83]</td>
<td>SpA (78)</td>
<td>IFX, ETN</td>
<td>Calprotectin, MMP3, hsCRP, IL-6, pentraxin-3, Alpha-2-macroglobulin, VEGF</td>
<td>Acute phase reactants IL-6 signaling TLR MMPs</td>
<td>Calprotectin and hs-CRP are good biomarkers with high sensitivity to change upon treatment.</td>
<td></td>
</tr>
<tr>
<td>Østgård RD (2017) [84]</td>
<td>AS (30)</td>
<td>ADA</td>
<td>Fecal Calprotectin</td>
<td>TLR</td>
<td>Elevated baseline fecal calprotectin may predict better treatment response. (ASDAS at weeks 12, 20 and 52)</td>
<td></td>
</tr>
<tr>
<td>Authors</td>
<td>Study Type</td>
<td>Abbreviations</td>
<td>Outcomes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hu H (2019)</td>
<td>AS (262)</td>
<td>TNFi</td>
<td>Serum Calprotectin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>NSAID</td>
<td>Change of calprotectin during first month could predict patients achieving ASAS 40 with AUC of 0.691.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jarlborg M</td>
<td>AS (451)</td>
<td>RA(960)</td>
<td>TNFi Serum Calprotectin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AS (237)</td>
<td>PsA</td>
<td>Calprotectin serum levels associate with disease activity in RA, SpA but not in PsA. (SJC, DAS, HAQ, joint radiographs, USPD, BASDAI, ASDAS, SJC, DAPSA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baraliakos X</td>
<td>AS (867)</td>
<td>ETN</td>
<td>C-reactive protein CRP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>IL-6 signaling Complement triggering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Very high baseline CRP is a predictor for week-12 outcomes (ASAS20, ASAS50, ASDAS-CRP at week 12)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hokstad I</td>
<td>SpA (51)</td>
<td>TNFi</td>
<td>Complement activation (sc5b-9 serum levels)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Complement pathway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Decrease from baseline to 6 weeks of TNFi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chimenti MS</td>
<td>PsA (55)</td>
<td>ETN</td>
<td>Plasma complement C3, C4, and B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ADA</td>
<td>Complement pathway</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>High baseline C3 levels predict non-response. (DAS28 and EULAR at baseline and 22 weeks)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang XB (2017)</td>
<td>AS (19)</td>
<td>TNFi</td>
<td>656 DEG :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(PBMC)</td>
<td></td>
<td>CXCR2, NOTCH1, TNRFSF2A, IL6R, IL10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dolcino M</td>
<td>AS (10)</td>
<td>ADA</td>
<td>Assessed 14500 DEG in AS patients before and after ADA treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(PBMC)</td>
<td></td>
<td>TLR signaling, TNF signaling, IFN Type I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wnt signaling, ADA treatment modified 44% of DEGs in Rs compared to 12% in NR. (BASDAI6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enginar AU</td>
<td>AS (203)</td>
<td>TNFi</td>
<td>NLR Plr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>RA (68)</td>
<td></td>
<td>Neutrophils Lymphocytes Platelets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Miyagawa I</td>
<td>PsA (26)</td>
<td>ADA</td>
<td>Th1 type Th1/Th17 type Th1/Th17 high Th1/Th17 low</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>IFX, UST, SEC</td>
<td>T cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schulte-Wrede</td>
<td>AS (31)</td>
<td>ADA, ETN</td>
<td>NK CD8+ cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U (2018)</td>
<td></td>
<td>NK cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Composition of NK cell compartment predicts therapeutic outcome. (BASDAI50 between baseline and 1 to 6 months)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dulic S (2018)</td>
<td>AS (22)</td>
<td>TNFi</td>
<td>T cell repertoire</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increase in CD4HLADR, CD8HLADR and CD4CD25 cells in Rs. (ASAS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xueyi L (2013)</td>
<td>AS (222)</td>
<td>TNFi</td>
<td>Th17 and Treg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Higher baseline Th17 in AS vs controls. Th17 significantly decreased in Rs, increased in NR. Treg increased in Rs and decreased in NR. (ASAS at 6 months)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andersen T</td>
<td>SpA (30)</td>
<td>TNFi</td>
<td>Th17 and Th22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Associates with good clinical response to TNFi at 1 year. (ΔASDAS, ΔBASDAI from 0 to 12 months, MRI)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yang M (2020)</td>
<td>AS (177)</td>
<td>ETN</td>
<td>28 T lymphocyte and 12 B lymphocyte subsets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>T cells B cells</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Baseline: imbalance of T and B cell subsets in AS patients. After TNFi: decreased naive CD4+ cells, increased Treg and B10 cells, Treg increase positively correlated with CRP decrease. (CRP, ASDAS, BASDAI at 12 weeks)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: SpA, Spondyloarthritis; AS, Ankylosing Spondylitis; RA, Rheumatoid Arthritis; PsA, Psoriatic Arthritis; IBD, Inflammatory Bowel Disease; ADA, adalimumab; ETN, etanercept; GOL, golimumab; IFX, infliximab; TNFi, UST, ustekinumab; SEC, secukinumab; TNF-inhibitors; HC, healthy controls; Rs, responders; NR, non-responders; MiRNA, Micro RNA; BCR, B cell receptor; NLR, neutrophils/lymphocytes.
ratio; PLR: platelet/lymphocyte ratio, CRP, C-reactive protein; hsCRP, High sensitivity C-reactive protein; SDAI, simplified disease activity index; VEGF, vascular endothelial growth factor; ESR, erythrocyte sedimentation rate; DAS28, disease activity score 28; ASDAS, Ankylosing Spondylitis Disease Activity Score; MMPs, Matrix Metalloproteinases; TLR, Toll like receptor; DEG, differentially expressed genes; SJC, swollen joint count; DAS, Disease Activity Score; HAQ, Health Assessment questionnaire; USPD, ultrasound power Doppler; BASDAI, Bath Ankylosing Spondylitis Disease Activity Index; DAPSA, Disease Activity Index for Psoriatic Arthritis.
<table>
<thead>
<tr>
<th>Study</th>
<th>Disease (Cohort)</th>
<th>Treatment</th>
<th>Biomarkers</th>
<th>Pathway</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pavy S (2010) [98]</td>
<td>RA (1721, 12 cohorts) meta-analysis</td>
<td>TNFi</td>
<td>G-308A TNFα</td>
<td>TNF</td>
<td>No association with treatment response (deltaDAS28 at 12 weeks)</td>
</tr>
<tr>
<td>Zeng Z (2013) [99]</td>
<td>RA (2127, 15 cohorts) meta-analysis</td>
<td>TNFi</td>
<td>G-308A TNFα</td>
<td>TNF</td>
<td>Patients with the G allele respond better to treatment (DAS28/ACR)</td>
</tr>
<tr>
<td>Cui J (2013) [100]</td>
<td>RA (2706)</td>
<td>IFX ADA ETN</td>
<td>rs6427528 CD84</td>
<td>SLAM family</td>
<td>Association with response to ETN (EULAR criteria at 3-12 months)</td>
</tr>
<tr>
<td>Swierkot J (2013) [101]</td>
<td>RA (280)</td>
<td>IFX ADA ETN</td>
<td>TNFR1A G36A</td>
<td>TNF</td>
<td>Associated with remission or low disease activity (EULAR criteria at 6 months)</td>
</tr>
<tr>
<td>Ferreiro-Iglesias A (2016) [102]</td>
<td>RA (755)</td>
<td>IFX ADA ETN</td>
<td>rs10919563 PTPRC</td>
<td>TNFA C-857T</td>
<td>Associated with response to treatment (EULAR criteria at 3-6 months)</td>
</tr>
<tr>
<td>Honne K (2016) [103]</td>
<td>RA (487)</td>
<td>IFX ADA ETN</td>
<td>rs284511 MAP3K7</td>
<td>TGFbeta, BMP</td>
<td>associated with treatment response (deltaDAS28-CRP at 3-6 months)</td>
</tr>
<tr>
<td>Julià A (2016) [104]</td>
<td>RA (372)</td>
<td>IFX ADA ETN</td>
<td>rs11387825 MED15</td>
<td>PC2, transcriptional activation</td>
<td>Association with response to ETN (EULAR criteria at 3 months)</td>
</tr>
<tr>
<td></td>
<td>RA (245)</td>
<td>IFX ADA ETN</td>
<td>rs11387825 MED15 rs6065221 MAFB</td>
<td>transcriptional activation</td>
<td>Association with response to ETN Association with response to ETN IFX</td>
</tr>
<tr>
<td>Cui J (2017) [105]</td>
<td>RA (1094)</td>
<td>IFX ADA ETN</td>
<td>NFKBIA AICDA</td>
<td>NFκB, somatic hypermutation class-switch recombination cell cycle</td>
<td>No association with response at genome wide significance. Three genes with individual P values of <0.01 (EULAR criteria at 3-6 months)</td>
</tr>
<tr>
<td>Marwa OS (2017) [106]</td>
<td>RA (108)</td>
<td>ETN IFX</td>
<td>rs763780 IL17F 7488 A/G</td>
<td>IL-17</td>
<td>Association with response. Serum levels of IL-17 higher in RA versus HC (DAS28)</td>
</tr>
<tr>
<td></td>
<td>HC (202)</td>
<td></td>
<td>rs2397084 IL17F 7383 A/G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sieberts SK (2016) [107]</td>
<td>RA (2706 training) RA (591 validation)</td>
<td>TNFi</td>
<td>Published SNP data predicting response to TNFi Meta-analysis</td>
<td>no significant genetic contribution to prediction accuracy of response (deltaDAS28 at 3-12 months)</td>
<td></td>
</tr>
<tr>
<td>Cherlin S (2018) [108]</td>
<td>RA (1819)</td>
<td>TNFi</td>
<td>GWAS data from Matura consortium</td>
<td>poor prediction of response using 11 different statistical methods (delta CRP, delta ESR, delta SJC28 at 3-6 months)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RA (657)</td>
<td>MTX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guan (2019) [109]</td>
<td>RA (2706 training) RA (591 validation)</td>
<td>TNFi</td>
<td>rs1990099 MAGI2 rs10833455 NELL1 rs10833456 NELL1</td>
<td>small GTPase signalling osteochondrogenesis</td>
<td>clinical and SNP data modelled to predict treatment response. Genetic information only marginally improves the prediction (deltaDAS28 at 3-12 months)</td>
</tr>
<tr>
<td>Ferreiro-Iglesias A (2019) [110]</td>
<td>RA (3978)</td>
<td>IFX ETN ADA</td>
<td>rs2378945 NUBPL</td>
<td>NADH dehydrogenase</td>
<td>association with response to ETN (EULAR criteria at 3 months)</td>
</tr>
<tr>
<td>Reference</td>
<td>Study Design</td>
<td>Outcome Measure</td>
<td>Methodology</td>
<td>Results/Conclusions</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Bai M (2019) [111]</td>
<td>RA (507) HC (499)</td>
<td>RA (45) cohorts</td>
<td>Treatment vs. placebo/matched controls</td>
<td>Reduced inflammation in treated group.</td>
<td></td>
</tr>
<tr>
<td>Krintel SB (2015) [113]</td>
<td>RA (180)</td>
<td>ADA</td>
<td>Serum analysis</td>
<td>Decreased ADA levels in treated group.</td>
<td></td>
</tr>
<tr>
<td>Shi R (2018) [117]</td>
<td>RA (69)</td>
<td>ETN</td>
<td>IL-6 expression</td>
<td>Increased IL-6 in treated group.</td>
<td></td>
</tr>
<tr>
<td>BK Han (2016) [118]</td>
<td>RA (29)</td>
<td>TNFi</td>
<td>Serum analysis</td>
<td>Increased TNFi in treated group.</td>
<td></td>
</tr>
<tr>
<td>Haschka J (2016) [119]</td>
<td>RA in DAS28 remission (101)</td>
<td>Conventional and/or biological DMARD, randomized to tapering</td>
<td>Anticitrullinated protein antibodies</td>
<td>Decreased ACPA positivity in treated group.</td>
<td></td>
</tr>
<tr>
<td>Curtis JR (2012) [120]</td>
<td>RA (230) RA (45) (treatment response)</td>
<td>MTX anti-TNFa</td>
<td>Multi-biomarker disease activity (MBDA) score : EGF, VEGF-A, leptin, IL-6, SAA, CRP, VCA-M, MMP-1, MMP-3, TNFRI, YKL-40, and resistin</td>
<td>Increased MBDA score in treated group.</td>
<td></td>
</tr>
<tr>
<td>Centola M (2013) [121]</td>
<td>RA (676, 5 cohorts)</td>
<td>Conventional and biological DMARDs</td>
<td>MBDA</td>
<td>Discriminates patients with low vs. moderate/high clinical disease activity. Tracks changes in DAS28-CRP.</td>
<td></td>
</tr>
<tr>
<td>Hirata S (2015) [122]</td>
<td>RA (84)</td>
<td>ADA ETN IFX</td>
<td>MBDA</td>
<td>MBDA scores correlate with disease activity. Tracks response to treatment (deltaDAS28-CRP, deltaDAS28-ESR, at 24 and 52 weeks)</td>
<td></td>
</tr>
<tr>
<td>Hirata S (2016) [123]</td>
<td>RA (83)</td>
<td>ADA ETN IFX</td>
<td>MBDA</td>
<td>MBDA score and DAS28 at week 24 are significant predictors of radiographic progression at week 52</td>
<td></td>
</tr>
<tr>
<td>Li W (2016) [124]</td>
<td>RA (163)</td>
<td>MBDA</td>
<td>MBDA</td>
<td>MBDA score is independently associated with radiographic progression.</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td>Patients</td>
<td>Treatments</td>
<td>Biomarkers</td>
<td>Pathways</td>
<td>Summary</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Fleischmann R (2016) [125]</td>
<td>RA (241) RA (251)</td>
<td>ABC ADA</td>
<td>MBDA</td>
<td>MBDA pathways</td>
<td>MBDA does not reflect the status of radiographic progression, nor disease activity.</td>
</tr>
<tr>
<td>Hambardzumyan K (2016) [126]</td>
<td>RA (205)</td>
<td>Mtx+IFX, conventional DMARDs</td>
<td>MBDA</td>
<td>MBDA pathways</td>
<td>MBDA score at baseline, month 3 and year 1 is correlated with subsequent rapid radiographic progression.</td>
</tr>
<tr>
<td>Rech J (2016) [127]</td>
<td>RA (94)</td>
<td>conventional and/or biological DMARD (tapering)</td>
<td>MBDA</td>
<td>MBDA pathways</td>
<td>Higher baseline MBDA scores significantly associated with relapse. ACPA positivity and MBDA are independent predictors of relapse.</td>
</tr>
<tr>
<td>Hambardzumyan K (2017) [128]</td>
<td>RA (157)</td>
<td>Mtx+IFX, conventional DMARDs</td>
<td>MBDA</td>
<td>MBDA pathways</td>
<td>MBDA score is associated with response to second-line therapy and with response to IFX (EULAR criteria at 3 and 12 months).</td>
</tr>
<tr>
<td>Bouman CAM (2017) [130]</td>
<td>RA (171)</td>
<td>ADA ETN randomized discontinuation</td>
<td>MBDA</td>
<td>MBDA pathways</td>
<td>Baseline MBDA score is not predictive for clinical outcome in the taper group, but predicts major flares in the usual care group. Radiographic progression was minimal and not predicted by MBDA score.</td>
</tr>
<tr>
<td>Bechman K (2018) [132]</td>
<td>RA (152)</td>
<td>conventional and/or biological DMARD</td>
<td>MBDA</td>
<td>MBDA pathways</td>
<td>Baseline MBDA score not predictive of flares.</td>
</tr>
<tr>
<td>Curtis JR (2019) [133]</td>
<td>RA (929, 5 cohorts) Meta-analysis</td>
<td>Mtx, ADA, IFX, ABA</td>
<td>MBDA</td>
<td>MBDA pathways</td>
<td>High negative predictive value of MBDA score for radiographic progression.</td>
</tr>
<tr>
<td>Brahe CH (2019) [133]</td>
<td>early RA (180)</td>
<td>Mtx Mtx+ADA</td>
<td>MBDA</td>
<td>MBDA pathways</td>
<td>Baseline MBDA was associated with radiographic progression at 1 year, delta MBDA (baseline to 3 months) with clinical remission at 6 months (DAS28- CRP<2.6).</td>
</tr>
<tr>
<td>Cuppen B (2018) [134]</td>
<td>RA (65 training) RA (185 validation)</td>
<td>IFX ADA ETN GOL CTZ Chemokines IL6 IL1 TNF</td>
<td>MBDA</td>
<td>MBDA pathways</td>
<td>The protein score marginally improves prediction of DAS28 at 3 months after treatment, compared to clinical scores.</td>
</tr>
<tr>
<td>Choi IY (2015) [135]</td>
<td>RA (170)</td>
<td>ADA IFX RIX Serum calprotectin (MMP8/14, S100A8/A9) TLR</td>
<td>MBDA</td>
<td>MBDA pathways</td>
<td>Baseline calprotectin serum levels are higher in responders. Levels in Rs decrease after treatment (EULAR criteria at 16 weeks).</td>
</tr>
<tr>
<td>Nair SC (2016) [136]</td>
<td>RA (170)</td>
<td>ADA IFX RIX Serum calprotectin (MMP8/14, S100A8/A9)</td>
<td>MBDA</td>
<td>MBDA pathways</td>
<td>Logistic regression model of baseline calprotectin serum levels predicts response (EULAR criteria at 16 weeks).</td>
</tr>
<tr>
<td>Nordal HH (2016) [137]</td>
<td>RA (39)</td>
<td>IFX Serum calprotectin (MMP8/14, S100A8/A9)</td>
<td>MBDA</td>
<td>MBDA pathways</td>
<td>Weak association of baseline calprotectin levels with radiographic progression. No predictive power for outcome.</td>
</tr>
<tr>
<td>Smith SL (2017) [138]</td>
<td>RA (236)</td>
<td>ETN Serum S100A9</td>
<td>MBDA</td>
<td>MBDA pathways</td>
<td>No association with response, nor clinical parameters of disease activity (EULAR criteria at 6 months).</td>
</tr>
<tr>
<td>Inciarte-Mundo J (2018) [139]</td>
<td>RA (47) PsA (56)</td>
<td>IFX ADA ETN Serum calprotectin (MMP8/14, S100A8/A9)</td>
<td>MBDA</td>
<td>MBDA pathways</td>
<td>Baseline calprotectin serum independently predicts relapse.</td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Cohort</td>
<td>Intervention</td>
<td>Outcome Measure</td>
<td>TLR</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------</td>
<td>--------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-----</td>
</tr>
<tr>
<td>Tweehuysen L</td>
<td>2018</td>
<td>RA (125)</td>
<td>ADA ETN starting</td>
<td>Serum calprotectin (MRP8/14, S100A8/A9)</td>
<td>TLR</td>
</tr>
<tr>
<td>Yunchun L</td>
<td>2018</td>
<td>RA (180)</td>
<td>rhTNFR-Fc</td>
<td>Serum calprotectin (MRP8/14, S100A8/A9)</td>
<td>TLR</td>
</tr>
<tr>
<td>De Moel EC</td>
<td>2019</td>
<td>RA (104)</td>
<td>tapering DMARDs or biologics</td>
<td>Serum calprotectin (MRP8/14, S100A8/A9)</td>
<td>TLR</td>
</tr>
<tr>
<td>Daien CI</td>
<td>2014</td>
<td>RA (96)</td>
<td>TNFi</td>
<td>memory B cells in peripheral blood</td>
<td>B cells</td>
</tr>
<tr>
<td>Citro A</td>
<td>2015</td>
<td>RA (16)</td>
<td>ETN</td>
<td>CD8+ T cells</td>
<td>CD8+ T cells</td>
</tr>
<tr>
<td>Hull DN</td>
<td>2016</td>
<td>RA (25)</td>
<td>ADA ETN</td>
<td>Th17 cells at baseline</td>
<td>Th17</td>
</tr>
<tr>
<td>Salomon S</td>
<td>2017</td>
<td>RA (31)</td>
<td>TNFi ABT TCZ</td>
<td>CD24hiCD27+ Breg Th17 cells</td>
<td>B cells, Th17</td>
</tr>
<tr>
<td>Khanniche A</td>
<td>2018</td>
<td>RA (49)</td>
<td>GOL, MTX</td>
<td>Increased effector memory and decreased central memory CD8+ and CD4+ T cells after TNFi</td>
<td>CD8, CD4 T cells</td>
</tr>
<tr>
<td>Lee HN</td>
<td>2019</td>
<td>RA (82)</td>
<td>ADA ETN IFX</td>
<td>Neutrophil/lymphocyte ratio (NLR) Platelet/lymphocyte ratio (PLR)</td>
<td>Neutrophils Lymphocytes platelets</td>
</tr>
<tr>
<td>Cianciotti BC</td>
<td>2020</td>
<td>RA (27)</td>
<td>ETN</td>
<td>CD45RA+CD62L+CD96+ Tscm IL-17</td>
<td>Tscm IL-17</td>
</tr>
<tr>
<td>Rodriguez-Martin E</td>
<td>2020</td>
<td>RA (98)</td>
<td>TNFi MTX, PREDN</td>
<td>CD19+CD27- Naive B cells</td>
<td>Naive B cells</td>
</tr>
</tbody>
</table>

MULTIDIMENSIONAL PARAMETERS

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Cohort</th>
<th>Intervention</th>
<th>Outcome Measure</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bystrom J</td>
<td>2017</td>
<td>RA (97)</td>
<td>ADA ETN GOL CTZ, MTX</td>
<td>GM-CSF, IL-1beta</td>
<td>GM-CSF mostly produced by T cells. GM-CSF+ T cells are TNFα positive and IL-17 negative. High pre-treatment blood levels of GM-CSF are predictive of response to TNFi (EULAR criteria at 3 months)</td>
</tr>
<tr>
<td>Lewis MJ</td>
<td>2019</td>
<td>RA (90)</td>
<td>Conventional DMARDs</td>
<td>Synovial pathotypes determined by immunohisto-</td>
<td>Type I IFN signature, chemokine modules,</td>
</tr>
<tr>
<td>Author Year (Reference)</td>
<td>Disease Type</td>
<td>Methodology</td>
<td>Synovial Pathotypes</td>
<td>Baseline Pathotype Association</td>
<td>Additional Findings</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Lliso-Ribera G (2019)[151]</td>
<td>Early RA (200)</td>
<td>Conventional DMARDs</td>
<td>Synovial pathotypes determined by immunohistochemistry and synovial gene expression</td>
<td>Neutrophil lymphocytes</td>
<td>Baseline lympho-myeloid pathotype is significantly associated with requirement for biologics at 12 months. These patients have higher expression of genes regulating B and T cell differentiation/activation, MMP1, TIMP1, TNFA</td>
</tr>
<tr>
<td>Aterido A (2019)[56]</td>
<td>RA (11)</td>
<td>IFX ADA ETN</td>
<td>Synovial gene coexpression module (18 genes)</td>
<td>Nucleotide metabolism IL-7</td>
<td>The gene coexpression module is associated with response to ADA (EULAR criteria at week 14)</td>
</tr>
<tr>
<td>Cherlin S (2020)[60]</td>
<td>RA (4741), RA (90)</td>
<td>IFX ETN ADA GOL CTZ</td>
<td>IL18RAP</td>
<td>IL-18</td>
<td>Transcript levels in blood correlate with ESR changes after treatment</td>
</tr>
<tr>
<td>Massey J (2018)[152]</td>
<td>RA (1752)</td>
<td>IFX ADA ETN</td>
<td>rs7195994 FTO rs2540767 rs11599217 DOCK1 rs10739537 BRINP1 rs948138 MMP20/MMP27 rs2187874 ZNF595,ZNF718</td>
<td>Phagocytosis, cell migration, FoxP3, Treg, MMPs</td>
<td>Association with response to TNFi (delta DAS28-ESR at 3-6 months)</td>
</tr>
<tr>
<td>Farutin V (2019)[153]</td>
<td>RA (40), RA (36)</td>
<td>ADA IFX</td>
<td>Increased innate cell signature at baseline in Rs, increased adaptive cell signature in NRs</td>
<td>Myeloid cells</td>
<td>Downregulation of myeloid and platelets genes, upregulation of T and B cell markers after TNFi. Increased NLR at baseline correlates with increased probability of response (EULAR criteria at 3 months)</td>
</tr>
<tr>
<td>Tao W (2020)[154]</td>
<td>RA (89)</td>
<td>ADA, ETN</td>
<td>Gene expression and DNA methylation profiling</td>
<td>Random Forest model based on differentially expressed genes or DNA methylation predicts response to ADA or ETN (DAS28 at 6 months)</td>
<td></td>
</tr>
<tr>
<td>Spiliopoulou A (2019)[155]</td>
<td>RA (2938)</td>
<td>ADA ETN CTZ</td>
<td>CD39 CD40 CD39/CD73 pathway T cell costimulation</td>
<td>RA risk score at the CD40 locus, and expression score for CD39 on CD4 T cells are associated with response to TNFi (delta SJC, delta ESR at 6 months)</td>
<td></td>
</tr>
<tr>
<td>Folkersen L (2016)[156]</td>
<td>RA (185, of which 59 with TNFi), HC (61)</td>
<td>MTX, TNFi</td>
<td>SORBS3, AKA9, CYP4F12, MUSTN, CX3CR1, SL22A3, C21orf58,TBC1D8 siCAM1, CXCL13 rs6028945 rs7305646 lncRNA</td>
<td>ICAM1 chemokines</td>
<td>The combined variables explain half of the variation in ΔDAS28-CRP in the TNFi group. Most of the prediction comes from siCAM1, CXCL13, CX3CR1 and SL22A3 (EULAR criteria, deltaDAS28-CRP at 3 months)</td>
</tr>
<tr>
<td>Tasaki S (2018)[157]</td>
<td>RA (45), HC (35)</td>
<td>MTX IFX TCZ</td>
<td>Whole blood transcriptome, serum proteome, cell counts</td>
<td>Neutrophils, NK complement (C3)</td>
<td>After treatment: decreased neutrophils, increased NK (gene expression and cell counts), normalization of complement pathway proteins</td>
</tr>
</tbody>
</table>

Abbreviations: ABA, abatacept; ADA, adalimumab; CTZ, certolizumab; ETN, etanercept; GOL, golimumab; IFX, infliximab; MTX, methotrexate; DMARD, disease-modifying antirheumatic drugs; TNFi, TNF-inhibitors; HC, healthy controls; Rs, responders; NRs, non-responders; NLR, neutrophils/lymphocyte ratio; PLR:
platelet/lymphocyte ratio, CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; DAS28, disease activity score 28; SJC, swollen joint counts, EULAR, European League Against Rheumatism.

A recent community-based effort has assessed the use of available SNP data to predict clinical outcome of TNF inhibition in RA patients, using machine learning algorithms [107]. Despite a significant estimate of heritability of the treatment response, none of the proposed models could demonstrate a significant contribution of genetic variants to response prediction, over the conventional clinical parameters [107]. A useful strategy to improve the power of the predictive models could be the combination of different types of biomarkers that better capture the non-genetic components of response to therapy.

In the context of IBD, an association study highlighted polymorphisms in the TLR2 gene that are associated with response to anti-TNF therapy. rs3804099 and rs1816702 were associated with beneficial response to treatment in CD patients, suggesting that genetically determined increased TLR2 levels were associated with beneficial response among patients with CD [50]. However, the rs11938228 and rs4696480 polymorphism at the TLR2 locus were associated with nonresponse to treatment in the UC patients [50]. Another recent study from Bank et al. showed that polymorphisms in genes involved in the regulation of the NFκB pathway (TLR2, TLR4, and NFKBIA), the TNF-α signaling pathway (TNFRSF1A), and other cytokine pathways (NLRP3, IL1RN, IL18, and i) were associated with primary response to anti-TNF therapy in IBD patients [49]. Another recent genetic association study in two independent large IBD cohorts successfully replicated 2 variants (rs116724455 in TNFSF4/18, rs2228416 in PLIN2), which may predict anti-TNF response in patients with IBD at genome-wide significance. The minor alleles of the two polymorphisms were associated with refractory response to anti-TNF agents [158].

3.3 Epigenetic biomarkers

Pharmacoepigenetic profiling may also add another layer of complexity to the relation between genetics and variations in drug responses [159]. Only a few studies in the literature have explored the epigenetic modifications of chromatin before and after anti-TNF treatment in order to identify epigenetic biomarkers that may predict treatment responses in patients affected by rheumatic diseases. To date, most of the epigenomic studies were designed to identify diagnosis biomarkers or new therapeutic targets, and only few were aimed at the identification of biomarkers predictive of anti-TNF outcome. In an attempt to identify epigenetic biomarkers that could predict response to biological drugs, including adalimumab, in psoriasis and psoriatic arthritis patients, Ovejero-Benito et al. assessed 4 histone modifications (H3 and H4 acetylation, H3K4 and H3K27 methylation) in PBMC of 39 psoriasis patients using an ELISA technique, before and after treatment initiation. Significant changes in histone H3 and H4 acetylation and H3K4 methylation were observed between psoriasis patients and controls, however, no changes in histone
modification were seen upon treatment, except for a decrease in H3K27 methylation in responders compared to non-responders [78]. Although this study presents many limitations, including the fact that the small number of patients were treated with different biologicals and that a mixture of immune cell populations was analyzed, it is one of very few studies that tried to identify epigenetic biomarkers to predict treatment outcome in rheumatic diseases, and it set the basis for other similar studies on larger cohorts.

Most of the epigenetic studies performed on SpA have focused on miRNA, very few on DNA methylation and even fewer on histone modifications [160]. miRNAs are regulatory non-coding RNA molecules; their expression may be modified under pathophysiological stress conditions, disease or treatment [161]. In a small exploratory study, miRNA-5196 expression levels in serum were measured using real-time PCR. The analysis of samples from 10 RA patients and 13 AS patients, before and after anti-TNF-α therapy, revealed that changes in miRNA-5196 expression positively correlated with the decrease in disease activity scores in patients following anti-TNF-α therapy, suggesting that MiRNA-5196 may be an interesting biomarker to assess treatment response [79]. In silico analysis identify the Fra2 transcription factor, Matrix Metalloproteinase 15 (MMP-15) and the IL-1 receptor as possible targets of MiRNA-5196. The possible biological role of MiRNA-5196 in AS and RA, as well its utility as a clinical biomarker, need confirmative replication studies in larger cohorts.

Baseline serum or whole blood MiRNA signature associated with treatment responses have also been explored in RA patients treated with TNF-blockers. Among the putative targets of differentially expressed MiRNA were molecules of the IL6 and NF-kB pathways, chemokines, and extracellular matrix proteins [112,113]. Although these studies included a larger number of patients (Table 2), validation in a replication cohort is still lacking.

In a recent study, Tao et al. analyzed both gene expression and DNA methylation profiles in peripheral blood mononuclear cells, and in CD4+ T cells and monocytes isolated from RA patients before anti-TNF treatment [154]. The authors identified a large number of genes differentially expressed (DEG) between responders and non-responders at baseline, as well as differentially methylated regions (DMR), although the majority of DEG and DMR were not significant after correction for multiple testing, and the overlap of DEG with those identified previously was small [162]. Notably, both DEG and DMR were specific not only to the cell population studied, but also to the type of anti-TNF treatment (etanercept versus adalimumab). Among the DEG identified in this study were transcription factors (such as IRF1, FOXO3 and FOXO4), genes of the TNF and JAK/STAT signaling pathways, and IL18R1. The authors applied random forest-based algorithms with internal cross-validation, in order to construct predictive models for response to adalimumab or etanercept. The models were subsequently tested in a small replication cohort (9 patients) and in patients assigned to a second TNFi treatment. The prediction accuracy of the models were different for each cell population, treatment and type of data, and the model based on methylation data for response to adalimumab reached the highest accuracy of 88% [154]. Although these results require
replication in an independent patient cohort, this study underlines the importance of exploring several approaches to identify predictive biomarkers, and of analyzing patients treated with different drugs separately.

Spiliopoulos et al. also tested different parameters to construct predictive models for response to TNFi in RA patients [155]. The authors took advantage of the new GENOSCORE platform to create genetic scores for RA associated loci, for immune cell traits and for the expression or methylation of a set of genes whose expression levels were previously associated with treatment response. The genotypic scores for each type of intermediate trait was evaluated for its ability to improve predictive models when added to clinical parameters. Genotypic scores for RA risk improved response prediction, however explained less than 1% of the variance in phenotype, suggesting only a marginal overlap of the genetics of RA disease risk and of response to TNFi. The effect was driven mainly by regional score at the CD40 locus. Among the scores for immune cell traits, expression levels of CD39 on CD4+ T cells were associated with worse response. The inclusion of scores linked to expression (eQTL) quantitative trait loci also resulted in a small improvement of the prediction performance of the model, but further addition of methylation QTLs had no effect, suggesting that eQTLs and mQTLs provide overlapping information.

Overall, integrative approaches for prediction of anti-TNF treatment outcome are still poorly explored. A proof of concept for this strategy in RA patients was provided by Folkersen et al., who constructed prediction models based on selected SNP, transcripts or protein biomarkers which had been associated with response to therapy in the literature [156]. The model combining all three different type of biomarkers explained 51% of the variation in DAS28-CRP after TNFi therapy, and resulted in an improved AUC, compared to the model with protein biomarkers alone [156].

3.4 Cellular profiling

Explorative studies to identify cell-based biomarkers that can be used to predict response to TNF inhibitors have used flow cytometry-based approaches to identify qualitatively and/or quantitatively modified cell populations before and after treatment onset.

An interplay of several innate and adaptive immune cell populations may be involved in SpA pathogenesis [163], and it has been reported that TNFi impact T cell populations in SpA patients [94–97]. All these observations suggest that analyzing changes in immune cells populations in SpA patients undergoing treatment may be of interest to explore disease mechanisms and therapeutic correlations.

Ursula Schulte-Wrede et al [93] performed a deep profiling of peripheral leukocytes in 31 AS patients under adalimumab or etanercept, using an integrated, multi-parametric flow cytometric approach to analyze 50 different surface antigens. The authors then applied an automated cell clustering approach (immunoClust) to identify immunophenotypic signatures predictive of response. The baseline frequencies of CD8+ NK cell subsets turned out to carry the best predictive power for therapeutic outcome in AS patients, with pre-treatment frequency of CD8+ NK cells significantly higher in responders compared
with non-responders, in particular for etanercept-treated patients. Although further validation of NK cell subsets for clinical prediction of TNF inhibitor outcome is necessary, this study suggests that cellular response signatures can be identified in peripheral blood using extensive immunophenotyping approaches [93].

Increased effector responses after TNFi treatment has also been observed in RA patients (Table 2). Patients treated with golimumab showed an increase in the CD8+ T cell effector population, accompanied by increased responses to viral antigens, suggesting that TNF blockade, while broadly suppressing inflammation, does not induce generalized immunosuppression, but rather may “normalize” immune responses [34]. In agreement with this concept, anti-TNF treatment did not affect the expression of TNF-inducible genes in the site of acute inflammatory challenge (tuberculin injection), while decreasing the inducibility of these genes in blood samples [116].

Many studies have suggested a role for effector T cell populations such as Th1 and Th17 in SpA pathogenesis and disease activity [164]. In a targeted cellular profiling approach, some studies focused on specific effector cell subsets, such as Th1, Th17, and Treg cell populations. The evaluation of these cell subsets before and after anti-TNF treatment is so far rather inconclusive, perhaps due to the difficulties of reliably quantifying small cell populations by immunophenotyping large cohorts of patients. Xueyi et al [95] analysed Th17 and Treg populations in 222 AS patients at baseline and after anti-TNF treatment. At baseline, significantly higher Th17 frequencies and lower Treg frequencies were observed relative to healthy controls, independently of future response to treatment. Baseline frequencies of Th17 cells, and baseline levels of Th17-related cytokines were positively correlated with the BASDAI disease score. After anti-TNF therapy Th17 cell frequencies declined significantly only in responders, while increasing in non-responders. In the same study, the authors found that also serum levels of IL-6, IL-17 and IL-23 significantly decreased only in responders [95]. On the contrary, an increase in IL-17+ and in IL-22+ cells after adalimumab treatment was reported by Andersen et al. in 30 SpA patients [96].

An increase of Th17 frequency in patients’ blood after TNF inhibition was also observed in a study on 25 RA patients. This study also reported that higher Th17 frequencies at baseline correlated with worse response to anti-TNF therapy, as defined by ultrasonographic measure of synovial thickening [145].

Alterations in blood cell counts may occur in inflammatory disorders, and ratios of circulating blood cell components can be used to assess inflammatory activity. Neutrophil-lymphocyte ratio (NLR), monocyte-lymphocyte ratio (MLR) and platelet-lymphocyte ratio (PLR) have been found to correlate with the erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) levels, suggesting their use as markers of systemic inflammation for the prognosis of chronic inflammatory diseases [91,165]. Enginar and Kacar [91] retrospectively evaluated 68 RA patients and 203 AS patients on anti-TNF medication for at least 6 months. NLR and PLR correlated with disease activity in both RA and SpA patients. Other studies performed on RA and AS patients have also found similar results [166,167].
Despite growing evidence of the association of NLR and PLR with disease activity, the association of baseline NLR and PLR with response to treatment is less clear. In UC patients with moderate to severe disease, high baseline neutrophil to lymphocyte ratio (NLR), reflecting a high neutrophil count, is an indicator of loss of response to infliximab in patients with moderate-to-severe active UC [168]. Similarly, Han-Na Lee et al. found that, in 82 RA patients, high baseline NLR and PLR were independently associated with a higher risk of non-response to anti-TNF treatment at 12 weeks, but not at 24 weeks [147]. On the other hand, Farutin et al., in a combined whole blood transcriptome and plasma proteome analysis of RA patients, identified the downregulation of myeloid cells and platelet genes as a molecular signature of anti-TNF treatment. This signature was present in both responders and non-responders. However, at baseline, the top differentially expressed genes between responders and non-responders included markers of myeloid cells, which were higher in good responders. The association between higher NLR and good response was also confirmed by the analysis of the NLR in a cohort of 1962 RA patients [153]. The discrepancies observed in the relationship of the NLR with therapeutic responses may be due not only to the limited number of patients in some studies, but also to heterogeneity in the timing of the observation, and in the measures of clinical outcome. As cellular ratios are simple to measure, inexpensive, and easily accessible parameters, further exploring their significance in response prediction may still be a reasonable strategy.

A particularly informative approach may be the analysis of cell populations in the inflamed tissue, when obtaining tissue biopsies is possible. The combined immunohistochemical and gene expression analysis of synovial tissue from early RA patients showed that detection of a lympho-myeloid pathotype before treatment is significantly associated with disease progression requiring biologics at 12 months from the diagnosis [151]. Several synovial gene expression modules, including type I IFN and antiviral modules, B cells and dendritic cell modules, correlated with response to treatment [26]. In ileal Crohn’s disease patients, a recent single cell analysis of the inflamed ileal tissue indicated that a subgroup of patients presented a distinct cellular pattern, called the GiMATS module, which included IgG+ plasma cells, inflammatory macrophages and activated dendritic cells, activated T cells, and stroma cells (activated fibroblasts, and endothelial cells). The enrichment of this cellular module before anti-TNF therapy was predictive of resistance to anti-TNF therapy [169].

3.5 Protein biomarkers

Studies relative to protein biomarkers for TNF inhibitors treatment in SpA have been largely focused on candidate proteins selected for their known role in inflammation and/or bone metabolism, such as acute phase proteins or cytokines. Many studies have shown that anti TNF treatments are effective in modulating acute inflammation proteins [83,170–172]. However, if the baseline serum levels of these proteins can be used to prospectively predict response to treatment needs to be confirmed. In addition,
these markers may lack specificity and be elevated in other inflammatory processes unrelated to SpA. To date, CRP is the most important marker of inflammation in rheumatology and is the only biomarker currently used in clinical practice to select SpA patients for treatment and to predict TNFi therapy outcome [173]. Using a large dataset of 867 AS patients treated with Etanercept, Baraliakos et al. found that categorization of CRP levels prior to treatment initiation is a highly significant predictor of treatment outcome at 12 weeks, with higher baseline CRP categories predictive of a greater proportion of responders, and decreases from very high to normal CRP levels after treatment start, predictive of the future course of TNFi treatment [87].

Many studies have shown that anti TNF treatments are effective in modulating acute inflammation proteins [83,170–172] and several studies attempted to correlate baseline serum levels of biomarkers in TNF naïve patients with treatment outcome [170]. However, at date there is no robust replicated evidence that permits to extrapolate the results to all SpA patients, in particular because baseline inflammatory protein levels fluctuate among patients and depend on disease activity status. An alternative approach is the use of short-term changes in serum biomarkers levels upon anti-TNF treatment to predict long term response to treatment. A common conclusion for both approaches is that combining markers yields a stronger predictive power than the use of an individual marker [65]. Wagner et al. tested serum samples collected at baseline, 4 and 14 weeks from 100 active AS patients randomized to receive golimumab. Selected inflammatory, bone and cartilage markers were analyzed, and profiling of 92 different proteins was performed [81]. The levels of many of these markers was affected by TNF inhibition, including a number of acute phase reactants, bone metabolism factors, coagulation factors (eg. C3), inflammatory chemokines (eg. RANTES and MIP1β), matrix metalloproteinase pathways (eg. MMP3). A robust logistic regression analysis associated baseline biomarkers levels of insulin, leptin, apolipoprotein C3, IL-6, osteocalcin, N-terminal propeptide of type 1 collagen (P1NP) with ASAS 20 response at week 14. The combination of baseline levels of insulin and P1NP was a stronger predictor of response than CRP levels [81].

Leptin, IL-6 and MMP3 are also included in the 12-proteins Multi-Biomarker Disease Activity score, or MBDA. The MBDA score was originally aimed to assess disease activity, and was developed through a multi-step approach of candidate biomarker prioritization and algorithm development [121]. Of the 130 putative protein biomarkers tested, 12 were retained in the final multi-biomarker statistical model. Eleven of these (tumor necrosis factor receptor I (TNF-RI), IL-6, vascular cell adhesion molecule 1 (VCAM-1), epidermal growth factor (EGF), VEGF-A, cartilage glycoprotein 39 (YKL40), matrix metalloproteinase 1 (MMP1), MMP3, serum amyloid A (SAA), leptin, and resistin) were modelled to predict disease activity scores, and then combined with CRP to produce the final MBDA score. These proteins are involved in a variety of innate and adaptive immune pathways, in systemic inflammation and bone/cartilage metabolism [121]. The MBDA score was significantly correlated with Disease Activity Score 28-CRP (DAS28-
CRP), as well as with additional measures of joint inflammation and structural progression by ultrasonography and radiography [122].

The potential of the MBDA score in predicting disease progression has also been extensively analyzed (Table 2), with low MBDA score, in particular, showing good negative predictive power for structural progression [133]. MBDA scores at baseline have been associated with patients’ response to anti-TNF therapy (Table 2). On the other hand, a randomized prospective study did not find a correlation between MBDA score and different clinical scores in patients treated with adalimumab or abatacept [125], and the contribution of the MBDA score to personalized patient management is still under discussion [174–176]. The score may perhaps find its most informative application in the detection of subclinical inflammation in patients with low disease activity by conventional parameters, such as patients in DAS28-CRP remission [177], or low CRP [124], and may therefore play a complementary role to these measures.

Calprotectin is another inflammation marker particularly studied in CID such as SpA, RA, and IBD. Calprotectin may be a promising candidate biomarker to monitor disease activity, bone damage progression and predict response to anti-TNF therapy [178]. This protein is a heterodimeric complex of the S100A8 and S100A9 proteins (also called myeloid-related protein MRP8 and MRP14), and is a damage associated molecular pattern (DAMP) that triggers the innate immunity receptor TLR4, and the Receptor for Advanced Glycation Endproducts (RAGE) [179]. Calprotectin is produced by monocytes and neutrophils locally, suggesting it may be a good marker of tissue inflammation. Both serum and faecal calprotectin levels are increased in SpA patients compared to healthy controls and are associated with CRP, ESR, and disease scores in SpA [85]. Serum calprotectin levels decreased with anti TNF treatment and early changes in calprotectin levels could predict patients achieving ASAS40 with an AUC of 0.691 [85]. In a similar study on faecal calprotectin, Østgård et al. found that high faecal calprotectin levels accurately identified SpA patients with intestinal inflammation. This group of patients was more likely to respond better to Adalimumab treatment, as evaluated by changes in the ASDAS. Faecal calprotectin also associated with stronger inflammation in the sacroiliac joint, as shown by MRI [84]. Turina et al identified Calprotectin as the most promising biomarker of treatment response in SpA and PsA patients, compared to high-sensitive CRP (hsCRP), MMP3 and IL-6. With the highest sensitivity to change upon clinical effective treatment, calprotectin outperformed hsCRP, suggesting it may be a useful maker of disease in CRP-negative patients [83]. Whether baseline concentrations of calprotectin in serum, synovial fluid or faeces can predict treatment responses needs to be confirmed by replication studies on larger cohorts and using standardized methodologies.

Also in RA, serum levels of calprotectin correlate well with disease activity, and are potentially a predictive marker for response (Table 2). Higher baseline calprotectin levels were found to correlate with treatment response [135,136], with relapse after remission [139] and flares after tapering or discontinuation of TNF blockers [142]. However, inconsistencies for this marker have also been reported,
since some studies failed to find a correlation with clinical response [138], or obtained different results in different cohorts [140].

Matrix Metalloproteinases (MMPs), and MMP3 in particular, are reported biomarkers of synovial inflammation and cartilage turnover in inflammatory joint diseases, such as SpA and RA [180]. MMP3 baseline serum levels are elevated in SpA patients compared to healthy controls and correlate with disease activity [181–183]. In the Turina et al study [83], MMP3 showed a statistically significant decrease after two weeks of anti-TNF treatment, however, the effects of treatment were modest and less consistent across different subtypes of SpA. The impact of TNF inhibition on MMP3 levels is so far inconclusive with opposing results from different studies [184], raising the question of whether MMP3 can be used as a predictive biomarker for anti-TNF response. Some studies found a good predictive value for either baseline serum levels and/or reduction over time of MMP3 in SpA and PsA patients under anti-TNF [185,186], Arends et al. [80], however, showed that changes in MMP-3 levels after treatment correlated with disease activity, but baseline MMP3 levels had no predictive value for treatment response.

Tissue biomarkers are OSM (encoding the cytokine oncostatin-M) and its receptor OSMR, which were overexpressed in the intestinal mucosa of patients with active IBD (5 different cohorts, 227 patients) [187]. Neither OSM nor OSMR expression was correlated with standard clinical parameters, including CRP. However, OSM and OSMR expression was increased in patients with IBD who required surgery. High baseline OSM expression in the intestinal mucosa was reproducibly associated with resistance to anti-TNF therapy in IBD [187]. Two additional studies found that high plasma OSM was associated with non-response to anti-TNF treatment in CD patients [188,189]. Oncostatin M is a cytokine produced by T cells and innate immune cells, including monocytes and neutrophils. The OSM receptor is expressed on non-hematopoietic cells, such epithelial cells, fibroblasts and endothelial cells, and the OSM/OSMR axis may therefore be crucial for the cross-talk between stroma and immune cells [190].

4. Conclusions

The past years have been marked by a major increase of our understanding of the cellular and molecular mechanisms of TNF-blocker action in patients affected by chronic inflammatory diseases. However, despite substantial efforts, a validated biomarker predicting therapeutic responses of patients to TNFi has not yet been identified.

There are several reasons that may explain our limited success to identify validated biomarkers that can inform treatment choices. Many studies reported in the literature have been underpowered and patients have not been appropriately stratified. An important issue that is more difficult to tackle is that currently used clinical outcome measures, in particular for SpA, extensively rely on self-reporting. It will be of critical importance to move from self-reporting to objective and quantifiable outcome measures. Furthermore, it is now well appreciated that the biology of treatment failures and development of
resistance to treatment is highly complex, as it is influenced by multiple patient-intrinsic, drug-specific and environmental parameters. To account for this complexity, it may be necessary to develop multi-dimensional biomarkers. However, the general use of biomarkers in the clinics requires that they rely on robust and inexpensive, non-invasive procedures.

Several biomarker candidates to predict treatment responses have emerged recently, in particular OSM and IL7R, whose expression is negatively correlated with response to anti-TNF therapy in IBD. Further studies are needed to validate these candidates, and to test their potential relevance for other diseases.

5. Expert Opinion
The introduction of biologic therapies, such as TNF-blockers, has been a major breakthrough in the treatment of CID. However, these therapies are effective only in a sub-population of patients, and it is currently not possible to predict which patients will not respond to the treatment. In clinical practice, patients non-responsive to a TNF-blocker are treated with a different TNF inhibitor until an effective therapeutic agent is identified. This procedure is expensive and may take a long time, during which the patient is not appropriately treated and is exposed to side effects without clinical benefit. The negative impact of unsuccessful therapy on patients’ quality of life, adds to the negative impact on society, due to the associated high costs of treatment.

A reason for the lack of a “personalized” approach to treatment is the insufficient understanding of what determines the individual predisposition to disease and the mechanisms associated with the response to a specific therapy. In the past years there have been multiple efforts to identify biomarkers that predict response to biological therapies in SpA, RA, IBD and other CID. The results have been, however, rather limited. Some of these biomarkers appear to be highly promising (for example Oncostatin M, in the case of IBD), however, none has been validated yet as a tool to inform treatment choices. The search for biomarkers that correlate with disease activity has been more successful: the Endoscopic Healing Index (EHI) Score has been developed commercially as a tool to monitor disease activity in Crohn’s disease patients, and the MBDA blood test is commercialized as a biomarker for disease activity in RA, although their use is still considered investigational. These biomarkers have also been proposed to predict treatment outcome, but this application remains to be validated.

Several hurdles to the prediction of treatment responses have emerged, such as the limited size and the heterogeneity of cohorts, in terms of patients’ characteristics and treatment (for example, patients treated with different anti-TNF compounds are often analyzed together). There is also a lack of adequate replication studies in different patient populations. In addition, a key issue is the suitability of the current clinical outcome measures, in particular for SpA. The BASDAI score is exclusively based on subjective parameters of self-reporting, and the ASDAS, is a composite of self-reporting and CRP levels. In the case of RA, the DAS28 may represent a more robust outcome measure, since it combines the subjective
measure of tender joint counts (TJC) with the objective observation of swollen joints (SJC). However, even the DAS28 may not constitute a reliable end-point measure [45]. In addition, these scores are usually determined at single time points: integration of longitudinal monitoring would be needed to smoothen score fluctuations.

Genetic biomarkers are attractive, because they are robust, do not vary and are easily measured. However, none of the proposed candidates have been validated to date: the identification may be hindered by the small effect size of common SNPs, which would require studies on very large cohorts to determine an extended panel of SNPs that, combined, have an impact on treatment outcome. Additional complications for the use of SNPs as response biomarkers are the effects of population ancestry, and the fact that they do not address the non-genetic contribution to disease and response to therapy.

Blood biomarkers are ideal for clinical applications, for the ease of sampling. This is especially true for pathologies (such as axSpA) where routine access to diseased tissues is difficult. To date, no robust blood response biomarker has been identified in SpA and in other CID, possibly because of the fluctuation of biomarker levels with time, and the fact that they may not quantitatively reflect pathological processes in tissue.

Immune biomarkers are also strongly impacted by many variables such as age and sex, or environmental factors (for example smoking or CMV infection), introducing another layer of variability that has to be taken into account in the study design, by providing adequate patient stratification.

For the years to come, a key issue will be the constitution of large and highly annotated longitudinal cohorts. These resources are now widely available in the cancer field (examples are The Cancer Genome Atlas, TCGA, and the International Cancer Genome Consortium, ICGC). Standardization of procedures for the collection and management of demographic and clinical data will facilitate comparison of biomarker studies performed in different clinical centers. In addition, the importance of the application of standardized and robust methodology for sample analysis cannot be overstated.

Finally, the combination of different biomarkers that capture the biological complexity of the disease and of the effect of treatment may be necessary to successfully stratify patients to the most appropriate treatment. In this respect, we believe that the combination of multi-dimensional biomarkers and the development of mathematical models (such as deep learning tools) to capture all the biological/environmental influences on treatment outcomes will be an important driver of progress in this area. Finally, it will be important to move towards “objective” outcome measures (including imaging technology) and molecular biomarkers to develop objective and reliable criteria to help clinical decision making.
Figure legends

Figure 1. Design of gene modules for Quantitative Set Analysis for Gene Expression (QuSAGE).
The design the 45 gene modules was based on the deconvolution of cell signaling pathways. The NF-κB signaling pathway was decomposed to create modules dedicated to the genes coding for transmembrane proteins forming the receptors and the genes encoding their ligands. Other modules group intermediate intracellular kinases (NF-κB regulators), which, once activated, phosphorylate IkBα (inhibitor of NF-κB α-subunit), and NF-κB inhibitors and transcription factors.

Figure 2. Analysis of signaling pathways reveals multiple mechanisms of TNF-blocker action in SpA.
Shown are the effects of anti-TNF therapy on the “pathway activity” of 45 gene modules generated from 594 immune-related genes. Peripheral blood samples were obtained from 17 axSpA patients before (D0) and 7 days (D7) after the first injection of a TNF-blocker. Whole-blood cultures were stimulated with *Candida albicans* and RNA was extracted after a 22-hour culture. Gene expression was measured using Immunology_v2 nCounter panel (Nanostring). For each gene module, the mean activity fold-change and 95% confidence interval are plotted and color-coded according to their FDR-corrected P-values (means compared to fold-change zero). Confidence intervals overlapping the horizontal dotted line indicate statistically significant increased or decreased module activity at D7 as compared to D0.

Figure 3. Detailed gene activity for 3 representative modules.
Shown is the “gene activity” for individual genes from 3 modules shown in Fig. 2. A, Cytotoxic molecules; B, M2 macrophages; and C, Pro-inflammatory molecules. Whole-blood cultures were stimulated with *Candida albicans* as in Fig. 2. The horizontal dashed blue line and the grey band indicate the mean differential expression of all genes in the module at D7 versus D0, and the 95% confidence interval.

Figure 4. A gene expression signature associated with therapeutic responses to anti-TNF therapy in axSpA.
Shown is a heat map representation of genes differentially expressed between axSpA patients with a major response to anti-TNF therapy (delta ASDAS ≥ 2, green squares) and non-responders (delta ASDAS < 1.1, red squares) in whole-blood cultures stimulated with LPS or SEB before initiation of therapy. The heatmap shows the levels of differentially secreted genes (red indicates higher and green lower levels of protein secretion, LIMMA analysis, adjusted p-value < 0.05). Gene-stimulus combinations were ranked by decreasing fold-change. Expression levels and fold-change values of the 58 gene-stimulus combinations (corresponding to 55 genes) that are the most differentially expressed between responders and non-responders are reported in [28].
Funding
I.M. is supported by the Pasteur - Paris University (PPU) International PhD Program. Work in the authors’ laboratory is supported by grants from Institut Pasteur, FOREUM Foundation for Research in Rheumatology, MSD Avenir (Project iCARE-SpA), and a Sanofi Innovation Award Europe.

Declaration of interest
The authors declare no competing financial interest.

ORCID
Ikram Mezghiche: https://orcid.org/0000-0001-7730-3251
Hanane Yahia-Cherbal: https://orcid.org/0000-0002-6288-5209
Lars Rogge: http://orcid.org/0000-0003-1262-9204
Elisabetta Bianchi: https://orcid.org/0000-0001-6612-8881

References

The study uses gene pathway analysis to explore the impact of anti-TNF therapy on stimulated immune responses in SpA. Differential expression of genes in responders versus non-responders before treatment suggests this approach may identify signaling pathways associated with response to therapy.

** Overexpression of IL-7R signaling pathway is associated with failure of anti-TNF treatment for CD and UC and this study point to IL-7R as a relevant therapeutic target and potential biomarker in clinical IBD detection and treatment.

** Community-based effort to assess the use of SNP data to predict clinical outcome of TNF inhibition in RA, using machine learning algorithms. The study found that the genetic data to the prediction contributed marginally to the predictive power, compared to the clinical data.

* Combines whole blood transcriptome and plasma proteome analysis of RA patients to identify molecular signatures of anti-TNF treatment.

* This paper explores the ability of random forest-based algorithms to model gene expression and DNA methylation data in order to predict therapeutic responses in RA.

** Analysis of genotypic scores for RA associated loci, for immune cell traits, and for gene expression or methylation to construct predictive models for response to TNF inhibitors.

** This study exemplifies the increased power resulting from the integration of different types of biomarkers (transcript levels, proteins, SNPs) in predictive models of therapeutic response in RA.

Masi AT. What further data are needed to value the Multi-Biomarker Disease Activity score for measuring rheumatoid arthritis disease activity: comment on the article by Johnson et al. Arthritis Care Res. 1339–134072 (2020).

** OSM and OSMR are overexpressed in the majority of active IBD mucosa, particularly in patients resistant to anti-TNF. OSM could therefore be a novel predictive biomarker for anti-TNF and therapeutic target for this clinically challenging population.
Figure 1

- **TNF**
- **TLR**
- **TCR**

IL-6

- **IL-6**

IL-1

- **IL-1**

NF-kB regulators

- **NF-kB transcription factors and inhibitors**

- **Day 0 (before treatment)**
- **Day 7 (after treatment)**

- **Fold-change (before vs after TNF blocker)**

- **NF-kB target genes**
Figure 2

Pathway Activity

Candida stimulation

-0.001 -0.005 -0.01 -0.05 -0.1 0.05 0.1 0.005 0.01

Pathway Activity

-1.0 0.0 0.5

Cytotoxic molecules
M2-like macrophages
Regulatory T cells
MHC presentation
UBP/Proteasome
Chemotaxis
APC
Th1/Th2proteins
Chemokin signaling
Apoptosis
NLR inflammasomes
Type 1 immunity
Adhesion molecules
NFκB target genes
NFκB inhibitors
NK cells
APCs
Osteoclasts
B cells
TGFβ
Apoptosis
MAPK
NOTCH
JNK
IL1
TNF
TLR
Dectin
NOD
II-18
NFκB transcription factors
NFκB inhibitors
Type 17 immunity
Type 2 immunity
Proinflammatory molecules
NFκB regulators
Complement
Cell cycle
Granulocytes
Phagocytosis
Innate immune response
M1-like macrophages
NFκB
Inflammation
NFκB inhibitors
A. Cytotoxic molecules

B. M2 macrophages

C. Proinflammatory molecules

Figure 3
Figure 4