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Next-Generation Phenotypic Screening in Early
Drug Discovery for Infectious Diseases

Nathalie Aulner,' Anne Danckaert,' JongEun Ihm," David Shum,? and Spencer L. Shorte

Cell-based phenotypic screening has proven to be valuable, notably in recapitu-
lating relevant biological conditions, for example, the host cell/pathogen niche.
However, the corresponding methodological complexity is not readily compati-
ble with high-throughput pipelines, and fails to inform either molecular target or
mechanism of action, which frustrates conventional drug-discovery roadmaps.
We review the state-of-the-art and emerging technologies that suggest new
strategies for harnessing value from the complexity of phenotypic screening
and augmenting powerful utility for translational drug discovery. Advances in cel-
lular, molecular, and bioinformatics technologies are converging at a cutting
edge where the complexity of phenotypic screening may no longer be consid-
ered a hinderance but rather a catalyst to chemotherapeutic discovery for infec-
tious diseases.

Phenotypic Screening for Infectious Disease Drug Discovery

The term 'phenotype’ (Figure 1) was coined originally in 1903 by the Danish botanist Wilhelm
Johannsen [1-3] and emerged as foundational in experimental, theoretical, and fundamental bi-
ology juxtaposed with '‘genotype’. However, unlike genotype, for which a definition arises from
tangible minimal information and molecular typing, the term phenotype lacks clear definition [4],
relying on semantic description, for example, 'morphology’, 'behavior', ‘appearance’, 'structure’
etc. Indeed, there is an entire literature on the meaning of ‘phenotype’ but, more than 100 years
after its conceptualization, it was only in recent years that the discipline and tools enabling ontol-
ogy (see Glossary) for high-throughput and high-dimensional phenotyping began to emerge [4—
7]. Specifically, for microbiology (MicroO [6]), there are efforts to align with other community-
based efforts establishing standards for ontology in genetics (GO'), phenotype (PATO"), small-
molecule chemical entities of biological interest (ChEBI"), and PubChem". Indeed, such efforts
are invigorated, in part, by the realization that the performance of powerful natural language pro-
cessing with neural-networks, machine-learning, and deep-learning methods is wholly depen-
dent on the underlying means for data extraction that are linked to such ontologies, and
ultimately the ability to relate them [7]. For the purposes of the current article we use the term
‘phenotype’ in the restrictive context of phenotypic screening [8,9].

In terms of drug discovery, phenotypic screening describes the original nascent methodology
that allowed evaluation of the biological effects of chemical entities, revealing desirable or poten-
tially therapeutic effects linked to a disease. During three decades, drug discovery has shifted
away from in vivo/in situ phenotypic screening toward molecular target-based strategies [10].
Generally, target-based methodologies use simple in vitro biochemical readouts (e.g., at the
level of a well in a plate), whereas phenotypic-based methods use more elaborate cell-based
readouts, for example, imaging single cells [10], or even whole organisms [11]. Target-based
screening, using rational mechanism of action (MoA), and/or hypothesis-driven approaches,
dominated the pharma industry mainly because of its efficiency, cost economy, and massive
throughput. By contrast, phenotypic methods, using mostly imaging and cell-based detection,
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Figure 1. Phenotypic Screening Predates Target-based Screening by Decades. Phenotypic screening (also referred to as forward chemical screening [10]) is, in
its simplest form, the basic activity of a cell biologist or microbiologist in observing, visually, the characteristics of cell biology either isolated in vitro, or in tissue, or in the
whole organism context. Systematic phenotypic analysis began back in the early 1900s and is emerging hand in hand with microscopy and imaging. On the other
hand, target-based screening was made possible in the wake of advances in our knowledge of biochemistry and molecular genetics that were pioneered in the
postwar years (1950-1970s). Consequently, target-driven screening became a defining methodology during the 1980s and 1990s, and was adopted by the

pharmaceutical industry to displace phenotypic methods. Adapted, with permission, from [10].

seemed comparatively inefficient and expensive (per sample), yielding a much lower throughput.
Consequently, faced with industrial chemical libraries numbering hundreds of thousands, if not
millions, of compounds, phenotypic screening lost traction as compared with target-based
screening strategies. However, during the last 10 years, rapidly evolving image-detection, auto-
mation, computation and biotechnologies have started to change the status quo. Driven partly
by what, at times, has been characterized as a deficit in discovery of new first-in-class chemical
scaffolds using traditional target-based approaches, there has been a resurgence of interest in
phenotypic screening for a variety of reasons [12—16]. Not least, the emergence of promising
new improved phenotypic methods, which are based on enhanced biological relevance [17,
18], has led some to claim that phenotypic screens surpass target-based approaches in identifi-
cation of first-in-class scaffolds [14,16]. Today, it is becoming clear that the convergence of
phenotypic-based and target-based methods is more important than their ‘either/or' compari-
son. The trend toward 'empirical drug discovery' [15,19] recognizes the complementarity with
target-driven campaigns whereby the biological relevance as revealed using phenotypic screen-
ing mitigates the risk of downstream failure in the translation pipeline from the preclinical to the
clinical phase [18].

Phenotypic Screening Reveals Chemotherapeutic Potential

In infection biology the aim of phenotypic screening is to discover lead compounds that lend
themselves to chemotherapeutic development in order to generate lead compounds capable
of halting, and ideally reversing, infection and disease progression. The current conventional ap-
proach fits in the drug-screening framework that anticipates a molecular target which can be an-
alyzed for sensitivity to a chemical compound, halting a disease etiology and lending itself to
drug development by a precisely known MoA. However, because of our generally incomplete un-
derstanding of disease, combined with evidence suggesting increased promise for first-in-class
hits [15], phenotypic screening approaches are appealing, precisely because they liberate
screening campaigns from the burden of having a priori knowledge of either target, or MoA. In
the search for chemotherapies targeting infectious diseases, successful drug-discovery cam-
paigns using hypothesis-independent 'black-box' phenotypic screening strategies are abundant.
For example, those having reached clinical use for the treatment of infectious disease include (see
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[16]): the antifungal Caspofungin (Merck, 2001); antibiotics Daptomycin (Cubist, 2003), Linezolid
(Pfizer, 2000), Retapamulin (GSK, 2007); and antivirals Docosanol (Avanir, 2000) and
Sinecatechins (Medigene, 2006). More recently, while targeting neglected diseases, acoziborole
(2009, Anacor Pharmaceuticals) was discovered using phenotypic screening with Trypanosoma
brucei growth-inhibition assays [20], and a singular overexpression screening approach identified
the molecular target of the benzoxaboroles to be the cleavage and polyadenylation specificity fac-
tor 3 (CPSF3) [21] currently in Phase II/Ill trials (sponsored by DNDi). Benzoxaboroles have
broad-spectrum effects, which is a desirable property for chemotherapeutics. Similarly,
fexinidazole, first discovered in 1983, shows a broad-spectrum antimicrobial activity against
Trypanosoma cruzi, Tritrichomonas foetus, Trichomonas vaginalis, and Entamoeba histolytica
[22,23]. Most recently, fexinidazole has been shown to be effective for clinical treatment of
T. brucei infection [24] and is approved for global therapeutic use [25]. Broad-spectrum activity
is desirable in efforts to develop chemotherapeutics, and can actually be used by design to en-
hance the drug-discovery process. For example, three million compounds were screened
using three distinct proliferation assays on Leishmania donovani, T. cruzi, and T. brucei [26], iden-
tifying azabenzoxazole, GNF5343, as a hit in the L. donovani and T. brucei screens. Interestingly,
GNF5343 was not active on T. cruzi in the primary screen. However, lead optimization yielded
GNF6702 that displayed unprecedented in vivo efficacy, entirely clearing parasites from mice in
all three models of infection and raising hopes of the possibility of developing a single class of
drugs for these neglected diseases. Similarly, a weak hit from a phenotypic screen, performed
across related flagellated protozoan parasites, was subjected to lead optimization, yielding
GSK3186899/DDD853651 that proved a preclinical development candidate for the treatment
of visceral leishmaniasis [27].

Broad-spectrum therapeutic effects can be the result of a drug interacting with a molecular target
preserved commonly among different related pathogens. However, a more complex manifesta-
tion of broad-spectrum activity can be due to polypharmacology. In the 1970s, searching for
new drugs for the treatment of malaria and intestinal parasites, Raymond Cavier and Jean-
Francois Rossignol (of the Institut Pasteur Paris) discovered nitazoxanide, the first of the
thiazolides [28]. Nitazoxanide (NTZ) was tested and found to be effective against both intestinal
protozoa and helminths in vitro and in laboratory animal models. Several decades later, while
the mechanisms still have yet to be elucidated, NTZ has lived up to more than its initial promise
as an important antiparasitic drug [29-31]. Indeed, NTZ displays strikingly wider anti-infective ef-
ficacy than was expected, or even sought, upon its discovery [32]. Today, NTZ is revealed to be
active against a range of extracellular and intracellular protozoans [33,34], helminths [35], anaer-
obic and microaerophilic bacteria [36,37], and viruses [38-45], including a broad range of respi-
ratory viruses [46,47], and even neoplastic cells [48]. At least one recent report claims successful
clinical treatment of cutaneous leishmaniasis with oral nitazoxanide [49]. Such is the diversity of
broad-spectrum effects of NTZ that a common molecular target hypothesis seems less probable.
An emerging idea is that polypharmacology may be at play whereby a compound (or its deriva-
tives) is able to exert manifold effects. At this time, polypharmacology is not well understood,
and it often eludes experimental design, making it difficult to even rule out (e.g., see Box 1). In
the case of NTZ there is evidence that polypharmacology arises from multiple mechanisms, in-
cluding metabolic, immunomodulatory host-cell/pathogen, tissue and cellular responses [50], ox-
idative stress [51], and in a manner additive with other known antileishmanials [51,52].

While broad-spectrum and polypharmacological effects are not exclusive to phenotypic screen-
ing, it is becoming clear that disease models of infection searching singular target-driven MoA mi-
crobicidal effects may be overly simplistic and not necessarily correlated with desirable clinical
outcome. From the point of view of studies in infectious disease, it is most recently argued that
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Glossary

Amastigote: a protist cell that does not
have visible external flagella or cilia.
DNDi: Drugs for Neglected Diseases
initiative, a nongovernmental
international organization operating a
collaborative, patients’ needs-driven,
nonprofit drug research and develop-
ment pipeline for new treatments to help
globally those suffering neglected
diseases.

Etiology: the cause, set of causes, or
manner of causation of a disease or
condition.

First-in-class: drugs that use a new
and unique mechanism of action for
treating a medical condition. The first
drug product to be marketed that
contains a compound which acts on a
specific (and new) target. The drug
molecule and the target are both novel.
Fuzzy logic: a term derived from an
area of mathematical modeling that was
popularized to indicate the notion of
‘gray area' in the certainty, or not of any
decision-making process.

Mechanism of action (MoA): in
pharmacology, it refers to the specific
biochemical interaction through which a
drug substance produces its
pharmacological effect.

Ontology: a logic-based organizational
structure for knowledge comprised from
shared semantic descriptions; in effect,
providing a formal representation for or-
ganizing the abstraction of knowledge
into accessible (shared) semantic
terminology.

Pipeline (drug): the set of drug
candidates that a pharmaceutical
research organization has under
development at any given point in time,
and the fixed stages through which they
must proceed.

Polypharmacology: the design or use
of pharmaceutical agents that act on
multiple targets or disease pathways; it
remains one of the major challenges in
drug development, potentially opening
novel avenues to rational next-
generation drug design for more
effective but less toxic therapeutic
agents.
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Box 1. A Case Study for Cutting-Edge Drug-Target Identification in the Parasite Leishmania

While phenotypic screening can help to replenish the pipeline with new lead candidate compounds, it does not change the
fundamental need to identify the molecular target(s) and develop a rational strategy therein to produce a clinically effica-
cious drug product. Toward these ends a recent study reported pyrazolopyrimidine compounds that act principally by
inhibiting Leishmania cdc-2-related kinase 12 (CRK12), thus defining a new druggable target for visceral leishmaniasis
[88]. Pyrazolopyrimidines were optimized by assessing their effect on in vitro infection of macrophages by Leishmania
and a mouse model of visceral leishmaniasis. Selecting one candidate based on good safety profile, high potency, and
suitable properties for development as an orally administered drug, they next used a chemical proteomics strategy to iden-
tify the target(s), three enzymes: CRK3, CRK6, and CRK12. Next, whole-genome DNA sequencing revealed that drug-re-
sistant parasites express CRK12 at higher than usual levels, and identified a mutation in the CRK12 gene that, when
introduced back into wild-type parasites, conferred drug resistance. From the collective chemical proteomics studies of
Wylie et al. [88], the authors recognized that, while CRK12 is undoubtedly the principal target of their compound series,
they could not rule out 'polypharmacology' resulting from inhibition of secondary kinase targets responsible for some of
the observed phenotypic effects in drug-treated parasites, such as cell cycle arrest.

the search for drugs should be better guided by the mantra '...improve host health, and out-
come..." [11]. Albeit a rather fuzzy logic [53], phenotypic screening in relevant biological models
may be better in helping to find molecules with the likelihood of improved therapeutic outcome
[11]. Indeed, the discovery of clinically efficacious antibiotics has been attributed to assays
using '...whole-cell screening...', and their therapeutic utility is, in part, attributed to their
polypharmacology diminishing the risk of drug resistance in bacteria, viruses, and parasites
([54]: review article, and see references therein). While designing drugs with multitarget profiles
has proved both complex and difficult, new computational probabilistic activity modeling ap-
proaches and synthetic medicinal chemistry has opened promising avenues toward automated
design of ligands with polypharmacological profiles [55]. Having been mainly established in
drug discovery aimed at cancer, and neuropsychiatric disorders, such polypharmacological pro-
filing strategies have potentially high value for drug discovery for infectious disease. The key to
unlocking such potential lays with the emergence of more complex phenotypic assays, better
mimicking the biology underlying clinically relevant host-cell/pathogen interactions.

State-of-the-Art Phenotypic Assays Mimicking the Host-Cell/Pathogen Niche
During the last decade of drug screening, efforts in Leishmania have focused on extrapolating
druggable targets in the parasite with some success (Box 1), reasoning that this could leverage
rational development of chemotherapeutics suitable to address the public health challenges
therein. However, while successful in identifying targets that allow large screening campaigns
to be run, some groups have shifted their focus away from deconvolution of druggable targets
in the parasite [56] and are turning their attention toward screening strategies targeting host-
cell/pathogen interactions [57,58] (Figure 2) and phenotypic screening is well suited to this. For
example, a novel strategy, based on ex vivo biology, used phenotypic assays combining primary
murine macrophages and lesion-derived, virulent L. donovani and Leishmania amazonensis
amastigotes to validate antileishmanial hit compounds (‘GSK Leish-Box’). Strikingly, the
ex vivo approach validated antileishmanial activity on intramacrophagic L. donovani for only 23
out of the 188 GSK Leish-Box hits previously identified using immortalized THP1 macrophage
cell lines [58]. Presumably the greater physiological relevance of ex vivo assays, compared with
immortalized cells, provides for a more discriminating assay sensitivity. Such assertion supports
the rationale to use even more complex ex vivo assays — for example, splenic explant cultures
from hamsters infected with luciferase-transfected L. donovani —to screen chemical compounds
for antileishmanial activity [59]. A specific advantage of ex vivo explant cultures is that the host-
parasite interaction may be better preserved, including aspects of the immune response. So,
for drug screening, explant tissue assays can identify compounds that have both direct and indi-
rect antiparasitic activity, and these studies have allowed identification of new compounds active
against L. donovani within the pathophysiologic environment of the infected spleen [59].
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Figure 2. Targeting Host—Parasite Interaction as a New Venue for Antileishmanial Drug Discovery. Exosomal or
secreted parasite factors released into the host cell likely modulate the macrophage epigenome, causing phenotypic
changes that favor parasite survival, including suppression of immune functions, prolongation of host cell survival, and
metabolic changes necessary for parasite proliferation. Interfering with parasite factors that act in trans on the host cell, or
restoration of the normal host cell epigenome, will likely interfere with intracellular parasite survival and may thus be
exploited for antileishmanial drug discovery. Reproduced, with permission, from [57].

Phenotypic assays using experimental models aiming to reconstitute the complexity of the host-
cell/pathogen niche with greater fidelity can provide important and therapeutically relevant in-
sights. For example, Toxoplasma gondii infection was used in a phenotypic screen examining
the effects of compounds on cells stimulated by the powerful cytokine interferon gamma (IFN-
y; [60]). The rationale in this study was based on the observation that IFN-y activates a variety
of antimicrobial mechanisms in host cells, which are then able to control intracellular parasites
such as T. gondii; however, despite the effectiveness of these pathways in controlling acute infec-
tion, the immune system is unable to eradicate chronic infections that can persist for life. The
screen therefore used detection of parasite infection and autophagy in cells moderately stimu-
lated with IFN-y to screen for compounds whose effects could therefore be distinguished as de-
pendent or not on IFN-y activation. They reported a number of compounds that inhibited parasite
growth in vitro, with enhanced potency in the presence of a low level of IFN-y stimulation. Further,
they demonstrated that a subset of these compounds acted by enhancing the recruitment of light
chain 3 (LC3) to the parasite-containing vacuole, suggesting that they work by a noncannonical
autophagy-related process, while others were independent of the autophagy pathway. Such
studies indicate that synergistic interactions with immune responses are of high significance
when considering the likely potential of therapeutic value and the predicted clinical outcome for
any candidate molecule.

During infection there are many examples in which pathogens, sensing their environment, hide
themselves or otherwise avoid host defense mechanisms; this can derail drug-discovery efforts.
Cell-based assays accommodating such biologically relevant considerations into the experimen-
tal model can allow phenotypic screening to nonetheless proceed and identify compounds with
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therapeutic potential, despite not necessarily knowing the underlying mechanisms. For example,
the phenomenon of T. cruzi resisting extended exposure to trypanocidal compounds was shown
to be most likely due to its ability to establish dormancy in vivo [61]. Most significantly, dormant
T. cruzi amastigotes were uniquely resistant to extended drug treatment in vivo and in vitro and
could re-establish infection after weeks of drug exposure. Combined with suitably adapted cell-
based models, these results encourage the use of novel phenotypic screening approaches to
seek alternative chemotherapeutic strategies. Similarly, in another study using a panel of
T. cruzi strains, evidence for heterogeneity among parasites in the same population in vitro sug-
gested the presence of quiescent parasites underlying differential drug sensitivity, and provided
a possible mechanism explaining clinical failure of drug regimens to entirely clear parasite infection
[62].

Some promising phenotypic cell-based assay methods attempt to enhance physiological/thera-
peutic relevance by synthetically reconstituting sophisticated tissue/organ-like microenvironment
properties using a combination of microfluidics, micropatterning, and organotypic technologies.
For example, Morada et al. [63] adapted a hollow fiber technology as a 3D substrate to culture
human ileocecal colorectal adenocarcinoma cells (HCT-8), providing a long-term (>1 month) cul-
ture environment mimicking the gut. Importantly, the culture system allowed the delivery of nutri-
ents and oxygen from the basal layer upwards concurrently with separate (anaerobic) redox and
nutrient control of the lumen supporting infection-competent, fully virulent Cryptosporidium spp.
In another example, micropatterned primary human hepatocyte cocultures (MPCCs) provided a
microscale human liver platform, with stromal cells in a multiwell micropatterned coculture format
supporting stable hepatocyte-specific function and metabolism during 4-6 weeks [64-66]. In ad-
dition to providing a permissive host, hepatocytes cultured in MPCC environments exhibited
human-specific drug metabolism and long-term stability, which is ideal for drug screening and
studies of long-term dormancy and reactivation. The multiwell in vitro platform has been demon-
strated to be useful for transcriptional characterization using a customized capture method prior
to RNA sequencing, demonstrating its potential as a drug-screening platform for studying Plas-
modium vivax in a high content screening (HCS)-compatible 384-well format, leading the way
for fully automated high-throughput drug screening. The further significance of this platform for
supporting screening is supported by its compatibility with infection by hepatitis C and B viruses,
P. falciparum, and P. vivax [64].

Next-Generation Phenotypic Screening in Infection

Offering great promise, data-driven computer-vision methods using machine-learning, neural
networks, and deep-learning are capable of augmenting and facilitating throughput and analyses
on ever more complex phenotypic screening pipelines — for example, 'artificial-intelligence (Al)
workflow' adopting computational approaches to enhance phenotypic (high-content) imaging
[67]. Fisch et al. [67] released a complete self-contained software platform (HRMAN: Host Re-
sponse to Microbe Analysis) for image-based infection biology, providing fully automated, accu-
rate unbiased quantification of host—pathogen interactions. Until now such essential analyses for
infection biology were most often performed manually, or by using limited enumeration employing
image analysis algorithms based on image segmentation. By contrast, HRMAN provides intuitive
intelligent image analysis software capable of actually learning from the fluorescently labeled host-
cell/pathogen images exactly how to distinguish and quantitatively assess host protein recruit-
ment during infection. The open-source image analysis platform is based on machine-learning al-
gorithms and deep learning, and is highly flexible, as evidenced by its capacity to learn
phenotypes from the data without relying on researcher-based assumptions. Indeed, the system
was shown to perform equally well on both parasite (7. gondii) and bacterial (Salmonella enterica
Typhimurium) experimental models. HRMAN’s capacity to recognize, classify, and quantify
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pathogen killing, replication, and cellular defense responses is likely just the first example of many
to come using Al-driven approaches to enhance early drug discovery for infection.

The utility of Al to enhance or augment high-content imaging is already advanced beyond replac-
ing the classical image-processing and/or segmentation workflows. Indeed, an exciting avenue
has been triggered by the work of Carpenter et al. who asserted a disruptive new experimental
paradigm termed 'cell painting' [68—71]. Cell painting (also known as image-based morphological
cell profiling) uses standardized methods for cell labeling and high-content imaging in order to es-
tablish a morphological profile based upon quantitative data extracted from microscopy images
of cells. Using automated image analysis software, measuring approximately 1500 morphological
features/cell, the data-rich cell profile is proposed to be suitable for detecting subtle phenotypes
(Figure 3A, Key Figure). Profiles of cell populations treated with different experimental perturba-
tions can be compared in order to suit many goals, such as identifying the phenotypic impact
of chemical or genetic perturbations, grouping (clustering) compounds and/or genes into func-
tional pathways, and identifying signatures of disease [72]. More recently, this idea has been ex-
tended further: Ceulemans et al. [73] demonstrated that 'image-based fingerprints' of
compounds derived from a given image-based cellular assay can be repurposed to predict the
biological activity of those same compounds in other seemingly unrelated assays, even those
targeting alternate pathways or biological processes. The approach has the potential to greatly
reduce unnecessarily voluminous scaling of screens by predicting the likelihood of activity on a
new target. An 842-dimensional quantitative vector readout calculated for each single cell was
extracted from a three-channel microscopy-based screen performed for 524 371 chemical com-
pounds measuring glucocorticoid receptor translocation. A bioactivity matrix was used to docu-
ment the available experimental activities of the 524 371 imaged compounds in some 1200
assays that could be attributed to a specific protein target, and from a subset of 535 assays re-
vealed by machine-learning, several dozen returned robust criteria for predictivity performance.
These data were used to predict assay-specific biological activity in two ongoing drug-discovery
projects. In these projects, repurposing increased hit rates by 50- to 250-fold over that of the ini-
tial project assays while increasing the chemical structure diversity of the hits.

Underlying the tendency toward convergence between imaging and omics for empirical screen-
ing, there are exciting new technologies — for example, the development of a new method using
digital amplicon-based RNA quantification by sequencing [74]. Armed with this technology it has
been proposed that the 'phenotype’ of a living cell may be usefully described by its pattern of ac-
tive signaling networks, giving rise to a so-called 'molecular phenotype' (Figure 3B). Reasoning
that the activity of signaling networks can be assessed based on a set of established key regula-
tors and expression targets rather than the entire transcriptome, these proof-of-concept studies
compiled a panel of 917 human genes, representing 154 human signaling and metabolic net-
works that they termed 'pathway reporter genes' [75]. In effect, allowing differential gene expres-
sion quantification, this method was used to characterize the molecular phenotype in developing
human induced pluripotent stem cell (iPSC)-derived cardiomyocytes, and the drug/toxicity re-
sponse in primary human hepatocytes [75]. The reporter genes were significantly enriched for
regulators and effectors covering a wide range of biological processes, and were shown to report
gene-level and pathway-level changes associated with differentiation and drug action. The path-
way reporter genes delivered an accurate pathway-centric view of the biological system under
study, and revealed known and novel modulation of signaling networks consistent with the liter-
ature and with experimental data. Focusing on the cardiomyocyte model, the same teams most
recently went on to report the use of molecular phenotyping as a means to augment high-content
image-based drug screening by helping to assure and stratify lead compound selection and char-
acterize MoA classes [76].
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Figure 3. (A) Image-based fingerprinting (adapted from [68,73]). Set inside the red arrow, left to right, is a schematic representation workflow showing steps: (1) chemical
phenotypic screening that used a three to five channel readout, >500 000 compounds, against several distinct cell lines; (2) image analysis, N-dimensional feature space
extrapolating >800 independent feature parameters per single cell; and (3) cell profile fingerprint yielding a large array of single-cell morphological feature data. In the context
of 1200 previously performed bioactivity assays applicable to the compound library used by Simm et al. [73], this shows that machine-learning methods can be applied to
yield useful enhanced predictivity for these same compounds in new assays [73]. (B) Molecular phenotyping (adapted from [75,76]), set inside the blue arrow, showing a
schematic illustration of the workflow for molecular phenotyping. Left to right: (1) knowledge integration using a variety of data sources, including public databases, text
publication, shared assay data, clinical and preclinical disease model results, using both automated and manual data curation; (2) network construction links biological
knowledge of signaling pathways and biological processes, with genes involved therein — this step links genes in pathways and transcriptional regulatory networks to
biological processes of interest, judged as relevant to a particular pathology; (3) pathway reporter genes assembled into an experimental panel to be subject to
quantification using highly sensitive amplicon-based mRNA transcript quantification (see [74]); and (4) the molecular phenotype allows reporter pathway genes and
signaling networks therein to be effectively correlated with cell-based (high-content microscopy) assay readouts, allowing drug effects to be better assessed, screened,
and modeled according to their likely therapeutic outcome [76]. Centre. DDP (drug discovery pipeline) shows, left to right, an illustration of the steps comprising the
drug-discovery process from target selection through compound lead discovery to medicinal chemistry (lead optimization) through in vitro and in vivo preclinical
screening, up to clinical translation. This pipeline lays in proximity to the underlying modeling premise and data exchange of molecular phenotyping and image-based
fingerprinting; the cycling red/blue arrows indicate how DDP data exchange thereby powers, and is powered by, the integration of these methodological frameworks
together, and underlies their inherent complementarity.
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Interestingly, for the combined molecular phenotyping approach, one important limitation was at-
tributed to the inability to recapitulate in vitro a single cellular phenotype model [76]. The authors
used a classical segmentation-based image analysis method to score the cardiomyocyte pheno-
type, identifying sarcomere striation area, nuclei, and alpha-actinin (corresponding to cytoplasm).
One wonders at the alternative strategy where molecular phenotyping might better be combined
with the alternative image-based fingerprinting (cell painting [68,73]) described above (Figure 3).
There is complementarity between these emergent technologies that both aim to power early
drug discovery by drawing on data that inform on the biological relevance of the input (chemical
libraries and cell-based assay) in order to enhance the quality of the data output (chemotherapeu-
tic leads, likely MoA, beneficial therapeutic outcome). Importantly these strategies also aim to re-
duce the requirement for unnecessary throughput while simultaneously augmenting the richness
and content of the data output. This is analogous to efforts toward improving predictions on
safety and efficacy where chemical biology, cheminformatics, target-based, and phenotypic
readouts help to inform hypotheses and predictive modeling in so-called 'phenotypic chemical bi-
ology' [77-79].

Concluding Remarks

New computational methods and concepts allow the handling of phenotypic models [13,15,67,
68,73,76,80,81] such that the added complexity arising from considering biological relevance
can actually help to improve productivity of early drug discovery. However, there are challenges
ahead (see Outstanding Questions). Among the technical challenges, image-based morpholog-
ical profiling requires a certain minimum information in terms of the resolution of the optical system
used to collect the data and the dimensions of the target. For microorganisms, cell-morphological
information may be obscured, or even entirely lost, due to insufficient optical resolution. Emerging
super-resolution microscopy methods are only just beginning to show potential for high-
throughput phenotypic screening, for example, in the form of deep-learning-based acceleration
of single-molecule super-resolution microscopy: ANNA-PALM (artificial neural network acceler-
ated photo-activated light microscopy; [82]). Such computational advances are certainly a signif-
icant step forwards, but more fundamental is the limitation whereby optical resolution and field
size are inversely related; in lay terms, this means that higher optical resolution comes at the
cost of diminishing optical field size. In the extreme, only a few cells can be imaged at a time
using high-resolution (oil immersion) optics, thus, making impractical any possibility of automated
imaging matching the throughput needs of drug screening. Interestingly, among a variety of op-
tical methods aiming to overcome this major constraint, multibeam interferometric illumination [83]
has yielded a commercialized cell-imaging system (Optical Biosystems, Santa Clara, CA, USA)
capable of yielding optimized high-resolution equivalency in thousands of cells simultaneously
using low-magnification optics. It will be interesting to see how such systems perform on highly
multiplexed labeling of protein networks [84], and the transcriptome [85] visualized at mesoscopic
scales. Such approaches could allow high-fidelity interactome analysis of host-cell/pathogen
specific responses obviating background signal from noninfected cells. In combination with
deep-learning and machine-learning automation, frameworks like ANNA and HRMAN might help
to assure unprecedented genotype—phenotype classification, annotation, and clustering that is
currently incomplete for many infectious disease and microbial paradigms.

Realizing opportunities from image-based morphological cell profiling highlights the imperative
need for community coordination and collaborative efforts at every level from open-source soft-
ware to open-access data and protocol sharing [71]. For infectious biology, combining pheno-
typic imaging and molecular readouts represents a doorway to the next generation of drug-
discovery technologies. New bioinformatics tools promise a future in drug discovery that will le-
verage the biological relevance of phenotypic screening as a powerful means to better inform
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Outstanding Questions

What types of optical imaging modality
will emerge to address the concurrent
need for high-resolution and high-
throughput capacity?

Genotype—phenotype characterization
requires imaging protein—protein interac-
tions and transcriptome detection at
mesoscopic scales, including the single
cell. Will disruptive optical/computer-
vision technologies overcome this
challenge?

Wil artificial-inteligence frameworks (ma-
chine-learning, neural networks, and
deep-learning) leverage fully automated
unsupervised genotype—phenotype an-
notation and classification?

How should the parasitology community
engage to establish standards facilitating
useful sharing of phenotypic screening
data amenable as a sustained commu-
nity resource?
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cheminformatics, target-based MoA rationalization, or even multitarget drug profiling. Specifically,
in parasitology, it is the clinical need in the field that is driving the shift toward screening campaign
paradigms using phenotypic approaches [86]. For Chagas' disease, T. cruzi drug-discovery cam-
paigns have, for several years, employed computational approaches using data from several
public whole-cell, phenotypic high-throughput screens made available by the Broad Institute
(including a single screen of over 300 000 molecules) [87]. Based on compiling and curating
relevant biological and chemical compound screening data 584 compounds with activity data
against T. cruzi were identified and made publicly available in the CDD database (Collaborative
Drug Discovery Inc. Burlingame, CA, USA). Nonetheless, while providing a powerful proof-of-
concept and tool in hand for future screening efforts, there is still a need to advance the field
and facilitate better data annotation, curation, and public sharing therein. To achieve this we
must consider how high-content screening data, software tools, and protocols will be validated
and shared (e.g., [67]) and how, within this framework, the parasitology community shall contrib-
ute and benefit.
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