
HAL Id: pasteur-03244420
https://pasteur.hal.science/pasteur-03244420

Preprint submitted on 1 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Accurate prediction of cell composition, age, smoking
consumption and infection serostatus based on blood

DNA methylation profiles
Jacob Bergstedt, Alejandra Urrutia, Darragh Duffy, Matthew L. Albert, Lluís

Quintana-Murci, Etienne Patin

To cite this version:
Jacob Bergstedt, Alejandra Urrutia, Darragh Duffy, Matthew L. Albert, Lluís Quintana-Murci, et al..
Accurate prediction of cell composition, age, smoking consumption and infection serostatus based on
blood DNA methylation profiles. 2021. �pasteur-03244420�

https://pasteur.hal.science/pasteur-03244420
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Accurate prediction of cell composition, age,
smoking consumption and infection serostatus
based on blood DNA methylation profiles
Jacob Bergstedt1,�, Alejandra Urrutia2,3,4,5, Darragh Duffy2,3,4, Matthew L. Albert2,3,4,5, Lluís Quintana-Murci6,7,8, and Etienne

Patin6,7,8,�

1Department of Automatic Control, Lund University, Lund SE-221, Sweden
2Center for Translational Science, Institut Pasteur, Paris 75015, France
3Laboratory of Dendritic Cell Immunobiology, Department of Immunology, Institut Pasteur, Paris 75015, France
4INSERM U1223, France.
5Department of Cancer Immunology, Genentech, South San Francisco, California 94080, USA
6Unit of Human Evolutionary Genetics, Department of Genomes & Genetics, Institut Pasteur, 75015 Paris, France
7CNRS UMR-2000, 75015 Paris, France
8Center of Bioinformatics, Biostatistics and Integrative Biology, Institut Pasteur, 75015 Paris, France

DNA methylation is a stable epigenetic alteration that plays a
key role in cellular differentiation and gene regulation, and that
has been proposed to mediate environmental effects on disease
risk. Epigenome-wide association studies have identified and
replicated associations between methylation sites and several
disease conditions, which could serve as biomarkers in predic-
tive medicine and forensics. Nevertheless, heterogeneity in cellu-
lar proportions between the compared groups could complicate
interpretation. Reference-based cell-type deconvolution meth-
ods have proven useful in correcting epigenomic studies for cel-
lular heterogeneity, but they rely on reference libraries of sorted
cells and only predict a limited number of cell populations. Here
we leverage >850,000 methylation sites included in the Methyla-
tionEPIC array and use elastic net regularized and stability se-
lected regression models to predict the circulating levels of 70
blood cell subsets, measured by standardized flow cytometry
in 962 healthy donors of western European descent. We show
that our predictions, based on a hundred of methylation sites or
lower, are less error-prone than other existing methods, and ex-
tend the number of cell types that can be accurately predicted.
Application of the same methods to age, smoking consumption
and several serological responses to pathogen antigens also pro-
vide accurate estimations. Together, our study substantially im-
proves predictions of blood cell composition based on methyla-
tion profiles, which will be critical in the emerging field of med-
ical epigenomics.
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Introduction
Cellular subtypes that compose organisms derive from var-
ious differentiation lineages during development. As stem
cells differentiate into more specialized cells, their genome
accumulates epigenetic modifications, i.e., stable chemical
additions to the DNA that can affect gene expression but
do not change the DNA sequence, resulting in cell-specific
gene expression. DNA methylation (DNAm), a stable epige-
netic mark that refers to the attachment of a methyl group
to DNA cytosine, plays a key role in cellular differentia-
tion and gene regulation. Epigenome-wide association stud-
ies (EWAS) have searched for DNAm sites that covary with

disease conditions or disease-related traits, as these DNAm
changes could mediate the effects of environmental perturba-
tions on the transcriptional reprogramming of differentiated
cells and, in turn, organismal phenotypes (1, 2). However,
interpretation of the results can be problematic, because sta-
tistical associations between DNAm and a condition of in-
terest could be due to either a perturbation of the epigenetic
properties of a cell subtype that causes the condition, or het-
erogenetiy in the proportions of differentiated cells caused by
the condition (3, 4). For example, because rheumatoid arthri-
tis triggers a change in the granulocyte-to-lymphocyte ratio,
an EWAS of this disease identified thousands of associated
DNAm sites that became non-significant upon correction for
cellular heterogeneity (5). Thus, there is a clear need in the
epigenomics field for methods that reliably enumerate cell
sub-populations from heterogeneous tissues (6).

Currently, the gold standard approach for cell counting
is flow cytometry, a laser-based technology that simultane-
ously detects several fluorescent-labelled protein markers at
a single-cell resolution. However, this approach is labour-
intensive and costly, requires skilled practitioners, and its per-
formance is affected by sample degradation. Alternatively,
cell composition can be indirectly estimated from gene ex-
pression profiles, which are known to be cell-specific (7, 8).
These methods, referred to as cellular deconvolution, rely on
transcriptional profiles of reference cell populations to pre-
dict the cellular composition of sampled cell mixtures, which
are also strongly affected by degradation and are difficult to
standardize. In a seminal study, Houseman and colleagues
used projection methods similar to the ones used for gene
expression to estimate blood cell mixture proportions from
DNAm profiles (9), a more stable molecular measure. Be-
cause DNAm changes are thought to be involved directly in
the lineage decision of hematopoietic cells (10, 11), they pro-
vide a direct link with blood cell identity. This method, re-
ferred to as the ’Houseman method’ or ’Houseman model’,
uses DNAm profiles from six sorted cell subtypes as a refer-
ence, and assumes that the heterogeneous sample of interest
is a mixture of these cells, whose proportions are estimated
by projecting the sample matrix on to the reference matrix.
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The method can estimate the proportion of six major im-
mune cells in blood, using a reference library of 600 CpG
sites. Koestler et al. proposed a refined reference library,
called IDOL (12), achieving better estimation of the six sub-
sets with only 300 CpG sites. Although these methods have
been extensively used, they only estimate six major cell sub-
sets, and need at least 300 probes, limiting their usefulness as
a tool for adequately controlling confounding in EWAS, and
for applications in clinical research.

Here, we build novel parsimonious models for predicting
the circulating levels of 70 blood cell subsets measured by
flow cytometry in 962 healthy donors of the Milieu Intérieur
study (13, 14), based on blood DNAm levels at >850,000
sites (Illumina Methylation EPIC beadchip; (15)). The mod-
els are based on two key assumptions: 1) methylation at some
sites marks differentiation events that can identify a particu-
lar blood cell lineage, and 2) only few methylation probes on
the EPIC array mark such differentiation events. The first as-
sumption implies a linear relation between the cell proportion
in whole blood and methylation levels at the sites that mark
it. We therefore use linear regression models to predict blood
cell composition from DNAm levels. The second assumption
means that only a small fraction of the probes will actually be
predictive. We must therefore look for sparse models, which
discard many of the included predictors in a data-driven fash-
ion.

We use two approaches to build predictive models of im-
mune cell proportions. The two assumptions mentioned
above lead naturally to regularized linear regression models.
Therefore, to infer optimal models in terms of prediction ac-
curacy, and to investigate how prediction accuracy depends
on the number of predictors, we use the elastic net method
(16, 17). Similar models have previously been used for the
prediction of age, smoking status, alcohol consumption and
educational attainment based on DNAm (18, 19). We believe
that elastic net regression will be able to find both the predic-
tors that mark differentiation events for the lineage of the cell,
but also the numerous probes that are correlated with such
predictors. In addition, we use the more stringent selection
technique, stability selection (20, 21), to find a minimal stable
set of predictors for each proportion. Stability selection se-
lects predictors of each immune cell proportion that are con-
sistently predictive in 100 subsamples of the dataset. We then
build predictive models from the stability selected set of pre-
dictors using ordinary least squares. Compared with the elas-
tic net, stability selection is more demanding of the predictors
it selects. Consequently, it targets probes that mark differen-
tiation events that are the most important for the cell. We
therefore explore the biological functions associated with the
stability selected probes, to improve knowledge of the epige-
netic changes that characterize differentiated immune cells.
A similar two-pronged approach is used to predict other con-
ditions and traits collected within the Milieu Intérieur study,
including age, smoking, height, BMI, routine chemical and
hematological laboratory tests, and the serological responses
to antigens of 13 common pathogens (22). Several of these
traits have not previously been modelled using all DNAm

probes jointly. Our study substantially improves predictions
of blood cell composition based on DNA methylation pro-
files, which will be critical for applications in medical epige-
nomics, forensics and disease prognosis.

Results
Optimization of predictive models. To predict immune cell
proportions with optimal accuracy, given our assumption of
sparsity and linearity, we use elastic net regularization. It is
controlled by two regularization parameters: λ, which con-
trols the L1 regularization that enforces sparsity on the coef-
ficients, and α, which controls L2 regularization that restricts
the magnitude of the coefficients. We use 5 different values
for α and 200 different values for λ. Each possible pair of
α and λ parameter values give a different amount of predic-
tors and regularization, and is a step in the so-called regular-
ization path. We measure the prediction accuracy along the
regularization path by the mean absolute error (MAE) and
the correlation (R) between the hold-out sample values and
the out-of-sample predictions in 10-fold, twice repeated two-
dimensional cross-validation, described in Algorithm 1. The
procedure gives 20 samples from the distribution of out-of-
sample prediction accuracy along the regularization path. We
use those samples to estimate the mean accuracy and its 95%
confidence intervals.

The performance of models, together with the number of
predictors that is optimal in terms of prediction accuracy, is
shown in Table 1 for each cell proportion, as well as 23 other
continuous traits, including age and morphometric and phys-
iological measures. DNA methylation levels can accurately
predict age and sex (18), intrinsic factors that are predictive
of many traits, including immune cell counts in whole blood
(14). It is therefore important to discern when predictors
based on methylation probes give additional information to
these two commonly available factors. For comparison, we
therefore include in Table 1 the prediction accuracy of a lin-
ear model that only includes age and sex as predictors. We
also build predictive models for binary phenotypes, including
smoking status and serostatus for 13 different common infec-
tions, using elastic net regularization together with the cost
function of the binomial likelihood with a logit link function.
Similarly to the approach we use for the continuous traits, we
estimate prediction accuracy in terms of model complexity
using cross-validation. For binary traits we measure predic-
tion accuracy by the classification rate, i.e., the proportion
of correct class predictions (probability threshold is taken at
0.5). Prediction accuracy for models with optimally many
predictors for the binary traits are shown in Table 2.

Blood cell deconvolution. Accurate estimations are ob-
tained with elastic net regularized models for 35 immune
cell proportions (estimated correlation between predicted and
observed out-of-sample values R>0.6; Table 1). The four
immune cells that we predict with the highest accuracy are
CD8+ naive T cells, with a correlation between predicted and
observed out-of-sample values of R=0.92 (95% CI: [0.87,
0.96]), using 312 predictors (95% CI: [295, 338]); B cells
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Table 1. Mean absolute errors (MAE) and correlation (R) between out-of-samples predictions and observed values from three different predictive models for each trait. The
first results are from elastic net models that have been tuned by our cross-validation scheme, detailed in Algorithm 1. Our scheme gives 20 samples from the distribution of
accuracy estimates, which are used to construct confidence intervals. Results are also shown for stability selected linear models. Such models include only predictors that
are robustly predictive of the trait. For comparison, the predictive accuracy of each trait is shown also for a simple linear model that only includes age and sex as predictors.
Predictive accuracy estimates for the simple model for traits where the difference in R between the elastic net model and the simple model is less than 0.10 is shown in bold
face. The character ‘#’ stands for ‘number of probes’. In the case of elastic net models, this is the mean number of probes for the 20 repetitions. Table continued on next
page.

Elastic net Stability selected Linear model
linear model with age and sex

Trait R R CI MAE MAE CI # R MAE # R MAE

Age 0.99 [0.98, 0.99] 1.67 [1.5, 1.88] 701 0.98 2.00 38 1 0
%CD8+ naive T cells 0.92 [0.87, 0.96] 0.38 [0.32, 0.48] 312 0.89 0.48 13 0.59 0.62
%B cells in CD45+ cells 0.90 [0.8, 0.96] 0.41 [0.3, 0.53] 606 0.90 0.45 15 0.05 1.06
%CD8+ T cells in CD45+ cells 0.90 [0.84, 0.94] 0.84 [0.7, 0.97] 555 0.84 1.03 13 0.17 1.5
%NK cells in CD45+ cells 0.88 [0.71, 0.95] 0.49 [0.41, 0.59] 1072 0.89 0.60 14 0.11 0.95

%T cells in CD45+ cells 0.85 [0.75, 0.93] 2.24 [1.93, 2.7] 560 0.77 2.62 6 0.18 3.63
%CD4+ naive T cells 0.85 [0.76, 0.92] 0.92 [0.72, 1.04] 662 0.86 1.07 13 0.18 1.71
%CD4+ T cells in CD45+ cells 0.85 [0.74, 0.93] 1.62 [1.29, 1.95] 338 0.77 1.93 12 0.21 2.59
%MAIT in T cells 0.84 [0.74, 0.91] 1.32 [1.12, 1.55] 973 0.84 1.48 15 0.32 2.44
CD4 CD8 ratio 0.82 [0.7, 0.88] 0.47 [0.38, 0.6] 102 0.91 0.15 18 0.22 0.28

%CD8a+CD4- T cells 0.81 [0.59, 0.9] 0.41 [0.32, 0.49] 273 0.73 0.45 12 0.42 0.46
%monocytes in CD45+ cells 0.81 [0.7, 0.85] 0.71 [0.64, 0.82] 480 0.70 0.89 13 0.03 1.03
%CD8b+ T cells 0.80 [0.72, 0.88] 1.21 [0.98, 1.44] 57 0.70 1.57 5 0.14 1.59
%CD8+ EMRA T cells 0.80 [0.7, 0.87] 0.29 [0.23, 0.38] 604 0.79 0.34 8 0.09 0.33
%naive in B cells 0.78 [0.7, 0.86] 6.10 [5.14, 7.03] 113 0.69 6.33 13 -0.03 7.95

%CD8a+CD16hi NK cells 0.77 [0.6, 0.87] 0.45 [0.36, 0.53] 218 0.74 0.43 13 0.04 0.56
%TCRγδ+ in T cells 0.77 [0.64, 0.85] 1.49 [1.25, 1.76] 901 0.51 2.01 8 0.21 1.72
%CD14hi monocytes in CD45+ cells 0.77 [0.65, 0.83] 0.68 [0.6, 0.79] 690 0.64 0.86 12 0.08 0.93
%CD16hi monocytes in CD45+ cells 0.76 [0.69, 0.84] 0.22 [0.19, 0.25] 1447 0.68 0.24 8 0.29 0.2
%CD4+ CM T cells 0.76 [0.65, 0.86] 1.31 [1.08, 1.65] 936 0.67 1.44 8 0.26 1.5

%conventional T cells 0.75 [0.64, 0.86] 2.26 [1.91, 2.97] 193 0.63 2.57 7 0.23 2.68
%CD8+ MAIT cells 0.74 [0.6, 0.86] 0.18 [0.14, 0.23] 1402 0.55 0.24 10 0.14 0.25
%memory B cells in B cells 0.74 [0.65, 0.81] 4.34 [3.51, 4.99] 423 0.68 4.49 13 -0.03 5.81
Height 0.73 [0.64, 0.79] 5.00 [4.42, 5.57] 507 0.76 4.55 3 0.78 3.83
%eosinophils 0.72 [0.53, 0.89] 0.54 [0.45, 0.64] 372 0.64 0.58 6 0.06 0.64

%CD4+ EM T cells 0.72 [0.61, 0.84] 0.36 [0.3, 0.42] 361 0.67 0.38 6 0.2 0.41
%marginal zone in B cells 0.71 [0.58, 0.83] 4.05 [3.38, 4.96] 100 0.52 4.42 13 0.03 4.63
%neutrophils 0.70 [0.51, 0.8] 5.47 [4.68, 6.28] 46 0.64 5.87 3 -0.01 6.89
%CD4-CD8- MAIT cells 0.69 [0.52, 0.85] 0.15 [0.13, 0.18] 657 0.67 0.17 15 0.41 0.19
%basophils 0.69 [0.53, 0.81] 0.13 [0.11, 0.15] 599 0.63 0.15 6 0.25 0.14

%CD8+ CM T cells 0.68 [0.56, 0.77] 0.58 [0.49, 0.69] 140 0.72 0.59 9 0.15 0.78
Red blood cells (hematology) 0.68 [0.61, 0.75] 0.25 [0.21, 0.29] 596 NA NA NA 0.66 0.23
%naive Treg 0.67 [0.51, 0.77] 0.09 [0.08, 0.11] 443 0.33 0.13 3 0.34 0.09
%Treg 0.67 [0.56, 0.76] 0.20 [0.17, 0.23] 554 0.30 0.24 3 0.18 0.19
Eosinophils (hematology) 0.66 [0.48, 0.86] 0.06 [0.05, 0.08] 893 0.59 0.07 5 0.04 0.06

%TCRγδ+ cells 0.65 [0.41, 0.81] 0.41 [0.3, 0.55] 1498 0.62 0.36 5 0.32 0.37
%CCR6+ cells 0.64 [0.54, 0.74] 0.67 [0.57, 0.8] 174 0.56 0.75 5 0.05 0.79
%transitional in B cells 0.61 [0.51, 0.72] 1.79 [1.42, 2.17] 76 0.50 1.84 8 -0.06 1.98
%memory Treg 0.61 [0.41, 0.78] 0.13 [0.11, 0.15] 122 0.47 0.13 5 0.04 0.11
%CD8b+CD45RA+CD27int T cells 0.59 [0.44, 0.69] 0.34 [0.28, 0.39] 26 0.53 0.30 2 0.17 0.27
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Table 1. Continued

Elastic net Stability selected Linear model
linear model with age and sex

Trait R R CI MAE MAE CI # R MAE # R MAE

%CD8+ EM T cells 0.58 [0.44, 0.67] 0.16 [0.12, 0.23] 25 0.65 0.18 4 0.08 0.17
Weight 0.57 [0.47, 0.65] 7.91 [6.78, 9.03] 299 0.51 7.61 1 0.61 5.8
Lymphocytes (hematology) 0.55 [0.41, 0.67] 0.33 [0.27, 0.38] 56 0.39 0.39 3 0.23 0.34
%CD8b+CD4+ T cells in CD45+ cells 0.53 [0.4, 0.66] 0.04 [0.03, 0.04] 406 0.56 0.03 3 0.3 0.03
CD16hi CD56hi NK cell ratio 0.52 [0.35, 0.65] 6.26 [5.46, 7.25] 676 0.53 0.40 4 0.21 0.4

Cholesterol 0.45 [0.32, 0.56] 0.88 [0.78, 0.99] 50 0.38 0.79 2 0.4 0.65
Diastolic pressure 0.44 [0.26, 0.55] 7.03 [6.36, 8.05] 238 0.24 8.09 2 0.37 5.39
%live CD8b+CD4+ T cells 0.43 [0.28, 0.56] 0.05 [0.04, 0.06] 896 NA NA NA 0.1 0.04
Abdominal circumference 0.42 [0.27, 0.57] 7.21 [6.34, 7.94] 207 0.31 7.50 3 0.4 6.53
MCHC 0.42 [0.31, 0.55] 0.61 [0.53, 0.7] 422 0.43 0.61 2 0.08 0.71

%ILC2 0.42 [0.26, 0.64] 0.01 [0, 0.01] 212 NA NA NA 0.37 0.01
LDL 0.41 [0.28, 0.54] 0.80 [0.7, 0.92] 23 0.35 0.74 2 0.4 0.6
%activated Treg 0.41 [0.3, 0.57] 0.06 [0.05, 0.07] 46 0.30 0.05 2 0.25 0.05
Systolic pressure 0.40 [0.25, 0.51] 10.76 [9.8, 12.2] 470 NA NA NA 0.43 9.01
%ILC 0.39 [0.21, 0.54] 0.05 [0.05, 0.06] 1028 0.27 0.05 2 0.16 0.04

%CXCR3+ cells 0.35 [0.11, 0.54] 0.82 [0.71, 0.95] 50 NA NA NA 0.11 0.86
Basophils (hematology) 0.35 [0.22, 0.45] 0.01 [0.01, 0.01] 334 0.41 0.01 3 -0.02 0.01
%HLA-DR+ in CM CD8+ T cells 0.35 [0.16, 0.54] 5.71 [4.91, 6.98] 1810 0.23 5.71 1 0.16 4.53
BMI 0.34 [0.21, 0.53] 2.48 [2.13, 2.79] 59 0.07 2.49 1 0.29 2.15
CRP 0.34 [0.11, 0.5] 1.44 [1.09, 2] 2143 0.19 1.28 2 0.05 1.27

%CD4+ EMRA T cells 0.52 [0.26, 0.71] 0.15 [0.11, 0.22] 820 0.40 0.19 3 0.04 0.12
Neutrophils (hematology) 0.51 [0.33, 0.67] 0.93 [0.81, 1.1] 427 0.32 0.95 3 0.1 0.77
Monocytes (hematology) 0.51 [0.35, 0.64] 0.10 [0.09, 0.12] 105 0.49 0.09 4 0 0.09
HDL 0.50 [0.32, 0.6] 0.24 [0.22, 0.27] 229 NA NA NA 0.47 0.19
%cDC1 0.49 [0.3, 0.67] 0.13 [0.11, 0.17] 561 0.56 0.12 1 0.02 0.12

Leukocytes (hematology) 0.49 [0.27, 0.71] 1.17 [0.96, 1.39] 115 0.28 1.20 2 0.17 1.01
%CD14hi monocytes 0.49 [0.33, 0.62] 0.89 [0.77, 1.03] 179 0.34 0.95 4 0.06 0.89
%CD69+CD16hi NK cells 0.49 [0.31, 0.64] 0.05 [0.04, 0.06] 792 0.22 0.07 4 0.15 0.04
%HLA-DR+ in EM CD4+ T cells 0.49 [0.35, 0.62] 4.54 [3.81, 5.67] 1629 NA NA NA 0.33 3.97
%CD8a+CD4+ T cells 0.48 [0.3, 0.67] 0.13 [0.09, 0.2] 245 -0.06 0.13 1 0.02 0.11

Table 2. Results from the logistic regression elastic net models and stability selected logistic regression models for binary traits. Logistic regression elastic net models were
fitted using the logistic regression cost function together with elastic net regularization on the regression parameters. The regularization was tuned using our cross-validation
scheme detailed in Algorithm 1. The column ’#’ gives the number of probes included in the model. The column CR gives the classification rate: how many of the out-of-sample
classes that were correctly predicted. The naive prediction is to always guess the most prevalent condition. The percentage of people in the whole sample that belongs to
the most prevalent class is given in the column "Prev". Methylation predictors only add something if they can improve on the naive prediction. This measure is given in the
"Diff" column which is computed as "CR" - "prevalence".

Elastic net Stability selected
linear model

Trait Prev CR CR CI Diff # CR Diff #

Smoking 0.52 0.89 [0.82, 0.94] 0.38 192.90 0.64 0.12 3
CMV 0.65 0.87 [0.81, 0.94] 0.22 255.95 0.90 0.25 13
Toxoplasmosis 0.56 0.72 [0.65, 0.8] 0.16 1057.65 0.69 0.13 1
Hepatitis B 0.52 0.65 [0.59, 0.75] 0.13 337.65 0.69 0.17 1
Herpes Simplex 1 0.65 0.68 [0.59, 0.76] 0.03 5312.05 0.70 0.05 1
Helicobacter pylori 0.82 0.82 [0.77, 0.88] 0.00 144.25 0.84 0.02 1
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Table 3. Mean absolute error (MAE) and correlation (R) between predicted and
observed out-of-sample values compared between our elastic net models and the
Houseman model with either the standard reference library or IDOL

R MAE

Trait Houseman IDOL Elastic net Houseman IDOL Elastic net

B cells 0.875 0.853 0.898 3.043 2.752 0.408
CD4+ T cells 0.783 0.824 0.847 2.207 3.522 1.619
CD8+ T cells 0.824 0.852 0.896 6.368 3.768 0.840
Monocytes 0.786 0.784 0.806 3.994 2.304 0.713
NK cells 0.788 0.813 0.884 3.512 2.232 0.494
Neutrophils 0.634 0.634 0.703 11.377 10.751 5.471

Table 4. Mean absolute error (MAE) and correlation (R) between predicted and ob-
served out-of-sample values compared between our stability selected linear models
and the Houseman model with either the standard reference library or IDOL

R MAE

Trait Houseman IDOL Stab. sel. Houseman IDOL Stab. sel.

B cells 0.899 0.889 0.905 3.107 2.846 0.454
CD4+ T cells 0.757 0.788 0.774 2.622 3.645 1.933
CD8+ T cells 0.829 0.825 0.844 6.381 4.024 1.032
Monocytes 0.708 0.719 0.704 3.973 2.334 0.891
NK cells 0.799 0.802 0.891 3.591 2.259 0.600
Neutrophils 0.609 0.609 0.640 11.333 10.666 5.871

(R=0.90, 95% CI: [0.8, 0.96]) using 606 predictors (95% CI:
[582, 635]); CD8+ T cells (R=0.90, 95% CI: [0.84, 0.94]) us-
ing 555 predictors (95% CI: [526, 591]); and natural killer
(NK) cells (R=0.88, 95% CI: [0.71, 0.95]) using 1072 pre-
dictors (95% CI: [1036, 1126]). For most immune cell pro-
portions, methylation levels clearly provide additional infor-
mation in comparison to just age and sex.

A comparison of the performance of our elastic net models
and the Houseman model, using either the standard or IDOL
reference libraries (9, 12), is given in Table 3. Our mod-
els outperform the two models for the six major cell-types
that they are currently able to estimate. The correlations be-
tween predicted and observed out-of-sample values are sys-
tematically higher for our models, relative to the Houseman
model with either the default or IDOL reference library (Ta-
ble 3). Furthermore, our models are less error-prone (Ta-
ble 3). These findings suggest that elastic net regression mod-
els, trained on whole blood standardized cytometry data, can
outperform constrained projection techniques based on refer-
ence values obtained in a limited number of isolated blood
cell sub-types.

Linear models selected by stability selection. We next
evaluate how prediction accuracy varies with the number of
predictors in our models. The regularization paths for the
nine best predicted traits are shown in Figure 1. Interest-
ingly, out-of-sample prediction error decreases rapidly with
the number of predictors, and plateaus at around 50 predic-
tors (Figure 1). This indicates that accurate predictions can
be achieved with much fewer predictors than the hundreds
of DNAm probes used by current prediction models of cell
composition (9, 12) and age (18, 23). These results suggest
that blood cell composition can be predicted well using only
a few number of probes that are markers for differentiation
events. To find such probes, we estimate a minimal robust
predictor set using stability selection. We select and build the
models on a subsample of 866 randomly selected individu-
als, and then evaluate on a hold-out sample of 96 randomly

selected individuals.

The predictive accuracy of the stability-selected predictive
models is high (Table 1) and comparable to that of elastic net
regression models, while using considerably fewer predic-
tors. Prediction performance is also apparent when predicted
out-of-sample values are plotted against the observed values
for the 16 most accurate models (Figure 2). For instance,
using only six methylation probes, the correlation between
estimated and observed values for T cells is R=0.77 and the
MAE is lower than 3%. We verify that our stability selected
models are competitive by comparing their prediction accu-
racy to that of the Houseman model using either the standard
or IDOL reference panels. Although our models use only 15,
12, 13, 13, 14 and 3 predictors for B cells, CD4+ T cells,
CD8+ T cells, monocytes, NK cells and neutrophils, respec-
tively, they yield comparable out-of-sample correlations and
lower MAE (Table 4), relative to current methods. Together,
these results demonstrate that prediction models that use a
dozen or fewer methylation probes selected by stability se-
lection can achieve prediction accuracy comparable to that of
gold-standard, reference-based cell deconvolution techniques
that use hundreds of probes.

Biological relevance of the stability selected methylation
probes. Because blood cell proportions could be accu-
rately predicted with just a dozen of DNAm probes, we
next investigate the relevance of the stability-selected probes
to cell biology. We find several, methylome-wide signif-
icant DNAm probes that are found close to, or within,
genes with well-known functions in immune cell differ-
entiation (Table 5). For instance, DNAm levels within
CD4, CD8A and CD8B genes are associated with the
CD4:CD8 ratio (P=3.9x10-11), the proportion of CD8a+ NK
cells (P=4.6x10-17) and the proportion of CD8b+ T cells
(P=1.6x10-9), respectively. The proportion of neutrophils
are associated with DNAm levels in the PDE4B gene body
(P=1.8x10-8), which plays a key role in neutrophil function
(24). Similarly, the proportion of MAIT cells are associated
with DNAm levels in the 5’UTR of IL21R (P=8.3x10-21),
which is known to regulate MAIT cell numbers (25). Several
cell sub-types, including leukocytes, lymphocytes, mono-
cytes and ILC, are associated with DNAm sites within AHRR,
F2RL3 and GATA3 genes, which are known to be strongly
affected by cigarette consumption (26–28). We consistently
showed recently that circulating levels of these different
blood cell subsets are significantly impacted by smoking sta-
tus (14). Finally, a number of the selected DNAm probes
have previously been associated with disease (Table 5). For
instance, DNAm within the ACSF3 gene is associated with
the proportion of naive B cells (P=4.1x10-9) and has been
shown to be differentially methylated in B cells of patients
with rheumatoid arthritis (29), suggesting that B cell sub-
type fractions are altered in these patients. Together, these
findings support stability selection as a robust tool to select
relevant associated variables, and illustrate the biological rel-
evance of DNAm probes selected as predictors of immune
cell proportions.

Bergstedt et al. | Blood cell prediction bioRχiv | 5

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/456996doi: bioRxiv preprint 

https://doi.org/10.1101/456996
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 5. Methylome-wide significant (P < 3×10−8) DNAm probes selected by stability selection for all continuous traits. A model was fitted for each trait with all predictors
selected by stability selection. P values were then computed for each predictor. The predictors who had P values smaller than 3× 10−8 are included in the table. Table
continued on next page.

Trait Methylation Coefficient Standard P value Chr. Position Closest gene Genic region Published associations
probe error

Age cg08097417 44.342 4.6133 8.33e-21 chr7 130419133 KLF14 TSS1500 Age (Florath et al, Hum Mol Genet 2014;
Hannum et al, Mol Cell 2013)

Age cg10501210 -10.188 1.196 7.62e-17 chr1 207997020 miR-29b-2 Age (Tserel et al, Immun Ageing 2014)
Age cg22083892 -8.645 1.244 7.44e-12 chr12 21928661 KCNJ8 TSS1500
Height cg26020914 -22.118 2.6003 7.90e-17 chrX 18444359 CDKL5 5’UTR
Weight cg24447042 78.969 4.653 5.67e-56 chrX 128657893 SMARCA1 TSS1500
Abdominal circumference cg01243823 -43.54 5.1116 7.17e-17 chr16 50732212 NOD2 Body BMI (Mendelson et al., PLoS Medicine

2017); Memory T cell differentiation (Ko-
mori et al., J Immunol 2015)

BMI cg16740586 20.548 2.8828 2.15e-12 chr21 43655919 ABCG1 Body BMI (Demerath et al., Hum Mol Genet
2015)

Diastolic pressure cg09761247 -41.541 4.5998 1.09e-18 chrX 148585951 IDS Body
Diastolic pressure cg19996355 189.541 25.531 2.73e-13 chr19 19729375 PBX4 1stExon Age (Johansson et al., PloS One 2013)
HDL cg23581718 -4.098 0.3211 2.74e-34 chrX 41173768
LDL cg22454769 2.719 0.4601 4.95e-09 chr2 106015767 FHL2 TSS200 Age (Li et al., Sci Rep 2017)
Cholesterol cg16867657 5.29 0.3668 2.10e-42 chr6 11044877 ELOVL2 TSS1500 Age (Li et al., Sci Rep 2017)
CRP cg12992827 -10.626 1.4894 2.06e-12 chr3 101901234 BMI (Wahl et al., Nature 2017)
CRP cg00444883 15.865 2.5926 1.43e-09 chr8 92060568

Leukocytes (hematology) cg05575921 -4.585 0.7691 3.65e-09 chr5 373378 AHRR Body Smoking (Bojesen et al., Thorax 2017;
Chatziioannou et al., Sci Rep 2017)

Lymphocytes (hematology) cg04551776 -3.881 0.3825 6.18e-23 chr5 393366 AHRR Body Smoking (Chatziioannou et al., Sci Rep
2017)

Lymphocytes (CD3+) cg09736846 -29.648 4.175 2.70e-12 chr8 101443681

Neutrophils (hematology) cg18377866 -23.853 2.4474 2.31e-21 chr3 193965288 LOC101929337 TSS200
Neutrophils cg11674865 -96.313 7.0731 2.76e-38 chr1 161591488
Neutrophils cg17781418 -40.562 4.6305 1.07e-17 chr3 71305262 FOXP1 5’UTR CD4+ T cell differentiation (Garaud et al.,

Eur J Immunol. 2017)
Neutrophils cg14973204 -3.129 0.4149 1.21e-13 chr12 133052753
Neutrophils cg10236264 -34.085 5.9929 1.78e-08 chr1 66793339 PDE4B Body Neutrophil function (Ariga et al., J Im-

munol 2004) ; Maternal glycemic response
(Cardenas et al., Diabetes 2018)

Basophils (hematology) cg14973204 -0.178 0.0258 1.04e-11 chr12 133052753
Monocytes (hematology) cg05575921 -0.38 0.0363 2.94e-24 chr5 373378 AHRR Body Smoking (Bojesen et al., Thorax 2017;

Chatziioannou et al., Sci Rep 2017)
CD16hi monocytes cg23213217 2.015 0.2896 7.16e-12 chr1 224370155 DEGS1 TSS1500 Monocyte count (Houseman et al., BMC

Bioinformatics 2012)
CD16hi monocytes cg23417673 -6.397 0.9542 3.81e-11 chr16 85096433 KIAA0513 TSS1500
CD16hi monocytes cg05575921 0.576 0.0937 1.21e-09 chr5 373378 AHRR Body Smoking (Bojesen et al., Thorax 2017;

Chatziioannou et al., Sci Rep 2017)
CD8a+ NK cells cg03196485 -2.217 0.2581 4.58e-17 chr2 87021117 CD8A 5’UTR
ILC cg23617037 0.62 0.0808 4.68e-14 chr6 149804659 ZC3H12D 5’UTR
ILC cg03636183 0.23 0.038 2.10e-09 chr19 17000585 F2RL3 Body Smoking (Dogan et al., Am J Med Genet

2017)
cDC1 cg22697239 -4.095 0.2892 5.49e-41 chr11 44626708 CD82 Body

CCR6+ cells cg09222732 -15.187 1.473 1.71e-23 chr6 466893
CXCR3+ CCR6+ cells cg22858308 -6.945 0.7813 3.93e-18 chr6 143095613 HIVEP2 Body
CD4- CD8b- T cells cg00994629 12.089 1.3009 1.43e-19 chr14 22694547 Gestational age (Bohlin et al., Genome

Biol 2016)
γδ TCR+ cells cg00994629 12.982 1.4714 6.82e-18 chr14 22694547 Gestational age (Bohlin et al., Genome

Biol 2016)
γδ TCR+ cells in lymphocytes cg00994629 48.705 5.1129 1.91e-20 chr14 22694547 Gestational age (Bohlin et al., Genome

Biol 2016)

CD4:CD8 ratio cg03855955 -7.399 1.1036 3.88e-11 chr12 6900351 CD4 5’UTR
CD8b+ T cells cg04329870 -12.479 2.0443 1.61e-09 chr2 87048747 CD8B Body
Live CD8+ T cells cg01029623 15.712 2.3006 1.93e-11 chr12 122016779 KDM2B Body CD8+ T cells (Kennedy et al., Front Im-

munol 2016)
Live CD8+ T cells cg04329870 -17.201 2.6626 2.03e-10 chr2 87048747 CD8B Body
CD8+ CD45+ CD27int cells cg08641278 8.138 0.72 1.37e-27 chr10 73848764 SPOCK2 1stExon
CD8+ naive T cells cg17458390 12.345 1.8609 6.07e-11 chr10 63752709 ARID5B Body Atherosclerosis (Liu et al., Nat Commun

2017)
HLA-DR+ of CD8+ CM T cells cg25242306 67.027 9.8538 2.02e-11 chr13 74667131 KLF12 5’UTR
HLA-DR+ of CD8+ EMRA T cells cg02097498 -52.524 8.79 3.45e-09 chr16 10965851
CD4+ EM T cells cg26144437 5.433 0.9428 1.18e-08 chr1 145474469 ANKRD34A Body Abestos exposure in lung cancer (Kettunen

et al., Int J Cancer 2017)
CD4+ EMRA T cells cg09841874 -9.742 1.3872 4.65e-12 chr20 46251037 NCOA3 Body
HLA-DR+ of CD4+ EM T cells cg10921592 -11.554 1.3589 9.01e-17 chr6 33039414 HLA-DPA1 Body
HLA-DR+ of CD4+ EMRA T cells cg08151292 -233.484 29.3931 6.65e-15 chr20 3758189 SPEF1 3’UTR
CD4+ CD8a+ T cells cg19660239 17.474 1.3247 4.25e-36 chr19 53400545
CD4+ CD8b+ T cells cg24148817 -0.676 0.096 4.14e-12 chr6 37461033 C6orf129 Body
CD4+ CD8b+ T cells cg11679455 -1.213 0.1805 3.41e-11 chr10 8100761 GATA3 Body Smoking (Joehanes et al., Circ Cardiovasc

Genet 2016)
Live CD4+ CD8b+ T cells cg11679455 -1.81 0.2267 6.20e-15 chr10 8100761 GATA3 Body Smoking (Joehanes et al., Circ Cardiovasc

Genet 2016)

Naive Treg cg26836479 1.753 0.2441 1.89e-12 chr19 42706353 DEDD2 Body Gestational age (Bohlin et al., Genome
Biol 2016)

Naive Treg cg14395620 -1.454 0.2062 4.46e-12 chr4 40285234
Naive Treg cg03354487 0.73 0.125 8.11e-09 chr6 20039211
Treg cg02255107 -3.489 0.4399 9.17e-15 chr3 16347334 OXNAD1 3’UTR
Treg cg26714968 2.213 0.3012 5.95e-13 chr2 234267824 DGKD Body
Treg cg13788583 3.999 0.6658 3.13e-09 chr20 8132217 PLCB1 Body
Activated Treg cg24683414 2.12 0.2272 1.54e-19 chr1 92952581 GFI1 TSS1500

6 | bioRχiv Bergstedt et al. | Blood cell prediction

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/456996doi: bioRxiv preprint 

https://doi.org/10.1101/456996
http://creativecommons.org/licenses/by-nc-nd/4.0/


%CD4 naive T cells %CD4 T cells in CD45 cells %MAIT cells in T cells

%CD8 T cells in CD45 cells %NK cells in CD45 cells %T cells in CD45 cells

Age %CD8 naive T cells %B cells in CD45 cells

0 100 200 300 0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300 0 100 200 300
0.25

0.50

0.75

1.00

1.25

2

3

4

5

1.5

2.0

2.5

0.50

0.75

1.00

0.6

0.9

1.2

1.5

2

3

4

5

10

1.0

1.5

2.0

1.0

1.4

1.8

# probes

M
A

E

Fig. 1. Mean absolute prediction errors (MAE) as a function of the number of predictors included in elastic net models predicting quantitative traits. The regularization
parameter α is here set to 0.95. Confidence bands are estimated non-parametrically from the 20 samples of the prediction error given by our cross-validation scheme
detailed in Algorithm 1.

Table 5. Continued

Trait Methylation Coefficient Standard P value Chr. Position Closest gene Genic region Published associations
probe error

MAIT cells in lymphocytes cg20732539 19.44 2.02 8.32e-21 chr16 27416077 IL21R 5’UTR IL21R regulates MAIT cell numbers (Wil-
son et al., J Exp Med 2015)

MAIT cells in lymphocytes cg10827488 -18.236 2.5987 4.87e-12 chr11 113953838 ZBTB16 Body Multiple sclerosis (Souren et al., bioRxiv) ;
NK and NKT cell differentiation (Schlums
et al., Immunity 2015; Mao et al., PNAS
2016)

MAIT cells in lymphocytes cg09088625 -34.172 6.0198 1.93e-08 chr3 46246578 CCR1 5’UTR Monocyte/DC differentiation (Rodríguez-
Ubreva et al., Cell Reports 2017)

CD8+ MAIT cells cg04116545 8.27 1.4394 1.31e-08 chr6 125684679

Naive B in all B cells cg06800849 80.426 13.519 4.13e-09 chr16 89180587 ACSF3 Body Rheumatoid arthritis in B cells (Julià et al.,
Hum Mol Genet 2017)

Marginal zone B in B cells cg13651690 -236.308 41.3711 1.61e-08 chr14 106320748
Plasmocytes in B cells cg25780496 -12.362 2.0867 4.75e-09 chr15 101137253 LINS 5’UTR
Transitional B in B cells cg25385366 -12.187 2.104 1.02e-08 chr21 43809360 TMPRSS3 Body
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Fig. 2. Out-of-sample predictions from stability selected linear models plotted against observed hold-out values. Plots are shown for the 9 best predicted traits. Observed and
predicted values are obtained from the hold-out sample of 96 individuals.
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Prediction of other factors. Among the other quantitative
factors assessed in the Milieu Intérieur cohort, prediction by
the elastic net method is the most accurate for age (Table 1).
Using 701 predictors (95% CI: [673, 749]), we estimate age
with an MAE of 1.67 years (95% CI: [1.5, 1.88]), confirming
that it can be estimated from DNAm with high accuracy (18,
23). From Table 1 it appears that our elastic net models are
also able to estimate red blood cell counts, height and weight
with high accuracy. However, a comparison with the model
that only uses age and sex reveals that the predictive power of
methylation levels for these two traits probably mostly stem
from their ability to predict age and sex.

We next evaluate the accuracy of elastic net models to
predict, based on DNAm data, smoking status and the
serostatus for 13 common infections, including infections
by Toxoplasma gondii, Helicobacter pylori, cytomegalovirus
(CMV), Epstein-Barr virus (EBV), hepatitis B virus (HBV),
Herpes Simplex virus (HSV), Varicella Zoster virus (VZV),
mumps virus and measles virus (22). Binary traits for
which the prediction of the most prevalent condition outper-
forms the naive prediction are shown in Table 2. We obtain
good prediction results for smoking consumption and CMV
serostatus, which is natural considering that both factors have
been shown to broadly affect immune cell variation (14). The
out-of-sample classifications for both of these traits are cor-
rect almost 90% of the time. The estimated regularization
paths for the different binary traits are shown in Figure 3.
which indicate that near optimal prediction can be achieved
with less than 50 DNAm probes. The optimal classification
rate for CMV serostatus is CR=87% (95% CI: [81%, 94%])
using 256 predictors, while for smoking, CR=89% (CI: [82%,
94%]) using 193 predictors.

We also select a robust minimal set of predictors using sta-
bility selection for the binary phenotypes. Models are se-
lected and fitted using the same training set of 866 samples
as for continuous traits, and then evaluated on the 96 hold-
out samples. The prediction accuracy of the models is shown
in Table 2. Interestingly, the stability selected model for
CMV performs slightly better than the elastic net model, us-
ing only 13 probes, while the selected model for smoking per-
forms notably worse. This indicates that the relationship be-
tween DNAm and smoking is less sparse than that for DNAm
and CMV serostatus. Methylome-wide significant probes se-
lected for smoking are well known DNAm sites predictive
of cigarette consumption (Table 6). We find that HBV, T.
gondii and HVS1 infections associate with DNAm sites close
to EVOLV2 and KLF14 genes, known to be strongly associ-
ated with age. This suggests no effects of these infections on
DNAm besides that of age, with which they are themselves
strongly correlated (22). More interestingly, DNAm asso-
ciated with H. pylori seropositivity is found within the po-
liovirus receptor-like 3 gene (P=4.6x10-12), an intestinal ep-
ithelium receptor for bacterial toxins (30), suggesting a role
of this protein in H. pylori infection.

Discussion

Our study reports novel, accurate models to predict blood
cell composition from whole blood DNAm profiles. Mod-
els were built using a unique dataset that comprises both
the quantification of 70 blood cell proportions by standard-
ized flow cytometry (14) and blood methylomes established
with the MethylationEPIC array (15), assessed in 962 healthy
donors of western European ancestry. Predictive models are
built using the elastic net method (17), a regularized linear
regression model that has been recently used to predict age
from MethylationEPIC array data (18). The prediction ac-
curacy, measured as the correlation between predicted and
observed out-of-sample values and the MAE, is improved for
our models, compared to the widely-used Houseman model,
based on either the standard or improved IDOL reference li-
braries (9, 12). We are also able to accurately predict 35
subset frequencies, in contrast to the six that are currently
possible to estimate by the Houseman model using either ref-
erence panel. These results suggest that our models should
better prevent false positives in EWAS due to cellular het-
erogeneity, relative to existing gold-standard methods. Nev-
ertheless, it must be noted that we assessed prediction accu-
racy based on cellular fractions estimated with the same flow
cytometry technique, panel design and standardization steps
as those used for the training dataset, which may disfavor
the other methods trained on other types of cell enumeration
techniques.

We also show that it is possible to find predictive models
of immune cell proportions that are comparable in terms of
accuracy to elastic net models, and to the Houseman models
with either reference library, using considerably fewer pre-
dictors. This is done by employing the stability selection
technique (20, 21). Because of their much smaller size, such
models can more robustly, flexibly and cost-effectively pre-
dict blood cell composition, age, and smoking consumption
than previous models.

Thanks to the exhaustive immunophenotyping performed
in our training dataset, we can extend the number of blood
cell subsets that can be accurately predicted from blood
DNAm data. Notably, our models can accurately predict
the blood frequencies of MAIT cells, eosinophils, basophils
and Treg cells (R>0.6; Table 1). Importantly, all these leuko-
cyte subsets have previously been reported to vary with var-
ious disease conditions, and are thus expected to confound
interpretation of EWAS. For instance, circulating levels of
MAIT cells are known to be strongly altered during infec-
tion (31) and in systemic lupus erythematosus and rheuma-
toid arthritis patients (32). Eosinophil numbers change with
exposure to allergens and in asthmatic patients (33). Simi-
larly, Treg populations and sub-populations show altered fre-
quencies in several autoimmune and allergic diseases (34).
Therefore, adjusting for these newly-predicted cell popula-
tions may improve correction for cellular heterogeneity in
epigenomic studies of immune-related disorders. More gen-
erally, we envisage that prediction models of blood cellu-
lar composition could also be employed to better understand
disease pathophysiology per se. While EWAS assume that
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Fig. 3. Classification rate as a function of the number of predictors included in logistic regression elastic net models predicting binary traits. The regularization parameter α is
here set to 0.95. The 6 binary traits best predicted by the models are shown. Confidence bands are estimated non-parametrically using the 20 samples from the distribution
of predictive accuracy given by our cross-validation scheme detailed in Algorithm 1
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Table 6. Methylome-wide significant (P < 3×10−8) DNAm probes selected by stability selection for all binary traits. A logistic regression model with all predictors chosen
by stability selection was fitted for each trait. The predictors who had p values smaller than 3×10−8 are included in the table.

Trait Methylation probe Coefficient Standard error P value Chr. Position Closest gene Genic region Published association

Hepatitis B cg08097417 -17.65 2.000 1.10e-18 chr7 130419133 KLF14 TSS1500 Age (Li et al., Sci Rep 2017)
Toxoplasmosis cg16867657 11.96 0.888 2.32e-41 chr6 11044877 ELOVL2 TSS1500 Age (Li et al., Sci Rep 2017)
Smoking cg05575921 -15.98 2.080 1.59e-14 chr5 373378 AHRR Body Smoking (Bojesen et al., Thorax 2017;

Chatziioannou et al., Sci Rep 2017)
Smoking cg21566642 -9.62 1.626 3.33e-09 chr2 233284661 Smoking (Joehanes et al., Circ Cardiovasc

Genet 2016; Chatziioannou et al., Sci Rep
2017)

Herpes Simplex 1 cg16867657 8.25 0.804 1.14e-24 chr6 11044877 ELOVL2 TSS1500 Age (Li et al., Sci Rep 2017)

Helicobacter pylori cg21306573 -10.48 1.516 4.65e-12 chr3 110788276 PVRL3-AS1 Body PVRL3 is a receptor for Clostridium diffi-
cile toxins (LaFrance et al., PNAS 2015)

Measles cg09472506 -18.27 1.966 1.45e-20 chr11 100803740 ARHGAP42 Body ARHGAP42 is associated with risk for hy-
pertension (Bai et al., J Clin Invest 2017)

disease-associated DNAm sites affect the transcriptional re-
programming of already differentiated cells, there is increas-
ing evidence that diseases can also be caused by stable alter-
ations of cellular repertoires, a phenomenon recently referred
to as polycreodism (4). We suggest that model-based estima-
tion of blood cell composition in large longitudinal cohorts,
for which methylomes but no flow cytometric measurements
exist, will represent a powerful new approach to evaluate
whether perturbations in cell proportions can predict disease
outcome.

Methods

DNA methylation data. The Milieu Intérieur cohort in-
cludes 1,000 healthy donors who were recruited by BioTrial
(Rennes, France) and were stratified by gender (i.e., 500
women and 500 men) and age (i.e., 200 individuals from each
decade of life, between 20 and 70 years of age). Donors were
selected based on stringent inclusion and exclusion criteria,
detailed elsewhere (13). DNAm data was retrieved for all
donors from a previous study (15), where detailed methods
are provided. In brief, the DNA methylome was profiled with
the Infinium MethylationEPIC BeadChip on whole blood-
derived samples. Raw fluorescence intensities of 866,895
methylation sites across the human genome were processed
with the R (version 3.5) Bioconductor package minfi. Val-
ues were corrected for probe color bias and differences in
type-I and type-II probe distributions, using the single sample
NOOB (ssNOOB) method implemented in minfi. Because
we wanted to use the methylation data primarily for predic-
tion, which can easily be evaluated on out-of-sample obser-
vations and in validation cohorts, we wanted to exclude as
few probes as possible. Therefore, we did not exclude probes
from the X and Y chromosomes. We did neither exclude pos-
sibly cross-reactive probes. From the 866,895 initial probes,
we only excluded probes that had a detection P ≥ 0.01 for
more than 3 samples. A total of 858,923 probes were kept
for the analyses. We suppose in this study that DNAm levels
are linearly related to cell proportions. We therefore use β
methylation values instead of m values.

Flow cytometry data. Flow cytometry data was retrieved
for all Milieu Intérieur donors from a previous study (14),
where detailed methods are provided. Briefly, whole blood
samples were collected from the 1,000 healthy, fasting donors

on Li-heparin. Sample staining was performed within 6h
of blood draw.Ten 8-color flow cytometry panels were de-
veloped. The acquisition of cells was performed using two
MACSQuant analyzers, which were calibrated using Mac-
sQuant calibration beads. Flow cytometry data were gener-
ated using MACSQuantifyTM software. Among the 313 ex-
ported immunophenotypes, we only kept 70 cell proportions
and 2 ratios as candidate measures for prediction.

Houseman model using standard and IDOL reference li-
braries. We used the implementation of the Houseman
model in the EstimateCellCounts2 function of the Biocon-
ductor R package FlowSorted.Blood.EPIC to predict im-
mune cell proportions for all our 962 samples with both the
default and IDOL reference panels.

Statistical modeling We suppose that there are DNAm
CpG sites in the genome of a cell that mark a particular cel-
lular lineage, in the sense that the methylation state of these
sites are specific to the cells belonging to that lineage. There-
fore, we expect the state of methylation at a number of CpG
sites to mark the identity of a particular blood cell. In whole
blood, the percentage of cells that are methylated at such
DNAm sites should be linearly related to the proportion of the
cell in the blood. We further suppose that it is primarily such
DNAm sites, and sites related to them, that are predictive of
blood cell proportions. We therefore use a linear model to
predict blood cell proportions from DNA methylation levels
in whole blood. Let SP = {xp}Pp=1,P = 858923 denote our
observations of the percentage of methylation at all measured
DNAm sites. Let C � P be the number of sites that are re-
lated to a differentiation event that offers information on the
identity of a particular blood cell. This could be a primary
event that directly determines cell identity, or it could be an
event that gives information on the identity of the cell be-
cause of the correlation structure with other cells or genetic
and environmental factors. We expect that only few sites cor-
respond to primary events and we further expect the aver-
age methylation at such sites to be highly predictive of the
immune cell proportion whose lineage it marks. We expect
more events that offer correlational information on the pro-
portion of immune cells. Typically, such sites are distributed
according to a long tail of decreasing predictive power. Let
D � C be the number of sites that correspond to primary
differentiation events for a particular blood cell. To summa-
rize: for a particular blood cell, we are targeting two sets of

Bergstedt et al. | Blood cell prediction bioRχiv | 11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 30, 2018. ; https://doi.org/10.1101/456996doi: bioRxiv preprint 

https://doi.org/10.1101/456996
http://creativecommons.org/licenses/by-nc-nd/4.0/


probes, SC and SD such that

SD = {xp}Dp=1 ⊂ SC = {xp}Cp=1 ⊂ {xp}Pp=1,

and we suppose a predominantly linear relationship be-
tween these variables and the cell proportion. We are there-
fore looking for sparse linear models, where the coefficients
of the predictors in SP \SC is set to zero. We employ two
different strategies to target the predictors in SC and SD. Let
n = 962 be our sample size. We expect D� n, but do not
necessarily suppose that C < n. For SC we therefore need
to select predictors, but the linear regression equation system
could still be overdetermined, so we also need to regularize
the coefficients of the fitted linear model. To do this, we em-
ploy elastic net regularization (17). In the case of SD, we
only want to select predictors and then fit an unbiased least
squares regression model. We achieve this by using the sta-
bility selection technique (20, 21).

Elastic net regression Let now X ∈R962×858923 be the
matrix corresponding to SP , with the methylation percent-
ages as columns. Furthermore, let y ∈ R962 be observations
of a cell proportion. The elastic net cost function combines
the least squares term with two regularization terms on the
magnitude of the coefficients for the columns in X

β̂ = argmin
β

{
‖y−Xβ‖22+

λ
(
(1−α)‖β‖22 +α‖β‖1

)}
, α ∈ [0,1].

(1)

The parameter α chooses between a pure Euclidian norm
squared penalty, ‖β‖22, corresponding to ridge regression at
α = 0 and a pure L1 norm, ‖β‖1, penalty corresponding to
the LASSO (16) penalty at α= 1. If α 6= 0 then the estimator
in Eq. (1) will do a selection: coefficients that do not rise
above a noise floor will be put to exactly zero. The pure
LASSO penalty has a saturation property: it cannot select
more predictors than the number of samples (35). Note that
for the pure LASSO penalty, all coefficients will be zero if

λ >max
(
XT y

)
. (2)

To target XC , we suppose that an α between zero and one
will be optimal. To find this parameter, we employ our own
cross-validation scheme, detailed in Algorithm 1. We fit the
optimization problem Eq. (1) by the glmnet package in R.

Stability selected linear regression Elastic net regres-
sion with regularization parameters tuned by cross-validation
will typically include predictors of weak predictive power as
well as some false positives (36). To target SD, we therefore
use a more stringent selection scheme. As mentioned above,
we suppose that D� n. Therefore, we are now only aiming
to select predictors to use in a linear model; we do not want

Algorithm 1 Cross-validation for elastic net linear regres-
sion
Stated here using the correlation between out-of-sample pre-
dictions and observed values as performance estimate. The
case for the MAE is analogous. Given observed responses
y ∈ Rn and predictors X ∈ Rn×P , our cross-validation
scheme conceptually goes as follows

1: for r = {1,2} do
2: Divide data 10 equally sized blocks yk and Xk. De-

note data that is not in the kth block with y−k and X−k
3: for α ∈ {0.05,0.1,0.5,0.95,1} do
4: Compute λmax = 1

α max
(
XT y

)
5: for k ∈ {1, . . . ,10} do
6: Let l contain 200 values logarithmically from

10−4λmax to λmax
7: for λ ∈ l do
8: Solve Eq. (1) for X−k and y−k
9: Find prediction: ŷk =Xkβ̂

10: Store corr(yk, ŷk) in ε(α,λ,k,r)
11: end for
12: end for
13: end for
14: end for
15: The optimal model is found by

α̂, λ̂= argmin
α,λ

1
20
∑
k,r

ε(α,λ,k,r)

to regularize the parameters. Define the support S of a linear
model by

S(β) = {p : βp 6= 0}. (3)

First we introduce a weak support estimator. This estimator
uses the cost function in Eq. (1) with α fixed at 0.8, while
keeping λ large enough so that it never includes more than q
variables. Given this constraint, the support is then estimated
to be the included variables. To be more precise, introduce
the family of support estimators

β̂ = argmin
β

{
‖y−Xβ‖22+

λ
(
0.2‖β‖22 +0.8‖β‖1

)}
,

Ŝ(λ) =
{
p : β̂p 6= 0

}
.

(4)

We then use the support estimator Ŝq = Ŝ(λ∗), where λ∗ is
such that

λ∗ = min
{
λ : |Ŝ(λ)|< q

}
.

To find SD, we wrap this weak support estimator in a sub-
sampling scheme known as stability selection. The full
scheme is outlined in Algorithm 2. Let Xss be the columns
of X corresponding to predictors selected by the stability se-
lection scheme. The coefficient estimates for the final linear
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regression model of the immune cell proportion with mea-
surements in y is then

β̂ =
(
XT
ssXss

)−1
XT
ssy. (5)

We use the implementation of stability selection in the stabs
R package (37).

Algorithm 2 Stability Selection
Given observed response y ∈ Rn and predictors X ∈ Rn×p
the stability selection scheme goes as follows. Let q = 50.

1: Subsample rows of (y X ) in M pairs, where each pair
contains half of the rows, giving a total of 2M subsets
Bm, m= 1, . . . ,2M

2: For all subsets, Bm estimate support Ŝq(Bm)
3: For all probes xp, estimate P̂p = 1

2M
∑2M
m=11p∈Ŝq(Bm)

4: Include xp as a predictor if P̂p is above a certain thresh-
old

5: The threshold is chosen such that, under stringent as-
sumptions, the maximum number of expected false pos-
itives is less than 2, see (20) for more information.

Other traits The models above were developed primar-
ily for immune cell proportions, but we use them also for the
other traits. We suppose that most of the predictive power of
whole blood DNA methylation for any trait comes from its
intimate link with immune cell proportions. Therefore, we
anticipate that prediction models of a form suitable for im-
mune cell frequencies should work well also for traits related
to them.

For binary traits, code the classes as either 0 or 1. The pro-
cedure we use for binary traits follows the algorithms above
verbatim, except that the least squares term ‖y−Xβ‖22 in
the cost function in Eq. (1) is replaced by the negative log-
likelihood of the binomial distribution given a logit link func-
tion

− 1
n

n∑
i=1

(
yi

(
µ+βTxi

)
− log

(
1+eµ+βT xi

))
. (6)

Logistic regression with elastic net regularization is imple-
mented in glmnet. For stability selection, we use the stabs
R package with a custom built selection function based on
glmnet.
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