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Introduction

Cellular subtypes that compose organisms derive from various differentiation lineages during development. As stem cells differentiate into more specialized cells, their genome accumulates epigenetic modifications, i.e., stable chemical additions to the DNA that can affect gene expression but do not change the DNA sequence, resulting in cell-specific gene expression. DNA methylation (DNAm), a stable epigenetic mark that refers to the attachment of a methyl group to DNA cytosine, plays a key role in cellular differentiation and gene regulation. Epigenome-wide association studies (EWAS) have searched for DNAm sites that covary with disease conditions or disease-related traits, as these DNAm changes could mediate the effects of environmental perturbations on the transcriptional reprogramming of differentiated cells and, in turn, organismal phenotypes [START_REF] Randy | Environmental epigenomics and disease susceptibility[END_REF][START_REF] Feil | Epigenetics and the environment: emerging patterns and implications[END_REF]. However, interpretation of the results can be problematic, because statistical associations between DNAm and a condition of interest could be due to either a perturbation of the epigenetic properties of a cell subtype that causes the condition, or heterogenetiy in the proportions of differentiated cells caused by the condition [START_REF] Vardhman K Rakyan | Epigenomewide association studies for common human diseases[END_REF][START_REF] Lappalainen | Associating cellular epigenetic models with human phenotypes[END_REF]. For example, because rheumatoid arthritis triggers a change in the granulocyte-to-lymphocyte ratio, an EWAS of this disease identified thousands of associated DNAm sites that became non-significant upon correction for cellular heterogeneity [START_REF] Liu | Epigenome-wide association data implicate dna methylation as an intermediary of genetic risk in rheumatoid arthritis[END_REF]. Thus, there is a clear need in the epigenomics field for methods that reliably enumerate cell sub-populations from heterogeneous tissues [START_REF] Andrew | Statistical and integrative system-level analysis of dna methylation data[END_REF].

Currently, the gold standard approach for cell counting is flow cytometry, a laser-based technology that simultaneously detects several fluorescent-labelled protein markers at a single-cell resolution. However, this approach is labourintensive and costly, requires skilled practitioners, and its performance is affected by sample degradation. Alternatively, cell composition can be indirectly estimated from gene expression profiles, which are known to be cell-specific [START_REF] Aaron M Newman | Robust enumeration of cell subsets from tissue expression profiles[END_REF][START_REF] Shai S Shen-Orr | Computational deconvolution: extracting cell typespecific information from heterogeneous samples[END_REF]. These methods, referred to as cellular deconvolution, rely on transcriptional profiles of reference cell populations to predict the cellular composition of sampled cell mixtures, which are also strongly affected by degradation and are difficult to standardize. In a seminal study, Houseman and colleagues used projection methods similar to the ones used for gene expression to estimate blood cell mixture proportions from DNAm profiles [START_REF] Andres Houseman | Dna methylation arrays as surrogate measures of cell mixture distribution[END_REF], a more stable molecular measure. Because DNAm changes are thought to be involved directly in the lineage decision of hematopoietic cells [START_REF] Álvarez-Errico | Epigenetic control of myeloid cell differentiation, identity and function[END_REF][START_REF] Aimée M Deaton | Cell type-specific dna methylation at intragenic cpg islands in the immune system[END_REF], they provide a direct link with blood cell identity. This method, referred to as the 'Houseman method' or 'Houseman model', uses DNAm profiles from six sorted cell subtypes as a reference, and assumes that the heterogeneous sample of interest is a mixture of these cells, whose proportions are estimated by projecting the sample matrix on to the reference matrix. The method can estimate the proportion of six major immune cells in blood, using a reference library of 600 CpG sites. Koestler et al. proposed a refined reference library, called IDOL [START_REF] Koestler | Improving cell mixture deconvolution by id entifying o ptimal dna methylation l ibraries (idol)[END_REF], achieving better estimation of the six subsets with only 300 CpG sites. Although these methods have been extensively used, they only estimate six major cell subsets, and need at least 300 probes, limiting their usefulness as a tool for adequately controlling confounding in EWAS, and for applications in clinical research.

Here, we build novel parsimonious models for predicting the circulating levels of 70 blood cell subsets measured by flow cytometry in 962 healthy donors of the Milieu Intérieur study [START_REF] Thomas | The milieu intérieur study -an integrative approach for study of human immunological variance[END_REF]14), based on blood DNAm levels at >850,000 sites (Illumina Methylation EPIC beadchip; [START_REF] Ait | Limited impact of environmental exposures on the human blood methylome in adulthood[END_REF]). The models are based on two key assumptions: 1) methylation at some sites marks differentiation events that can identify a particular blood cell lineage, and 2) only few methylation probes on the EPIC array mark such differentiation events. The first assumption implies a linear relation between the cell proportion in whole blood and methylation levels at the sites that mark it. We therefore use linear regression models to predict blood cell composition from DNAm levels. The second assumption means that only a small fraction of the probes will actually be predictive. We must therefore look for sparse models, which discard many of the included predictors in a data-driven fashion.

We use two approaches to build predictive models of immune cell proportions. The two assumptions mentioned above lead naturally to regularized linear regression models. Therefore, to infer optimal models in terms of prediction accuracy, and to investigate how prediction accuracy depends on the number of predictors, we use the elastic net method [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF][START_REF] Zou | Regularization and variable selection via the elastic net[END_REF]. Similar models have previously been used for the prediction of age, smoking status, alcohol consumption and educational attainment based on DNAm [START_REF] Zhang | Improved prediction of chronological age from dna methylation limits it as a biomarker of ageing[END_REF][START_REF] Daniel L Mccartney | Epigenetic prediction of complex traits and death[END_REF]. We believe that elastic net regression will be able to find both the predictors that mark differentiation events for the lineage of the cell, but also the numerous probes that are correlated with such predictors. In addition, we use the more stringent selection technique, stability selection [START_REF] Rajen | Variable selection with error control: another look at stability selection[END_REF][START_REF] Meinshausen | Stability selection[END_REF], to find a minimal stable set of predictors for each proportion. Stability selection selects predictors of each immune cell proportion that are consistently predictive in 100 subsamples of the dataset. We then build predictive models from the stability selected set of predictors using ordinary least squares. Compared with the elastic net, stability selection is more demanding of the predictors it selects. Consequently, it targets probes that mark differentiation events that are the most important for the cell. We therefore explore the biological functions associated with the stability selected probes, to improve knowledge of the epigenetic changes that characterize differentiated immune cells. A similar two-pronged approach is used to predict other conditions and traits collected within the Milieu Intérieur study, including age, smoking, height, BMI, routine chemical and hematological laboratory tests, and the serological responses to antigens of 13 common pathogens [START_REF] Scepanovic | Human genetic variants and age are the strongest predictors of humoral immune responses to common pathogens and vaccines[END_REF]. Several of these traits have not previously been modelled using all DNAm probes jointly. Our study substantially improves predictions of blood cell composition based on DNA methylation profiles, which will be critical for applications in medical epigenomics, forensics and disease prognosis.

Results

Optimization of predictive models. To predict immune cell proportions with optimal accuracy, given our assumption of sparsity and linearity, we use elastic net regularization. It is controlled by two regularization parameters: λ, which controls the L 1 regularization that enforces sparsity on the coefficients, and α, which controls L 2 regularization that restricts the magnitude of the coefficients. We use 5 different values for α and 200 different values for λ. Each possible pair of α and λ parameter values give a different amount of predictors and regularization, and is a step in the so-called regularization path. We measure the prediction accuracy along the regularization path by the mean absolute error (MAE) and the correlation (R) between the hold-out sample values and the out-of-sample predictions in 10-fold, twice repeated twodimensional cross-validation, described in Algorithm 1. The procedure gives 20 samples from the distribution of out-ofsample prediction accuracy along the regularization path. We use those samples to estimate the mean accuracy and its 95% confidence intervals.

The performance of models, together with the number of predictors that is optimal in terms of prediction accuracy, is shown in Table 1 for each cell proportion, as well as 23 other continuous traits, including age and morphometric and physiological measures. DNA methylation levels can accurately predict age and sex [START_REF] Zhang | Improved prediction of chronological age from dna methylation limits it as a biomarker of ageing[END_REF], intrinsic factors that are predictive of many traits, including immune cell counts in whole blood (14). It is therefore important to discern when predictors based on methylation probes give additional information to these two commonly available factors. For comparison, we therefore include in Table 1 the prediction accuracy of a linear model that only includes age and sex as predictors. We also build predictive models for binary phenotypes, including smoking status and serostatus for 13 different common infections, using elastic net regularization together with the cost function of the binomial likelihood with a logit link function.

Similarly to the approach we use for the continuous traits, we estimate prediction accuracy in terms of model complexity using cross-validation. For binary traits we measure prediction accuracy by the classification rate, i.e., the proportion of correct class predictions (probability threshold is taken at 0.5). Prediction accuracy for models with optimally many predictors for the binary traits are shown in Table 2. 1. Mean absolute errors (MAE) and correlation (R) between out-of-samples predictions and observed values from three different predictive models for each trait. The first results are from elastic net models that have been tuned by our cross-validation scheme, detailed in Algorithm 1. Our scheme gives 20 samples from the distribution of accuracy estimates, which are used to construct confidence intervals. Results are also shown for stability selected linear models. Such models include only predictors that are robustly predictive of the trait. For comparison, the predictive accuracy of each trait is shown also for a simple linear model that only includes age and sex as predictors.

Predictive accuracy estimates for the simple model for traits where the difference in R between the elastic net model and the simple model is less than 0.10 is shown in bold face. The character '#' stands for 'number of probes'. In the case of elastic net models, this is the mean number of probes for the 20 repetitions. 2. Results from the logistic regression elastic net models and stability selected logistic regression models for binary traits. Logistic regression elastic net models were fitted using the logistic regression cost function together with elastic net regularization on the regression parameters. The regularization was tuned using our cross-validation scheme detailed in Algorithm 1. The column '#' gives the number of probes included in the model. The column CR gives the classification rate: how many of the out-of-sample classes that were correctly predicted. The naive prediction is to always guess the most prevalent condition. The percentage of people in the whole sample that belongs to the most prevalent class is given in the column "Prev". Methylation predictors only add something if they can improve on the naive prediction. This measure is given in the "Diff" column which is computed as "CR" -"prevalence". A comparison of the performance of our elastic net models and the Houseman model, using either the standard or IDOL reference libraries [START_REF] Andres Houseman | Dna methylation arrays as surrogate measures of cell mixture distribution[END_REF][START_REF] Koestler | Improving cell mixture deconvolution by id entifying o ptimal dna methylation l ibraries (idol)[END_REF], is given in Table 3. Our models outperform the two models for the six major cell-types that they are currently able to estimate. The correlations between predicted and observed out-of-sample values are systematically higher for our models, relative to the Houseman model with either the default or IDOL reference library (Table 3). Furthermore, our models are less error-prone (Table 3). These findings suggest that elastic net regression models, trained on whole blood standardized cytometry data, can outperform constrained projection techniques based on reference values obtained in a limited number of isolated blood cell sub-types.

Elastic net

Linear models selected by stability selection. We next evaluate how prediction accuracy varies with the number of predictors in our models. The regularization paths for the nine best predicted traits are shown in Figure 1. Interestingly, out-of-sample prediction error decreases rapidly with the number of predictors, and plateaus at around 50 predictors (Figure 1). This indicates that accurate predictions can be achieved with much fewer predictors than the hundreds of DNAm probes used by current prediction models of cell composition [START_REF] Andres Houseman | Dna methylation arrays as surrogate measures of cell mixture distribution[END_REF][START_REF] Koestler | Improving cell mixture deconvolution by id entifying o ptimal dna methylation l ibraries (idol)[END_REF] and age [START_REF] Zhang | Improved prediction of chronological age from dna methylation limits it as a biomarker of ageing[END_REF][START_REF] Horvath | Dna methylation age of human tissues and cell types[END_REF]. These results suggest that blood cell composition can be predicted well using only a few number of probes that are markers for differentiation events. To find such probes, we estimate a minimal robust predictor set using stability selection. We select and build the models on a subsample of 866 randomly selected individuals, and then evaluate on a hold-out sample of 96 randomly selected individuals.

The predictive accuracy of the stability-selected predictive models is high (Table 1) and comparable to that of elastic net regression models, while using considerably fewer predictors. Prediction performance is also apparent when predicted out-of-sample values are plotted against the observed values for the 16 most accurate models (Figure 2). For instance, using only six methylation probes, the correlation between estimated and observed values for T cells is R=0.77 and the MAE is lower than 3%. We verify that our stability selected models are competitive by comparing their prediction accuracy to that of the Houseman model using either the standard or IDOL reference panels. Although our models use only 15, 12, 13, 13, 14 and 3 predictors for B cells, CD4 + T cells, CD8 + T cells, monocytes, NK cells and neutrophils, respectively, they yield comparable out-of-sample correlations and lower MAE (Table 4), relative to current methods. Together, these results demonstrate that prediction models that use a dozen or fewer methylation probes selected by stability selection can achieve prediction accuracy comparable to that of gold-standard, reference-based cell deconvolution techniques that use hundreds of probes.

Biological relevance of the stability selected methylation probes. Because blood cell proportions could be accurately predicted with just a dozen of DNAm probes, we next investigate the relevance of the stability-selected probes to cell biology. We find several, methylome-wide significant DNAm probes that are found close to, or within, genes with well-known functions in immune cell differentiation (Table 5). For instance, DNAm levels within CD4, CD8A and CD8B genes are associated with the CD4:CD8 ratio (P=3.9x10 -11 ), the proportion of CD8a + NK cells (P=4.6x10 -17 ) and the proportion of CD8b + T cells (P=1.6x10 -9 ), respectively. The proportion of neutrophils are associated with DNAm levels in the PDE4B gene body (P=1.8x10 -8 ), which plays a key role in neutrophil function [START_REF] Ariga | Nonredundant function of phosphodiesterases 4d and 4b in neutrophil recruitment to the site of inflammation[END_REF]. Similarly, the proportion of MAIT cells are associated with DNAm levels in the 5'UTR of IL21R (P=8.3x10 -21 ), which is known to regulate MAIT cell numbers [START_REF] Robert P Wilson | Stat3 is a critical cell-intrinsic regulator of human unconventional t cell numbers and function[END_REF]. Several cell sub-types, including leukocytes, lymphocytes, monocytes and ILC, are associated with DNAm sites within AHRR, F2RL3 and GATA3 genes, which are known to be strongly affected by cigarette consumption [START_REF] Joehanes | Epigenetic signatures of cigarette smoking[END_REF][START_REF] Stig E Bojesen | Ahrr (cg05575921) hypomethylation marks smoking behaviour, morbidity and mortality[END_REF][START_REF] Chatziioannou | Blood-based omic profiling supports female susceptibility to tobacco smoke-induced cardiovascular diseases[END_REF]. We consistently showed recently that circulating levels of these different blood cell subsets are significantly impacted by smoking status (14). Finally, a number of the selected DNAm probes have previously been associated with disease (Table 5). For instance, DNAm within the ACSF3 gene is associated with the proportion of naive B cells (P=4.1x10 -9 ) and has been shown to be differentially methylated in B cells of patients with rheumatoid arthritis [START_REF] Julià | Epigenome-wide association study of rheumatoid arthritis identifies differentially methylated loci in b cells[END_REF], suggesting that B cell subtype fractions are altered in these patients. Together, these findings support stability selection as a robust tool to select relevant associated variables, and illustrate the biological relevance of DNAm probes selected as predictors of immune cell proportions. q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q R = 0.98 MAE = 2 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q R = 0.89 MAE = 0.48 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q R = 0.84 MAE = 1.03 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q R = 0.91 MAE = 0.15 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q R = 0.89 MAE = 0.6 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q R = 0.84 MAE = 1.48 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q R = 0.9 MAE = 0.45 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q R = 0.86 MAE = 1.07 q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q R = 0.79 MAE = 0.34 Prediction of other factors. Among the other quantitative factors assessed in the Milieu Intérieur cohort, prediction by the elastic net method is the most accurate for age (Table 1). Using 701 predictors (95% CI: [673, 749]), we estimate age with an MAE of 1.67 years (95% CI: [1.5, 1.88]), confirming that it can be estimated from DNAm with high accuracy [START_REF] Zhang | Improved prediction of chronological age from dna methylation limits it as a biomarker of ageing[END_REF][START_REF] Horvath | Dna methylation age of human tissues and cell types[END_REF]. From Table 1 it appears that our elastic net models are also able to estimate red blood cell counts, height and weight with high accuracy. However, a comparison with the model that only uses age and sex reveals that the predictive power of methylation levels for these two traits probably mostly stem from their ability to predict age and sex.
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We next evaluate the accuracy of elastic net models to predict, based on DNAm data, smoking status and the serostatus for 13 common infections, including infections by Toxoplasma gondii, Helicobacter pylori, cytomegalovirus (CMV), Epstein-Barr virus (EBV), hepatitis B virus (HBV), Herpes Simplex virus (HSV), Varicella Zoster virus (VZV), mumps virus and measles virus [START_REF] Scepanovic | Human genetic variants and age are the strongest predictors of humoral immune responses to common pathogens and vaccines[END_REF]. Binary traits for which the prediction of the most prevalent condition outperforms the naive prediction are shown in Table 2. We obtain good prediction results for smoking consumption and CMV serostatus, which is natural considering that both factors have been shown to broadly affect immune cell variation (14). The out-of-sample classifications for both of these traits are correct almost 90% of the time. The estimated regularization paths for the different binary traits are shown in Figure 3. which indicate that near optimal prediction can be achieved with less than 50 DNAm probes. The optimal classification rate for CMV serostatus is CR=87% (95% CI: [81%, 94%]) using 256 predictors, while for smoking, CR=89% (CI: [82%, 94%]) using 193 predictors.

We also select a robust minimal set of predictors using stability selection for the binary phenotypes. Models are selected and fitted using the same training set of 866 samples as for continuous traits, and then evaluated on the 96 holdout samples. The prediction accuracy of the models is shown in Table 2. Interestingly, the stability selected model for CMV performs slightly better than the elastic net model, using only 13 probes, while the selected model for smoking performs notably worse. This indicates that the relationship between DNAm and smoking is less sparse than that for DNAm and CMV serostatus. Methylome-wide significant probes selected for smoking are well known DNAm sites predictive of cigarette consumption (Table 6). We find that HBV, T. gondii and HVS1 infections associate with DNAm sites close to EVOLV2 and KLF14 genes, known to be strongly associated with age. This suggests no effects of these infections on DNAm besides that of age, with which they are themselves strongly correlated [START_REF] Scepanovic | Human genetic variants and age are the strongest predictors of humoral immune responses to common pathogens and vaccines[END_REF]. More interestingly, DNAm associated with H. pylori seropositivity is found within the poliovirus receptor-like 3 gene (P=4.6x10 -12 ), an intestinal epithelium receptor for bacterial toxins [START_REF] Lafrance | Identification of an epithelial cell receptor responsible for clostridium difficile tcdb-induced cytotoxicity[END_REF], suggesting a role of this protein in H. pylori infection.

Discussion

Our study reports novel, accurate models to predict blood cell composition from whole blood DNAm profiles. Models were built using a unique dataset that comprises both the quantification of 70 blood cell proportions by standardized flow cytometry ( 14) and blood methylomes established with the MethylationEPIC array [START_REF] Ait | Limited impact of environmental exposures on the human blood methylome in adulthood[END_REF], assessed in 962 healthy donors of western European ancestry. Predictive models are built using the elastic net method [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF], a regularized linear regression model that has been recently used to predict age from MethylationEPIC array data [START_REF] Zhang | Improved prediction of chronological age from dna methylation limits it as a biomarker of ageing[END_REF]. The prediction accuracy, measured as the correlation between predicted and observed out-of-sample values and the MAE, is improved for our models, compared to the widely-used Houseman model, based on either the standard or improved IDOL reference libraries [START_REF] Andres Houseman | Dna methylation arrays as surrogate measures of cell mixture distribution[END_REF][START_REF] Koestler | Improving cell mixture deconvolution by id entifying o ptimal dna methylation l ibraries (idol)[END_REF]. We are also able to accurately predict 35 subset frequencies, in contrast to the six that are currently possible to estimate by the Houseman model using either reference panel. These results suggest that our models should better prevent false positives in EWAS due to cellular heterogeneity, relative to existing gold-standard methods. Nevertheless, it must be noted that we assessed prediction accuracy based on cellular fractions estimated with the same flow cytometry technique, panel design and standardization steps as those used for the training dataset, which may disfavor the other methods trained on other types of cell enumeration techniques.

We also show that it is possible to find predictive models of immune cell proportions that are comparable in terms of accuracy to elastic net models, and to the Houseman models with either reference library, using considerably fewer predictors. This is done by employing the stability selection technique [START_REF] Rajen | Variable selection with error control: another look at stability selection[END_REF][START_REF] Meinshausen | Stability selection[END_REF]. Because of their much smaller size, such models can more robustly, flexibly and cost-effectively predict blood cell composition, age, and smoking consumption than previous models.

to the exhaustive immunophenotyping performed in our training dataset, we can extend the number of blood cell subsets that can be accurately predicted from blood DNAm data. Notably, our models can accurately predict the blood frequencies of MAIT cells, eosinophils, basophils and T reg cells (R>0.6; Table 1). Importantly, all these leukocyte subsets have previously been reported to vary with various disease conditions, and are thus expected to confound interpretation of EWAS. For instance, circulating levels of MAIT cells are known to be strongly altered during infection [START_REF] Le Bourhis | Antimicrobial activity of mucosal-associated invariant t cells[END_REF] and in systemic lupus erythematosus and rheumatoid arthritis patients [START_REF] Cho | Mucosal-associated invariant t cell deficiency in systemic lupus erythematosus[END_REF]. Eosinophil numbers change with exposure to allergens and in asthmatic patients [START_REF] Kita | Eosinophils: multifaceted biological properties and roles in health and disease[END_REF]. Similarly, T reg populations and sub-populations show altered frequencies in several autoimmune and allergic diseases [START_REF] Dominguez | Regulatory t cells in autoimmune disease[END_REF]. Therefore, adjusting for these newly-predicted cell populations may improve correction for cellular heterogeneity in epigenomic studies of immune-related disorders. More generally, we envisage that prediction models of blood cellular composition could also be employed to better understand disease pathophysiology per se. While EWAS assume that disease-associated DNAm sites affect the transcriptional reprogramming of already differentiated cells, there is increasing evidence that diseases can also be caused by stable alterations of cellular repertoires, a phenomenon recently referred to as polycreodism [START_REF] Lappalainen | Associating cellular epigenetic models with human phenotypes[END_REF]. We suggest that model-based estimation of blood cell composition in large longitudinal cohorts, for which methylomes but no flow cytometric measurements exist, will represent a powerful new approach to evaluate whether perturbations in cell proportions can predict disease outcome.

Methods

DNA methylation data. The Milieu Intérieur cohort includes 1,000 healthy donors who were recruited by BioTrial (Rennes, France) and were stratified by gender (i.e., 500 women and 500 men) and age (i.e., 200 individuals from each decade of life, between 20 and 70 years of age). Donors were selected based on stringent inclusion and exclusion criteria, detailed elsewhere [START_REF] Thomas | The milieu intérieur study -an integrative approach for study of human immunological variance[END_REF]. DNAm data was retrieved for all donors from a previous study [START_REF] Ait | Limited impact of environmental exposures on the human blood methylome in adulthood[END_REF], where detailed methods are provided. In brief, the DNA methylome was profiled with the Infinium MethylationEPIC BeadChip on whole bloodderived samples. Raw fluorescence intensities of 866,895 methylation sites across the human genome were processed with the R (version 3.5) Bioconductor package minfi. Values were corrected for probe color bias and differences in type-I and type-II probe distributions, using the single sample NOOB (ssNOOB) method implemented in minfi. Because we wanted to use the methylation data primarily for prediction, which can easily be evaluated on out-of-sample observations and in validation cohorts, we wanted to exclude as few probes as possible. Therefore, we did not exclude probes from the X and Y chromosomes. We did neither exclude possibly cross-reactive probes. From the 866,895 initial probes, we only excluded probes that had a detection P ≥ 0.01 for more than 3 samples. A total of 858,923 probes were kept for the analyses. We suppose in this study that DNAm levels are linearly related to cell proportions. We therefore use β methylation values instead of m values.

Flow cytometry data. Flow cytometry data was retrieved for all Milieu Intérieur donors from a previous study (14), where detailed methods are provided. Briefly, whole blood samples were collected from the 1,000 healthy, fasting donors on Li-heparin. Sample staining was performed within 6h of blood draw.Ten 8-color flow cytometry panels were developed. The acquisition of cells was performed using two MACSQuant analyzers, which were calibrated using Mac-sQuant calibration beads. Flow cytometry data were generated using MACSQuantify TM software. Among the 313 exported immunophenotypes, we only kept 70 cell proportions and 2 ratios as candidate measures for prediction.

Houseman model using standard and IDOL reference libraries. We used the implementation of the Houseman model in the EstimateCellCounts2 function of the Bioconductor R package FlowSorted.Blood.EPIC to predict immune cell proportions for all our 962 samples with both the default and IDOL reference panels.

Statistical modeling

We suppose that there are DNAm CpG sites in the genome of a cell that mark a particular cellular lineage, in the sense that the methylation state of these sites are specific to the cells belonging to that lineage. Therefore, we expect the state of methylation at a number of CpG sites to mark the identity of a particular blood cell. In whole blood, the percentage of cells that are methylated at such DNAm sites should be linearly related to the proportion of the cell in the blood. We further suppose that it is primarily such DNAm sites, and sites related to them, that are predictive of blood cell proportions. We therefore use a linear model to predict blood cell proportions from DNA methylation levels in whole blood. Let S P = {x p } P p=1 , P = 858923 denote our observations of the percentage of methylation at all measured DNAm sites. Let C P be the number of sites that are related to a differentiation event that offers information on the identity of a particular blood cell. This could be a primary event that directly determines cell identity, or it could be an event that gives information on the identity of the cell because of the correlation structure with other cells or genetic and environmental factors. We expect that only few sites correspond to primary events and we further expect the average methylation at such sites to be highly predictive of the immune cell proportion whose lineage it marks. We expect more events that offer correlational information on the proportion of immune cells. Typically, such sites are distributed according to a long tail of decreasing predictive power. Let D C be the number of sites that correspond to primary differentiation events for a particular blood cell. To summarize: for a particular blood cell, we are targeting two sets of probes, S C and S D such that

S D = {x p } D p=1 ⊂ S C = {x p } C p=1 ⊂ {x p } P p=1 ,
and we suppose a predominantly linear relationship between these variables and the cell proportion. We are therefore looking for sparse linear models, where the coefficients of the predictors in S P \ S C is set to zero. We employ two different strategies to target the predictors in S C and S D . Let n = 962 be our sample size. We expect D n, but do not necessarily suppose that C < n. For S C we therefore need to select predictors, but the linear regression equation system could still be overdetermined, so we also need to regularize the coefficients of the fitted linear model. To do this, we employ elastic net regularization [START_REF] Zou | Regularization and variable selection via the elastic net[END_REF]. In the case of S D , we only want to select predictors and then fit an unbiased least squares regression model. We achieve this by using the stability selection technique [START_REF] Rajen | Variable selection with error control: another look at stability selection[END_REF][START_REF] Meinshausen | Stability selection[END_REF].

Elastic net regression Let now X ∈ R 962×858923 be the matrix corresponding to S P , with the methylation percentages as columns. Furthermore, let y ∈ R 962 be observations of a cell proportion. The elastic net cost function combines the least squares term with two regularization terms on the magnitude of the coefficients for the columns in X

β = arg min β y -Xβ 2 2 + λ (1 -α) β 2 2 + α β 1 , α ∈ [0, 1]. (1) 
The parameter α chooses between a pure Euclidian norm squared penalty, β 2 2 , corresponding to ridge regression at α = 0 and a pure L 1 norm, β 1 , penalty corresponding to the LASSO (16) penalty at α = 1. If α = 0 then the estimator in Eq. (1) will do a selection: coefficients that do not rise above a noise floor will be put to exactly zero. The pure LASSO penalty has a saturation property: it cannot select more predictors than the number of samples [START_REF] Hastie | Statistical learning with sparsity: the lasso and generalizations[END_REF]. Note that for the pure LASSO penalty, all coefficients will be zero if λ > max X T y .

(

) 2 
To target X C , we suppose that an α between zero and one will be optimal. To find this parameter, we employ our own cross-validation scheme, detailed in Algorithm 1. We fit the optimization problem Eq. ( 1) by the glmnet package in R.

Stability selected linear regression Elastic net regression with regularization parameters tuned by cross-validation will typically include predictors of weak predictive power as well as some false positives [START_REF] Su | False discoveries occur early on the lasso path[END_REF]. To target S D , we therefore use a more stringent selection scheme. As mentioned above, we suppose that D n. Therefore, we are now only aiming to select predictors to use in a linear model; we do not want Algorithm 1 Cross-validation for elastic net linear regres-Stated here using the correlation between out-of-sample predictions and observed values as performance estimate. The case for the MAE is analogous. Given observed responses y ∈ R n and predictors X ∈ R n×P , our cross-validation scheme conceptually goes as follows 1: for r = {1, 2} do 

First we introduce a weak support estimator. This estimator uses the cost function in Eq. ( 1) with α fixed at 0.8, while keeping λ large enough so that it never includes more than q variables. Given this constraint, the support is then estimated to be the included variables. To be more precise, introduce the family of support estimators 

) 4 
We then use the support estimator Ŝq = Ŝ(λ * ), where λ * is such that λ * = min λ : | Ŝ(λ)| < q .

To find S D , we wrap this weak support estimator in a subsampling scheme known as stability selection. The full scheme is outlined in Algorithm 2. Let X ss be the columns of X corresponding to predictors selected by the stability selection scheme. The coefficient estimates for the final linear regression model of the immune cell proportion with measurements in y is then β = X T ss X ss -1

X T ss y.

(5)

We use the implementation of stability selection in the stabs R package [START_REF] Hofner | Controlling false discoveries in highdimensional situations: boosting with stability selection[END_REF].

Algorithm 2 Stability Selection

Given observed response y ∈ R n and predictors X ∈ R n×p the stability selection scheme goes as follows. Let q = 50.

1: Subsample rows of ( y X ) in M pairs, where each pair contains half of the rows, giving a total of 2M subsets B m , m = 1, . . . , 2M 2: For all subsets, B m estimate support Ŝq (B m ) 3: For all probes x p , estimate Pp = 1 2M 2M m=1 1 p∈ Ŝq (B m ) 4: Include x p as a predictor if Pp is above a certain threshold 5: The threshold is chosen such that, under stringent assumptions, the maximum number of expected false positives is less than 2, see [START_REF] Rajen | Variable selection with error control: another look at stability selection[END_REF] for more information.

Other traits The models above were developed primarily for immune cell proportions, but we use them also for the other traits. We suppose that most of the predictive power of whole blood DNA methylation for any trait comes from its intimate link with immune cell proportions. Therefore, we anticipate that prediction models of a form suitable for immune cell frequencies should work well also for traits related to them.

For binary traits, code the classes as either 0 or 1. The procedure we use for binary traits follows the algorithms above verbatim, except that the least squares term y -Xβ 2 2 in the cost function in Eq. ( 1) is replaced by the negative loglikelihood of the binomial distribution given a logit link function

- 1 n n i=1 y i µ + β T x i -log 1 + e µ+β T x i . ( 6 
)
Logistic regression with elastic net regularization is implemented in glmnet. For stability selection, we use the stabs R package with a custom built selection function based on glmnet.
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Fig. 1 .

 1 Fig. 1. Mean absolute prediction errors (MAE) as a function of the number of predictors included in elastic net models predicting quantitative traits. The regularization parameter α is here set to 0.95. Confidence bands are estimated non-parametrically from the 20 samples of the prediction error given by our cross-validation scheme detailed in Algorithm 1.

Fig. 2 .

 2 Fig. 2. Out-of-sample predictions from stability selected linear models plotted against observed hold-out values. Plots are shown for the 9 best predicted traits. Observed and predicted values are obtained from the hold-out sample of 96 individuals.

Fig. 3 .

 3 Fig.3. Classification rate as a function of the number of predictors included in logistic regression elastic net models predicting binary traits. The regularization parameter α is here set to 0.95. The 6 binary traits best predicted by the models are shown. Confidence bands are estimated non-parametrically using the 20 samples from the distribution of predictive accuracy given by our cross-validation scheme detailed in Algorithm 1

2 : 3 : 4 : 5 : 6 : 7 :λ ∈ l do 8 : 9 :

 23456789 Divide data 10 equally sized blocks y k and X k . Denote data that is not in the kth block with y -k and X -k for α ∈ {0.05, 0.1, 0.5, 0.95, 1} do Compute λ max = 1 α max X T y for k ∈ {1, . . . , 10} do Let l contain 200 values logarithmically from 10 -4 λ max to λ max for Solve Eq. (1) for X -k and y -k Find prediction: ŷk = X k β 10: Store corr(y k , ŷk ) in ε(α, λ, k, r) , λ, k, r) to regularize the parameters. Define the support S of a linear model by S(β) = {p : β p = 0}.

β 1 ,

 1 Ŝ(λ) = p : βp = 0 .(

Table 1

 1 Blood cell deconvolution. Accurate estimations are obtained with elastic net regularized models for 35 immune cell proportions (estimated correlation between predicted and observed out-of-sample values R>0.6;

  ). The four immune cells that we predict with the highest accuracy are CD8

+ naive T cells, with a correlation between predicted and observed out-of-sample values of R=0.92 (95% CI: [0.87, 0.96]), using 312 predictors (95% CI: [295, 338]); B cells 2 | bioRχiv Bergstedt et al. | Blood cell prediction Table

Table 1 .

 1 Table continued on next page. Continued

	Elastic net	Stability selected	Linear model
		linear model	with age and sex

Table

  

Table 3 .

 3 Mean absolute error (MAE) and correlation (R) between predicted and observed out-of-sample values compared between our elastic net models and the Houseman model with either the standard reference library or IDOL

	Stability selected
	linear model
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Table 4 .

 4 Mean absolute error (MAE) and correlation (R) between predicted and observed out-of-sample values compared between our stability selected linear models and the Houseman model with either the standard reference library or IDOL

		R			MAE	
	Trait	Houseman IDOL Stab. sel. Houseman	IDOL Stab. sel.
	B cells	0.899 0.889	0.905	3.107	2.846	0.454
	CD4 + T cells	0.757 0.788	0.774	2.622	3.645	1.933
	CD8 + T cells	0.829 0.825	0.844	6.381	4.024	1.032
	Monocytes	0.708 0.719	0.704	3.973	2.334	0.891
	NK cells	0.799 0.802	0.891	3.591	2.259	0.600
	Neutrophils	0.609 0.609	0.640	11.333 10.666	5.871
	(R=0.90, 95% CI: [0.8, 0.96]) using 606 predictors (95% CI:
	[582, 635]); CD8 + T cells (R=0.90, 95% CI: [0.84, 0.94]) us-
	ing 555 predictors (95% CI: [526, 591]); and natural killer

(NK) cells (R=0.88, 95% CI: [0.71, 0.95]) using 1072 predictors (95% CI: [1036, 1126]). For most immune cell proportions, methylation levels clearly provide additional information in comparison to just age and sex.

Table 5 .

 5 Methylome-wide significant (P < 3 × 10 -8 ) DNAm probes selected by stability selection for all continuous traits. A model was fitted for each trait with all predictors selected by stability selection. P values were then computed for each predictor. The predictors who had P values smaller than 3 × 10 -8 are included in the table. Table continued on next page.

	Trait	Methylation Coefficient Standard	P value	Chr.	Position Closest gene	Genic region Published associations
		probe		error				
	Age	cg08097417	44.342	4.6133 8.33e-21	chr7 130419133 KLF14	TSS1500	Age (Florath et al, Hum Mol Genet 2014;
									Hannum et al, Mol Cell 2013)
	Age	cg10501210	-10.188	1.196 7.62e-17	chr1 207997020 miR-29b-2		Age (Tserel et al, Immun Ageing 2014)
	Age	cg22083892	-8.645	1.244 7.44e-12 chr12	21928661 KCNJ8	TSS1500
	Height	cg26020914	-22.118	2.6003 7.90e-17 chrX	18444359 CDKL5	5'UTR
	Weight	cg24447042	78.969	4.653 5.67e-56 chrX 128657893 SMARCA1	TSS1500
	Abdominal circumference	cg01243823	-43.54	5.1116 7.17e-17 chr16	50732212 NOD2	Body	BMI (Mendelson et al., PLoS Medicine
									2017); Memory T cell differentiation (Ko-
									mori et al., J Immunol 2015)
	BMI	cg16740586	20.548	2.8828 2.15e-12 chr21	43655919 ABCG1	Body	BMI (Demerath et al., Hum Mol Genet
									2015)
	Diastolic pressure	cg09761247	-41.541	4.5998 1.09e-18 chrX 148585951 IDS	Body
	Diastolic pressure	cg19996355	189.541	25.531 2.73e-13 chr19	19729375 PBX4	1stExon	Age (Johansson et al., PloS One 2013)
	HDL	cg23581718	-4.098	0.3211 2.74e-34 chrX	41173768	
	LDL	cg22454769	2.719	0.4601 4.95e-09	chr2 106015767 FHL2	TSS200	Age (Li et al., Sci Rep 2017)
	Cholesterol	cg16867657	5.29	0.3668 2.10e-42	chr6	11044877 ELOVL2	TSS1500	Age (Li et al., Sci Rep 2017)
	CRP	cg12992827	-10.626	1.4894 2.06e-12	chr3 101901234		BMI (Wahl et al., Nature 2017)
	CRP	cg00444883	15.865	2.5926 1.43e-09	chr8	92060568	
	Leukocytes (hematology)	cg05575921	-4.585	0.7691 3.65e-09	chr5	373378 AHRR	Body	Smoking (Bojesen et al., Thorax 2017;
									Chatziioannou et al., Sci Rep 2017)
	Lymphocytes (hematology)	cg04551776	-3.881	0.3825 6.18e-23	chr5	393366 AHRR	Body	Smoking (Chatziioannou et al., Sci Rep
									2017)
	Lymphocytes (CD3 + )	cg09736846	-29.648	4.175 2.70e-12	chr8 101443681	
	Neutrophils (hematology)	cg18377866	-23.853	2.4474 2.31e-21	chr3 193965288 LOC101929337 TSS200
	Neutrophils	cg11674865	-96.313	7.0731 2.76e-38	chr1 161591488	
	Neutrophils	cg17781418	-40.562	4.6305 1.07e-17	chr3	71305262 FOXP1	5'UTR	CD4 + T cell differentiation (Garaud et al.,
									Eur J Immunol. 2017)
	Neutrophils	cg14973204	-3.129	0.4149 1.21e-13 chr12 133052753	
	Neutrophils	cg10236264	-34.085	5.9929 1.78e-08	chr1	66793339 PDE4B	Body	Neutrophil function (Ariga et al., J Im-
									munol 2004) ; Maternal glycemic response
									(Cardenas et al., Diabetes 2018)
	Basophils (hematology)	cg14973204	-0.178	0.0258 1.04e-11 chr12 133052753	
	Monocytes (hematology)	cg05575921	-0.38	0.0363 2.94e-24	chr5	373378 AHRR	Body	Smoking (Bojesen et al., Thorax 2017;
									Chatziioannou et al., Sci Rep 2017)
	CD16 hi monocytes	cg23213217	2.015	0.2896 7.16e-12	chr1 224370155 DEGS1	TSS1500	Monocyte count (Houseman et al., BMC
									Bioinformatics 2012)
	CD16 hi monocytes	cg23417673	-6.397	0.9542 3.81e-11 chr16	85096433 KIAA0513	TSS1500
	CD16 hi monocytes	cg05575921	0.576	0.0937 1.21e-09	chr5	373378 AHRR	Body	Smoking (Bojesen et al., Thorax 2017;
									Chatziioannou et al., Sci Rep 2017)
	CD8a + NK cells	cg03196485	-2.217	0.2581 4.58e-17	chr2	87021117 CD8A	5'UTR
	ILC	cg23617037	0.62	0.0808 4.68e-14	chr6 149804659 ZC3H12D	5'UTR
	ILC	cg03636183	0.23	0.038 2.10e-09 chr19	17000585 F2RL3	Body	Smoking (Dogan et al., Am J Med Genet
									2017)
	cDC1	cg22697239	-4.095	0.2892 5.49e-41 chr11	44626708 CD82	Body
	CCR6 + cells	cg09222732	-15.187	1.473 1.71e-23	chr6	466893	
	CXCR3 + CCR6 + cells	cg22858308	-6.945	0.7813 3.93e-18	chr6 143095613 HIVEP2	Body
	CD4 -CD8b -T cells	cg00994629	12.089	1.3009 1.43e-19 chr14	22694547		Gestational age (Bohlin et al., Genome
									Biol 2016)
	γδ TCR + cells	cg00994629	12.982	1.4714 6.82e-18 chr14	22694547		Gestational age (Bohlin et al., Genome
									Biol 2016)
	γδ TCR + cells in lymphocytes	cg00994629	48.705	5.1129 1.91e-20 chr14	22694547		Gestational age (Bohlin et al., Genome
									Biol 2016)
	CD4:CD8 ratio	cg03855955	-7.399	1.1036 3.88e-11 chr12	6900351 CD4	5'UTR
	CD8b + T cells	cg04329870	-12.479	2.0443 1.61e-09	chr2	87048747 CD8B	Body
	Live CD8 + T cells	cg01029623	15.712	2.3006 1.93e-11 chr12 122016779 KDM2B	Body	CD8 + T cells (Kennedy et al., Front Im-
									munol 2016)
	Live CD8 + T cells	cg04329870	-17.201	2.6626 2.03e-10	chr2	87048747 CD8B	Body
	CD8 + CD45 + CD27 int cells	cg08641278	8.138	0.72 1.37e-27 chr10	73848764 SPOCK2	1stExon
	CD8 + naive T cells	cg17458390	12.345	1.8609 6.07e-11 chr10	63752709 ARID5B	Body	Atherosclerosis (Liu et al., Nat Commun
									2017)
	HLA-DR + of CD8 + CM T cells	cg25242306	67.027	9.8538 2.02e-11 chr13	74667131 KLF12	5'UTR
	HLA-DR + of CD8 + EMRA T cells cg02097498	-52.524	8.79 3.45e-09 chr16	10965851	
	CD4 + EM T cells	cg26144437	5.433	0.9428 1.18e-08	chr1 145474469 ANKRD34A	Body	Abestos exposure in lung cancer (Kettunen
									et al., Int J Cancer 2017)
	CD4 + EMRA T cells	cg09841874	-9.742	1.3872 4.65e-12 chr20	46251037 NCOA3	Body
	HLA-DR + of CD4 + EM T cells	cg10921592	-11.554	1.3589 9.01e-17	chr6	33039414 HLA-DPA1	Body
	HLA-DR + of CD4 + EMRA T cells cg08151292	-233.484	29.3931 6.65e-15 chr20	3758189 SPEF1	3'UTR
	CD4 + CD8a + T cells	cg19660239	17.474	1.3247 4.25e-36 chr19	53400545	
	CD4 + CD8b + T cells	cg24148817	-0.676	0.096 4.14e-12	chr6	37461033 C6orf129	Body
	CD4 + CD8b + T cells	cg11679455	-1.213	0.1805 3.41e-11 chr10	8100761 GATA3	Body	Smoking (Joehanes et al., Circ Cardiovasc
									Genet 2016)
	Live CD4 + CD8b + T cells	cg11679455	-1.81	0.2267 6.20e-15 chr10	8100761 GATA3	Body	Smoking (Joehanes et al., Circ Cardiovasc
									Genet 2016)
	Naive Treg	cg26836479	1.753	0.2441 1.89e-12 chr19	42706353 DEDD2	Body	Gestational age (Bohlin et al., Genome
									Biol 2016)
	Naive Treg	cg14395620	-1.454	0.2062 4.46e-12	chr4	40285234	
	Naive Treg	cg03354487	0.73	0.125 8.11e-09	chr6	20039211	
	Treg	cg02255107	-3.489	0.4399 9.17e-15	chr3	16347334 OXNAD1	3'UTR
	Treg	cg26714968	2.213	0.3012 5.95e-13	chr2 234267824 DGKD	Body
	Treg	cg13788583	3.999	0.6658 3.13e-09 chr20	8132217 PLCB1	Body
	Activated Treg	cg24683414	2.12	0.2272 1.54e-19	chr1	92952581 GFI1	TSS1500
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Table 5 .

 5 Continued

	Trait	Methylation Coefficient Standard	P value	Chr.	Position Closest gene Genic region Published associations
		probe		error			
	MAIT cells in lymphocytes cg20732539	19.44	2.02 8.32e-21 chr16	27416077 IL21R	5'UTR	IL21R regulates MAIT cell numbers (Wil-
								son et al., J Exp Med 2015)
	MAIT cells in lymphocytes cg10827488	-18.236	2.5987 4.87e-12 chr11 113953838 ZBTB16	Body	Multiple sclerosis (Souren et al., bioRxiv) ;
								NK and NKT cell differentiation (Schlums
								et al., Immunity 2015; Mao et al., PNAS
								2016)
	MAIT cells in lymphocytes cg09088625	-34.172	6.0198 1.93e-08	chr3	46246578 CCR1	5'UTR	Monocyte/DC differentiation (Rodríguez-
								Ubreva et al., Cell Reports 2017)
	CD8 + MAIT cells	cg04116545	8.27	1.4394 1.31e-08	chr6 125684679
	Naive B in all B cells	cg06800849	80.426	13.519 4.13e-09 chr16	89180587 ACSF3	Body	Rheumatoid arthritis in B cells (Julià et al.,
								Hum Mol Genet 2017)
	Marginal zone B in B cells cg13651690	-236.308	41.3711 1.61e-08 chr14 106320748
	Plasmocytes in B cells	cg25780496	-12.362	2.0867 4.75e-09 chr15 101137253 LINS	5'UTR
	Transitional B in B cells	cg25385366	-12.187	2.104 1.02e-08 chr21	43809360 TMPRSS3	Body
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Table 6 .

 6 Methylome-wide significant (P < 3 × 10 -8 ) DNAm probes selected by stability selection for all binary traits. A logistic regression model with all predictors chosen by stability selection was fitted for each trait. The predictors who had p values smaller than 3 × 10 -8 are included in the table.

	Trait	Methylation probe Coefficient Standard error P value	Chr.	Position Closest gene Genic region Published association
	Hepatitis B	cg08097417	-17.65	2.000	1.10e-18	chr7 130419133 KLF14	TSS1500	Age (Li et al., Sci Rep 2017)
	Toxoplasmosis	cg16867657	11.96	0.888	2.32e-41	chr6	11044877 ELOVL2	TSS1500	Age (Li et al., Sci Rep 2017)
	Smoking	cg05575921	-15.98	2.080	1.59e-14	chr5	373378 AHRR	Body	Smoking (Bojesen et al., Thorax 2017;
									Chatziioannou et al., Sci Rep 2017)
	Smoking	cg21566642	-9.62	1.626	3.33e-09	chr2 233284661		Smoking (Joehanes et al., Circ Cardiovasc
									Genet 2016; Chatziioannou et al., Sci Rep
									2017)
	Herpes Simplex 1	cg16867657	8.25	0.804	1.14e-24	chr6	11044877 ELOVL2	TSS1500	Age (Li et al., Sci Rep 2017)
	Helicobacter pylori cg21306573	-10.48	1.516	4.65e-12	chr3 110788276 PVRL3-AS1 Body	PVRL3 is a receptor for Clostridium diffi-
									cile toxins (LaFrance et al., PNAS 2015)
	Measles	cg09472506	-18.27	1.966	1.45e-20 chr11 100803740 ARHGAP42 Body	ARHGAP42 is associated with risk for hy-
									pertension (Bai et al., J Clin Invest 2017)
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