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Abstract 

Blood plasma proteins play an important role in immune defense against pathogens, including cytokine 

signaling, the complement system and the acute-phase response. Recent large-scale studies have reported 

genetic (i.e. quantitative trait loci, pQTLs) and non-genetic factors, such as age and sex, as major 

determinants to inter-individual variability in immune response variation. However, the contribution of blood 

cell composition to plasma protein heterogeneity has not been fully characterized and may act as a 

confounding factor in association studies. Here, we evaluated plasma protein levels from 400 unrelated 

healthy individuals of western European ancestry, who were stratified by sex and two decades of life (20-29 

and 60-69 years), from the Milieu Intérieur cohort. We quantified 297 proteins by Luminex in a clinically 

certified laboratory and their levels of variation were analysed together with 5.2M single-nucleotide 

polymorphisms. With respect to non-genetic variables, we included more than 700 lifestyle and biochemical 

factors, as well as counts of seven circulating immune cell populations measured by hemogram and 

standardized flow cytometry. Collectively, we found 152 significant associations involving 49 proteins and 20 
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non-genetic variables. Consistent with previous studies, age and sex showed a global, pervasive impact on 

plasma protein heterogeneity, while body mass index and other health status variables were among the non-

genetic factors with the highest number of associations. After controlling for these covariates, we identified 

100 and 12 pQTLs acting in cis and trans, respectively, collectively associated with 87 plasma proteins and 

including 30 novel genetic associations. Genetic factors explained the largest fraction of the variability of 

plasma protein levels, as compared to non-genetic factors. In addition, blood cell fractions, including 

leukocytes, lymphocytes and three types of polymorphonuclear cells, had a larger contribution to inter-

individual variability than age and sex, and appeared as confounders of specific genetic associations. Finally, 

we identified new genetic associations with plasma protein levels of eight monogenic Mendelian disease 

genes including three primary immunodeficiency genes (Ficolin-3, Interleukine-2 Receptor alpha and FAS). 

Our study identified novel genetic and non-genetic factors associated to plasma protein levels which may 

inform health status and disease management. 

 

Introduction 

Plasma proteins play important physiological roles in human health and disease. They participate in immune 

responses against pathogens (e.g. interferons, chemokines and complement factors1,2), blood clotting3, 

hormone transport4,5, and energy metabolism regulation6. Plasma protein levels reflect the balance of diverse 

biological processes including active cellular secretion7–9, tissue leakage10,11, protein degradation12 and 

protein excretion in urine13. Plasma proteins are widely used as markers of the physiological state of an 

individual and represent ~42% of all requested blood-based laboratory tests10. As of today, the US Food and 

Drug Agency (FDA) approved 235 plasma proteins as diagnostic, prognostic, risk predictive or treatment 

response biomarkers (http://mrmassaydb.proteincentre.com/fdaassay/ 14) for a broad range of diseases such 

as cancer15–17, pulmonary defects18, autoimmune19 and metabolic diseases20. In addition to their association 

with clinical outcomes, natural heterogeneity of plasma protein levels among the general population has 

been widely reported but is not considered in clinical applications. Recent large-scale studies performed both 

in healthy and disease cohorts have identified both non-genetic (e.g. age and sex) and genetic factors (i.e. 

quantitative trait loci, pQTLs) that determine variable plasma protein levels21–23. pQTLs are enriched in 

disease-susceptibility loci identified from GWAS studies23,24, and could have protective or modifying effects, 

potentially in conjunction with pathogenic mutations leading to disease due to altered expression levels, e.g. 

loss of homeostasis, proteotoxic stress or insufficiency25. Yet, the assessment of the genetic associations 

reported by previous studies did not characterize the specific cell types accounting for the observed variation 

in plasma proteins. Thus, it remains unclear whether a fraction of the plasma protein variability initially 
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associated with a pQTL could have been confounded by concomitant heterogeneity in their cellular sources. 

This may be especially relevant for plasma proteins displaying immune-related functions, since significant 

variability in immune cell fractions is observed across individuals driven by both genetic and non-genetic 

factors26,27.  

Here, we present an in-depth characterization of heterogeneity in plasma protein levels in healthy individuals 

from the Milieu Intérieur study28, with a focus on immune-related proteins. The Milieu Intérieur consortium 

aims at characterizing the genetic and environmental factors underlying the observed variability of the 

immune response in a healthy population28. This study was performed on 400 individuals equally distributed 

by sex and across two decades of life (aged 30-39, and 60-69). We evaluated the association of 229 plasma 

protein concentrations with a total of 254 non-genetic factors including lifestyle, environmental, physiological 

and blood biochemical variables as well as with 5,201,100 common single nucleotide polymorphisms 

(SNPs). To control for the natural variation in blood cell populations, we systematically accounted for the 

levels of seven major blood-cell fractions, including leukocytes, lymphocytes and three types of 

polymorphonuclear cells. We found that together with age and sex, blood cell fractions explain an important 

fraction of the inter-individual plasma protein variability. After controlling for such factors, we identified 112 

pQTLs associated with 87 proteins, 24 of which are reported here for the first time. Among these, nine are 

associated in cis to monogenic Mendelian disease genes (MMDGs), including 3 primary immunodeficiency 

(PID) genes. Such genetic variants may have potential clinical value as susceptibility or protective factors for 

immune-related diseases. 

 

 

Results 

 

Variation of plasma protein levels in a well-defined healthy population 

We quantified the concentrations of 297 plasma proteins in 400 healthy individuals from the Milieu Intérieur 

(MI) study28 using CLIA certified assays. After quality control accounting for detection limits (Methods), 229 

proteins were retained for downstream analyses, including 141 immune-related plasma proteins (i.e. proteins 

with previously identified immune functions or produced by immune cells, Methods). First, we evaluated the 

impact of host genetics and non-genetic factors on plasma protein levels. Genome-wide association tests for 

each of the 229 proteins were performed against a total of 5,201,100 common SNPs (minor allele frequency 

>= 0.05). Covariates that we systematically included in the analysis were age, sex, counts of 7 major blood-

cell sub-populations (lymphocytes, leucocytes, neutrophils, basophils, eosinophils, monocytes and platelets) 
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and the first two principal components of a principal component analysis of the genetic data, representing 

genetic stratification in the sample (Methods). Additional non-genetic factors were selected among 254 

lifestyle, environmental, physiological and blood biochemical variables, and added as confounders in a 

protein-specific manner (Methods). The relative contribution (marginal correlation, CAR score, Methods) of 

non-genetic, genetic and cell fraction components to the inter-individual variability of the 229 plasma proteins 

evaluated in this work is presented in Figure 1 and Supplementary Table 1-3 (Methods). 

Consistent with previous studies21–23,29–32, we found that age and sex had a widespread effect on plasma 

protein levels, each explaining on average 2.8% of the total observed variability (Figure 1, Supplementary 

Table 1, Methods). Similar figures were observed for the subset of immune-related proteins, i.e. 2.3% and 

2.1% for age and sex respectively. For specific proteins, however, the observed contribution of age and sex 

was particularly large, in line with previous findings. For example, age explained 30.2% of growth 

differentiation factor 15 variability (GDF15)29,33, while variability attributed to sex was 42.8% for Leptin34, 39% 

for Stromelysin-1 (MMP3)29,35, 36.2% for FSH and 32.1% for LH29,36. Moreover, when accounting for potential 

covariation among the 229 proteins through a principal component analysis (PCA), both age and sex 

showed a strong association with the global heterogeneity of protein levels (univariate linear modeling 

against PC1 coordinates, p-values = 1.8e-07 and 1.4e-06, respectively; and PC2, p-values = 4.2e-24 and 

3.5e-05, respectively; Supplementary Figure 1 , Methods). While previous studies mostly assessed the 

global impact of age and sex on plasma proteins, their effects appear highly heterogeneous across proteins. 

 

Blood cell fractions explain a substantial part of plasma protein level heterogeneity 

To assess the potential effect of circulatory cell counts on plasma protein levels, we next quantified their 

relative contribution to the inter-individual variability of each protein (Methods). Taken together, blood-cell 

fractions explained on average 3.6% of the variability of the observed plasma protein levels. This contribution 

was comparatively higher than those of age and sex (two-sided Wilcoxon test p-value = 6.4e-11 and 2.3e-14, 

respectively; Figure 1, Supplementary Table 1). Furthermore, blood-cell fractions explained significantly 

more variability for immune-related proteins than for the rest of proteins evaluated (mean explained 

variability 4% and 2.9% respectively, one-sided Wilcoxon test, P = 4.8e-02). Platelet counts alone explained 

an average of 1.6% of the variability of immune related proteins, as compared to 0.78% for the rest of 

proteins (one-sided Wilcoxon test, p-value = 3.9e-04), with contributions as high as 16.3% for the Neutrophil 

Activating Peptide 2, and 13.3% for Thrombospondin-1. These results highlight the contribution of blood-cell 

fractions to the variability of plasma protein levels, and support their consideration as a potential confounding 

factor in the assessment of genetic associations.  
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Plasma lipids and body mass index are important covariates of specific plasma proteins 

Two other classes of non-genetic factors were found to substantially associate with plasma levels of specific 

proteins. First, plasma lipids such as triglycerides, HDL, LDL and total cholesterol were associated with 

expression levels of 25 proteins, including various components of cholesterol particles as well as proteins 

involved in lipid transport (ApoA1, ApoB, ApoC1, ApoC3, ApoD, ApoE, FABP-adipocyte, SHBG), metabolism 

and homeostasis (Adiponectin, Carboxypeptidase B2, C3, CFH, C-peptid, Endoglin, FGF21, IGFBP2, Leptin, 

Leptin Receptor, PEDF, Prostatin, PSAT, RBP4, SAP, tPA). Second, anthropometric factors such as body 

mass index (BMI) and abdominal circumference were associated with plasma levels of 20 proteins, most of 

which also associate with plasma lipids (e.g. Adiponectin, ApoD, C-peptid, FABP-adipocyte, SHBG). Blood 

lipids and anthropometric factors accounted on average for 11% and 8.1% of the variability of the associated 

plasma proteins, respectively. Yet, the highest association was observed between HDL and the 

Apolipoprotein A-1 (marginal correlation of 44.6%)37 (Figure 1, Figure 2, Supplementary Table 2, 

Methods). Globally, anthropometric factors and plasma lipid levels are known to be markers of physical 

shape and overall health. Interestingly, the association of complement factors (C3 and CFH) with 

anthropometric traits may reflect the low level inflammation induced by higher body mass, both of which 

associate with obesity, cardiovascular diseases and increased susceptibility to infections38–40. 

 

Contribution of host genetics on plasma protein levels 

Genome wide association testing against the 229 plasma proteins identified 112 pQTLs, including 100 cis- 

and 12 trans-pQTLs, and collectively involving 87 proteins and 111 SNPs (FDR <= 0.05; Figure 3, 

Supplementary Figure 2, Supplementary Figure 3, and Supplementary Table 3, Methods). Among the 

87 proteins, 76 were only associated with cis-SNPs, 9 with only trans-SNPs and 2 with both. Sixty-two 

proteins were associated with one SNP, and 25 with two independent SNPs. Interestingly, three loci 

aggregated several pQTLs associated with different proteins. First, among the 12 trans-pQTLs identified, 4 

(E-selectin-rs2519093; PECAM-1-rs2519093; Cadherin-1-rs635634; FASLG receptor-rs687621) were in 

moderate (R² = 0.45 rs2519093 and rs687621) to high (R² = 0.99, rs2519093 and rs635634) linkage 

disequilibrium (LD) and colocalized in a 18kb region of chromosome 9, previously described as the ABO 

locus, and known to be associated with the expression of many plasma proteins22,24,41,42. Second, two SNPs 

on chromosome 1 in high LD (R² ≥ 0.99) at the CFHR4 locus associated, respectively, in cis (rs60642321) 

with CFHR1 plasma levels, and in trans (rs115094736) with TFR1 plasma levels. While the former had 

previously been reported in blood43, the latter was, to the best of our knowledge, not reported before, neither 
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as a pQTL nor as an eQTL. In addition, no physical or regulatory interactions have been reported between 

TFRC and any other gene or protein in a 500kb window centered on the associated SNP (as reported in 

STRING-db44, Methods). Last, two SNPs (rs584007 and rs3826688) in high LD (R² ≥ 0.99), located on 

chromosome 19, associated in cis with the plasma levels of Apo E and Apo C1, respectively. Both SNPs are 

located within a known ApoE enhancer45, and were previously described as cis-eQTLs of both genes (in 

blood or in other tissues), hinting at a potential co-regulation of the expression of both genes46,47. Among the 

12 trans-pQTLs identified therein, six were located within a maximum of one Mb from a known eQTL for the 

same gene (based on QTLbase48). Last, only one gene located at the trans-pQTL locus was shown to 

interact with the associated gene (SORT1 and GRN, respectively; physical or regulatory interactions 

reported in STRING-db, Methods). Indeed, GRN encoded protein, Progranulin, was shown to bind to 

SORT1 encoded protein, Sortilin 1, based on co-immunoprecipitation experiments performed in various mice 

cell lines49–51 and in green monkey fibroblasts, and on co-expression experiments in human breat cancer cell 

lines52,53 (Supplementary Table 3). Individually considered, cis-pQTLs explained a mean of 12.6% of the 

associated protein levels (marginal correlation interquartile range from 4.3% to 14.6%). The highest variance 

explained (marginal correlation, CAR score, Methods) by cis-pQTLs were for the rs7041 polymorphism and 

Vitamin D-binding protein (65.6%), rs2856448 for the Tenascin-X protein (61.5%) and rs60642321 for the 

Complement factor H-related protein 1 (54.4%). Significant trans-pQTLs explained a mean of 12.9% of the 

variability of the associated protein levels (interquartile range from 8.1% to 14.6%), with a maximum 

contribution of 32.2% in the case of the rs115094736 SNP for the Transferrin receptor protein 1. Considering 

all cis-pQTLs and all trans-pQTLs, they explained on average 16.2% and 14.1% of the total variance, 

respectively. The per-protein global contribution of cis-QTLs to plasma level heterogeneity were lower for 

immune related proteins as compared to the rest of the evaluated proteins (13.8% and 19.5% on average, 

respectively, two-sided Wilcoxon test p-value = 0.10).  

 

Characteristics of the pQTL summary statistics 

We next evaluated the relationship between the pQTL minor allele frequency, its absolute effect size, the 

absolute variability of the associated protein, and the fraction of such variability explained by the pQTL. 

Consistent with previous studies21,27,54–56, we observed a significant negative correlation between the minor 

allele frequency (MAF) and the absolute effect size of the SNPs (Spearman’s rho = -0.30, p-value = 1e-03). 

In addition, we observed a mild positive correlation between the MAF and the variability explained by the 

pQTLs (Spearman’s rho = 0.25, p-value = 7e-03), as well as a strong positive correlation between the 

absolute effect size and the explained variability (Spearman’s rho = 0.57, p-value < 2.2e-16). A strong 
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correlation was also observed between the absolute effect size of the pQTLs and the inter-individual 

standard deviation of the associated proteins (Spearman’s rho = 0.70, p-value < 2.2e-16). These results are 

in line with previous studies21,27,54–56 observing that the more frequent a regulatory SNP is in the population, 

the more it contributes to the variability of the associated protein, but with lower effect size and lower inter-

individual variance. Notwithstanding, a bias associating high MAF SNPs with low effect size SNPs due to 

higher statistical power cannot be excluded54,57. 

 

Accounting for blood cell fractions reveals new genetic associations 

To evaluate the impact of considering blood cell fractions in the evaluation of genetic associations with 

plasma protein levels, we tested whether a linear model accounting for cell fractions better fits protein levels 

than a simpler model not considering them as covariates. Out of the 112 pQTLs reported in this work, the 

addition of cell fractions significantly improved the linear model in 42 of the cases (one-way ANOVA, F test p-

values <= 0.05, Methods). In consequence, we repeated a genome-wide pQTL assessment as previously 

described, while excluding blood-cell fractions from the covariates (Methods, Supplementary Note 1). We 

found genetic associations for 94 proteins, as compared to 87 proteins initially identified, with 84 proteins in 

common. Thus, three proteins were specific to the analysis accounting for blood cell fractions as covariates, 

while 10 proteins were specific to the analysis not considering blood cell fractions (Supplementary Table 4, 

Methods). Moreover, 6 of the 13 proteins showing different pQTL results between the two settings were in 

turn significantly associated with at least one of the seven circulatory cell fractions tested herein (CEACAM6, 

Hemopexin, Resistin, TARC, Thrombospondin 1 and TTR; Supplementary Table 4, Methods). Yet, the 

nominal p-values of genetic associations from one analysis to the other remained significant. These results 

show that cell fractions are an important factor for the study of genetic and non-genetic associations with 

plasma protein variability across healthy individuals. However, a mediator role can’t be directly inferred from 

the previous associations. 

 

Replication of previously reported plasma proteins presenting cis-pQTLs 

We then evaluated the extent to which our study replicated previously reported plasma protein associations 

with proximal genetic polymorphisms (i.e. cis-pQTLs) in three recent large-scale studies21–23 

(Supplementary Table 5). When considering a nominal p-value threshold of 0.01, we replicated 98.85% of 

the n=87 significant associations reported by the three studies, out of the n=131 plasma proteins common 

with our study. Using a more stringent significance threshold based on FDR correction (Methods), the 

replication rate would drop to 52.2%, 63.6% and 77.3% for Sun et al., Suhre et al., and Deming et al. 
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respectively (Figure 4). From a complementary perspective, 54 out of 78 (66.7%) and 5 out of 11 (45.5%) of 

the proteins with cis- and trans-pQTLs in our study, respectively, had been previously reported by at least 

one of 4 large scale studies21–23,32. Conversely, we identified 24 novel genetically regulated plasma proteins, 

collectively associated to a total of 24 cis- and 6 trans-pQTLs (Supplementary Table 3). 

 

Clinical relevance of plasma proteins and associated genetic factors 

We characterized the potential medical interest of the pQTLs identified and their associated genes. Both cis 

and trans pQTLs reported in our study were significantly enriched in GWAS-based disease- or trait-

associated SNPs, showing ~7and ~7.8 times more GWAS hits, respectively, than expected (43% and 41.6% 

observed as compared to an expectation of 6.2% and 5%, odds ratio of 12 and 15.8 respectively, with a re-

sampling p-value < 1e-04; Methods, Figure 5, Supplementary Table 3). Seventeen of the 87 proteins with 

pQTLs are FDA-approved biomarkers, including two plasma proteins not previously associated with pQTLs, 

i.e. Cancer Antigen 15-3 and Sex Hormone-Binding Globulin. In addition, among the 87 genes collectively 

associated to the 112 pQTLs identified, 29 genes are known monogenic Mendelian diseases genes 

(MMDGs), including six primary immunodeficiency genes (PIDs) (Methods). Notably, the plasma protein 

levels of eight out of these 29 MMDGs, including three PID genes - i.e.: FCN3, IL2RA and FAS - had not 

been previously reported to be associated with genetic polymorphisms (pQTLs) in reference repositories 

(Figure 6, Supplementary Note 2, Methods). The identification of pQTLs associated to such Mendelian 

disease genes may contribute to the genetic characterization of the observed incomplete penetrance or 

severity heterogeneity across patients suffering from primary immune deficiencies. 

 

Discussion 

In this work, we characterized non-genetic and genetic factors explaining the natural heterogeneity of 229 

plasma protein levels observed in healthy individuals. We replicated previous findings21–23,29–32 describing 

that age and sex have a global impact on plasma proteins, while anthropometric variables, blood lipids and 

metabolic markers are also relevant factors for specific proteins. In addition, we characterized the 

contribution of seven major blood-cell fractions to inter-individual heterogeneity, and found that their 

contribution to plasma protein variability was higher than age and sex. Moreover, our results suggest that 

blood-cell fractions may act as important confounders of genetic associations with specific plasma protein 

levels. In addition to non-genetic factors, we identified 100 and 12 pQTLs acting in cis and trans, 

respectively, associated with 87 plasma proteins. However, the inclusion of cellular covariates in the 

assessment of genetic associations led to the identification of three novel proteins with pQTLs, while 
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abrogated the signal for 10 proteins which would have otherwise led to positive hits. This could potentially be 

explained by the fact that all 13 proteins are expressed by specific circulating immune cell populations58–67. 

However, the interactions between these proteins, blood cell populations and genetic variants are less 

obvious to interpret, as both direct and indirect effects or co-occurring mechanisms could be involved.  

Although our study replicated a large number of previously reported genetic associations with plasma 

proteins21–23,32, it also identified 24 proteins whose plasma levels had not been previously associated with 

genetic factors. This may stem from the well-defined healthy nature of our study population, which may 

reduce potential confounding lifestyle or medical factors, or from a low measurement error. Interestingly, of 

the newly identified associations, eight include proteins encoded by MMDGs, 3 of which are known to cause 

primary immunodeficiencies, i.e.: Ficolin-3, Interleukin-2 Receptor alpha and FAS (Figure 6, Supplementary 

Note 2). 

Primary immunodeficiencies are caused by rare variants leading either to loss- or gain-of-function 

consequences in the affected genes68,69. However, such mutations are often not fully penetrant and the 

associated symptoms are heterogeneous between and within families. Among possible explanations for this 

heterogeneity, low to mild effect common variants, such as the pQTLs identified in this work, might act as 

modifier of the corresponding diseases, by increasing or decreasing the expression of the corresponding 

proteins, and consequently mitigating or aggravating the consequences of causal variants.  

Thus, the common variant associated with Ficolin-3 plasma levels identified in this work, rs2504780 (AF = 

10.7%, 1:27710876, T>A), is located 9.5kb upstream of FCN3, and associated with a diminution of Ficolin-3 

levels (size effect = -3.79 μg/mL per alternative allele, Figure 6A, Supplementary Note 2) comparable with 

heterozygous FCN3 loss-of-function variants70 causing immunodeficiency 41 with lymphoproliferation and 

autoimmunity (OMIM 606367, Supplementary Note 2). This variant could be a risk factor for Ficolin-3 

deficiency and might play a role in the observed etiology of both complete Ficolin-3 deficiency or Ficolin-3 

haploinsufficiency in the response to infection and autoimmunity. Future analysis of auto-antibodies in our 

cohort may allow us to directly test this hypothesis. Another example are the two independent cis-pQTLs 

associated to interleukin 2 receptor alpha (IL2RA) levels, i.e. rs12722497 (6:6095928; C>A, AF = 10%) and 

rs2104286 (6:6099045; T>C, AF = 24%), both located in the first intron of IL2RA. IL2RA, expressed at the 

membrane of regulatory T cells, allows the control of the proliferation of responder T cells71. Complete IL2RA 

deficiency causes immunodeficiency, lymphoproliferation and auto-immunity19,72–74. The rs12722497 

polymorphism is associated with an increased plasma levels of IL2RA (size effect = +699 pg/mL per 

alternative allele; Figure 6B left), while rs2104286 associated with a decreased expression of IL2RA (size 

effect = -200 pg/mL per alternative allele; Figure 6B right). These two variants might affect the normal 
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behavior of regulatory T cells and alter their ability to modulate the proliferation of responder T cells, similarly 

to heterozygous IL2RA loss-of-function variant carriers71. Last, we identified a common variant associated in 

trans with FAS plasma levels, rs687621 (9:136137065, A>G, AF = 36%) which increases the expression of 

FAS (size effect = +2.79 ng/mL per alternative allele; Figure 6C). This variant could contribute to a protective 

role against the haploinsufficient forms of autoimmune lymphoproliferative syndrom (ALPS, OMIM 601859) 

by increasing the expression of FAS in heterozygous loss-of-function variant carriers. However, the 

rs687621 polymorphism is located at the ABO locus, which is known to associate with the expression of 

many plasma proteins22,24,41,42. Such an association hotspot could be explained by the glycosyltransferase 

activity of ABO proteins75, which by transferring glycosyl residuals on target proteins may potentially alter its 

binding affinity of the associated antibody in immunoassays76, thus constituting a technical artefact. In light of 

these potential caveats, the biological relevance of the FAS-associated trans-pQTL identified should be 

taken with caution, prior to replication. The common genetic associations identified here for plasma protein 

levels of PID genes could be further characterized through genetic fine-mapping and functional 

characterization.  

Plasma protein levels can be considered as end-of-chain signal integrators, and their levels are influenced 

by several molecular mechanisms (e.g. mRNA transcription, Kozak sequence affinity and other translation 

initiation mechanisms, codon usage, translation rate, post-transcriptional modifications77–81). A combination 

of targeted genome and transcriptome sequencing, ribosome occupancy assay and intracellular protein 

assays in the tissue of interest would allow the identification of the causal variants and the molecular 

mechanisms mediating the observed associations. Finally, the phenotypic consequences of pQTLs 

associated to plasma levels coded by PID genes should be further characterized both in healthy and PID 

patients, where protective or modifier roles could be further established. 
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Methods 

The Milieu Intérieur cohort 

The 400 donors in this study were a subset of the 1,000 healthy donors of the Milieu Intérieur cohort 

recruited at BioTrial (Rennes, France). The Milieur Intérieur cohort was approved by the Comité de 

Protection des Personnes – Ouest 6 (Committee for the protection of persons) on June 13th, 2012 and by 

French Agence nationale de sécurité du médicament (ANSM) on June 22nd, 2012. The study is sponsored 

by Institut Pasteur (Pasteur ID-RCB Number: 2012-A00238-35), and was conducted as a single centre 

interventional study without an investigational product. The original protocol was registered under 

ClinicalTrials.gov (study# NCT01699893). The samples and data used in this study were formally 

established as the Milieu Interieur biocollection (NCT03905993), with approvals by the Comité de Protection 

des Personnes – Sud Méditerranée and the Commission nationale de l'informatique et des libertés (CNIL) on 

April 11, 2018. Donors included in this sub-study were stratified by sex and were between the ages of 30-39 

(n=200) or 60-69 (n=200) years old. Participants were selected based on stringent inclusion and exclusion 

criteria, as detailed elsewhere28. To minimize the influence of population substructure on genomic analyses, 

the study was restricted to individuals of self-reported Metropolitan French origin for three generations (i.e., 

with parents and grand-parents born in continental France). Fasting whole blood samples were collected in 

EDTA tubes and plasma was separated following high-speed centrifugation and stored at -80°C until 

analysis. Standard blood testing and complete hemogram was performed on fresh aliquots, while protein 

immunoassays were performed on frozen aliquots. 

 

Quantification of plasma protein levels in 400 healthy individuals. 

The protein immunoassays and the blood tests were performed on samples taken the same day and 

analyzed at different times, on fresh or frozen aliquots. Blood chemical and major cell fractions were 

estimated through direct enumeration and standard blood panels. The concentrations of 297 plasma proteins 

of 400 individuals were quantified by Luminex multi-analyte immunoassays (Discovery Map v3.3 from Myriad 

RBM), as previously described82. Protein levels were analysed and compared with their respective lower limit 

of quantification (LLOQ). Among the 297 assayed proteins, 68 proteins were reported at a concentration 

lower than the LLOQ in at least 20% of the individuals and were filtered out. For the 229 proteins that were 

kept, reported concentrations lower than the LLOQ were replaced by NAs, to prevent incorrect protein-

environment or protein-genotype associations due to undetected or undetectable proteins. Next, for each 

protein, plasma level distribution across individuals were tested for normality using the Shapiro-Wilk test on 

the raw and log-transformed values within the 2.5% and 97.5% percentiles. Shapiro-Wilk null hypothesis was 
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not rejected (p-value <= 0.001, after multiple testing correction) for a total of 50 (22%) and 183 (80%) 

proteins, depending on whether raw or log-transformed values were used. These results suggested that the 

majority of raw protein plasma levels followed a log-normal distribution and were thus log-transformed for 

downstream analysis. 

 

Filters and tests for non-genetic variables 

For each individual from the Milieu Intérieur cohort, an extensive electronic clinical record file was filled, 

gathering 754 lifestyle, environmental and medical history variables as well as blood metabolites and 

enzymes levels from standard blood test and erythrocytes enumeration28. First, variables with names 

describing repetitive measurements over several visits after the first visit were filtered out. Second, 

redundant columns informative about the sex of the individual were removed. Third, mono-factorial variables, 

character variables, variables with missing values in 20% or more of the individuals, or varying in less than 

10 individuals, variables correlated with other variables with a Spearman correlation coefficient of 1, and 

variables providing redundant information about the same phenotype were filtered out, for a final number of 

254 variables. Then, for each of the 254 non-genetic factors, a univariate linear regression analysis was 

performed against the log-transformed expression levels of each of the 229 plasma proteins evaluated. Age 

and sex were systematically included as covariates in all such regressions, consistent with their pervasive 

influence shown in previous studies, as well as with their association with many of the non-genetic factors 

evaluated28,83. Univariate linear regression was performed between each pair of proteins and non-genetic 

factors. In addition, to reduce the sensitivity of the linear models to outliers, the ten lowest and ten highest 

values of each protein were removed from the regression analysis. Significance was declared at p-value <= 

0.05 after Bonferroni multiple testing correction accounting for the number of tests (n = 58,166). A total of 

152 significant associations collectively involving 49 proteins and 20 non-genetic factors were found. In 

addition, seven major blood-cell fractions, i.e. leukocytes, lymphocytes, monocytes, neutrophils, eosinophils, 

basophils and platelets, were assessed through hemogram on fresh aliquots, along the other blood 

chemicals and enzymes28. 

 

Genotyping and imputation 

Each individual from the Milieu Intérieur cohort was genotyped by the HumanOmniExpress-24 BeadChip 

(Illumina), covering 719,665 SNPs. 245,766 rare functional variants were also genotyped on a 

HumanExome-12 BeadChip (Illumina). After quality control, both datasets were merged, for a total of 

723,341 SNPs. Next, IMPUTE v.2 was used to perform genotype imputation, on 1Mb windows buffered by 
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an additional 1Mb. Before imputation, SNPs were phased using 500 conditioning haplotypes, 50 MCMC, 10 

burn-in and 10 pruning iterations. SNPs and allelic states were aligned to the imputation reference panel 

from the 1000 Genome Project Phase 1 v3 (2010/11/23). SNPs with dissimilar alleles (even after flipping) or 

ambiguous C/G or A/T alleles were filtered out. Imputation yielded a total of set of 37,895,612 SNPs. 

Removing SNPs with information metric ≤ 0.8, duplicated or monomorphic SNPs, and SNPs with 

missingness > 5% (SNPs with genotyping probability lower than 0.8 in an individual were considered as 

missing) reduced the set to 11,395,554 SNPs. Further removing non-SNP variants and filtering out variants 

with a MAF < 0.05 (with the --snps-only option of PLINK v1.9) in the 400 sampled individuals, resulted in a 

final set of 5,201,100 SNPs. First and second components of a Principal Component Analysis of the 

OmniExpress array, were performed with reference populations84. 

 

Genome-wide association testing of plasma proteins 

To perform the pQTL mapping of plasma proteins, we chose to use a multivariate approach by incorporating, 

for each protein, the associated non-genetic variables as covariates, in addition to sex, age, the 7 major 

blood cell fractions (leukocytes, lymphocytes, monocytes, neutrophils, eosinophils, basophils and platelets) 

and the two first PCs of the genetic data. If a non-genetic variable was a redundant measure with the 

corresponding protein (e.g. CRP), it was not added as a covariable in the model. We used a first linear mixed 

model to correct the protein expression levels for their specific covariates and for kinship, using per 

chromosome genetic relationship matrix (GRM) computed using GenAbel v1.8 (leaving one chromosome 

out). The analysis was performed separately for cis and trans QTLs, and the false discovery rate (FDR) was 

computed independently for cis-acting and trans-acting SNPs85. Cis-acting SNPs were defined as SNPs 

located at a maximum distance of 1MB from the transcription start or end site of the corresponding gene. For 

each protein and each kind of associations tested (cis or trans), the minimal raw p-value was reported. In 

addition, for each protein, 100 permutations were performed between all cis or trans SNPs, and the minimal 

p-value of each of these permutations was extracted. Next, proteins were ascendingly sorted based on their 

raw p-values. Then, the FDR was computed, for each protein, as the mean over the N=100 permutations of 

the number of times its raw p-value is lower than the nth permutation from all proteins, divided by the rank of 

the corresponding protein. Protein-SNP pairs were considered as significant when the corresponding FDR 

was equal to or lower than 0.05. To investigate the potential presence of secondary pQTLs, we performed 

the same analysis a second time, incorporating the genotype of the most significant SNP detected in the first 

round of analysis as an additional covariate. The FDR was computed independently on each analysis 

iteration, both considering the same number of proteins and permutations. The significance thresholds 
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corresponding to first-round and second-round pQTLs were respectively around 2.2e-05 and 1.5e-05 for cis 

and respectively around 9e-10 and 2e-10 for trans (significance thresholds were computed as the mean 

between the last significant and the first non-significant p-values). The genome wide analysis yielded a total 

of 100 cis-pQTLs and 12 trans-pQTLs.  

 

Contribution of non-genetic and genetic components in the variability of plasma proteins 

The relative contribution of the various environmental and genetic variables was assessed using the 

correlation-adjusted marginal correlation score (CAR score86) from the care package in R. The CAR score is 

the shrunk estimator of the adjusted coefficient of determination (R²) of each independent variable in a linear 

model, which considers the marginal correlation between variables. The CAR score is determined for each 

independent variable within a model, representing their independent contribution to the total variability of the 

dependent variable. The sum of the CAR score attributed to each variable in a model is equal to the model 

adjusted R². For each protein, the relative contribution of its significantly associated non-genetic variable was 

assessed at once. In case only a single variable was significantly associated with a protein, we used the 

adjusted coefficient of determination (R²) of the variable as its relative contribution in the variability of the 

corresponding protein levels. Then, the relative contribution of the identified pQTLs was assessed by 

computing their CAR score in protein-specific models incorporating age, sex, the protein-specific covariates 

and the corresponding genotypes. The effect size of pQTLs was computed following a two-stage model 

similar to the GWAS. A first linear model was used to regress out the associated covariates (and previously 

identified SNP in the case of SNPs identified by the conditional analysis) from the log-transformed and non-

transformed plasma protein levels, and a second linear model was used to regress the residuals of the first 

against the tested SNP. The Beta was extracted from this model and used as the SNP effect size. 

 

Global impact of age and sex on plasma protein levels 

In order to characterize the global impact of age and sex on plasma protein heterogeneity, while accounting 

for the collinearity of several plasma proteins, we performed a principal component analysis (PCA) on the 

expression levels of the 229 proteins across the 400 individuals. When considered independently, only PC1 

and PC2 explained more than 5% of the total variability (Supplementary Figure 1). 

 

Assessment of gene-gene interactions 

The interactions between trans-pQTL associated proteins and candidate proteins coded by genes located 

within a 500kb window centered around the associated SNP were assessed using STRING-db v1144 at 
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https://string-db.org/. All protein-coding genes were queried at once through the “Multiple proteins” option 

and default settings (organism: “Homo sapiens”). Proteins were considered to interact when they were 

shown to be direct neighbors in protein-protein interaction networks, or when one of the protein was shown 

to be directly or indirectly involved in the regulation of the other. 

 

Contribution of blood cell fractions in protein level predictions 

To quantify the relevance of blood cell fractions in the prediction of plasma protein levels, we used a one-

way ANOVA to compare, for each pQTL, the predictions coming from two models. A first linear model 

considered the genotype of the corresponding SNP, the previously defined protein-specific covariates, as 

well as age, sex, the two first PCs of the genetic data, and the 7 blood-cell fractions. A second linear model 

was evaluated by considering all variables used in the previous one, with the exception of the 7 blood-cell 

fractions. The models including pQTLs obtained from the conditional analysis additionally corrected for the 

SNP used for their identification. To assess the potential relevance of the different circulatory cell fractions in 

the different results obtained from the two pQTL mapping, the proteins were first corrected for age and sex 

through linear regression, and the resulting residuals regressed against each circulatory cell counts 

individually. Association p-values were corrected independently for each protein, and are reported in 

Supplementary Table 4. 

 

Replication of previously identified plasma protein QTLs. 

We compared our significant SNP-protein pairs with four studies analyzing the genetic basis of plasma 

protein levels. Sun et al. reported 1927 pQTLs, resulting from the analysis of 3622 plasma proteins in 3301 

individuals; Suhre et al. reported 539 pQTLs from the analysis of 1124 plasma proteins in 1000 individuals; 

Deming et al. reported 56 pQTLs from the analysis of 146 plasma proteins in 818 individuals; and Zhong et 

al. reported 144 pQTLs from the analysis of 107 plasma proteins in 101 individuals. The replication of the 

reported pQTLs was performed at the protein-level rather than at the SNP-level, due to the poor overlap in 

terms of sentinel SNPs reported in previous studies21–23,32 and our imputed set of 5,201,100 SNPs. A protein 

previously reported as cis-regulated (i.e. reported as significantly associated with a SNP annotated as “cis” 

by the authors) was considered replicated when it was significantly associated with a SNP located closer 

than 1 Mb around the gene extremities. The same consideration was applied to trans-regulated proteins with 

all SNPs further than 1Mb from the corresponding gene. 
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Protein and gene annotations 

Proteins were classified as immune-related when they were either i) annotated as adaptive immune proteins 

(Supplementary Table 2 from 87), or innate immune proteins (Supplementary Table 1 from 87, and 

Supplementary Table 1 from 88) or ii) produced in sufficient concentrations in substantial fractions of 

immune cells, as described in 89. The list of primary immunodeficiency genes was obtained from 

Supplementary Table 3 from 87. Gene-disease annotations were obtained from OMIM (downloaded at 

https://www.omim.org/downloads/ on the 2019/06/10). Entries were parsed following 90. Mendelian disease 

genes were selected for their level of supporting evidence equal to 3 and for not having a “somatic” flag, and 

monogenic mendelian disease genes (MMDGs) were further selected for not being flagged as “complex”. 

The list of secreted proteins was downloaded from UniProt (https://www.uniprot.org/) on the 2020/02/03, 

using the keywords: locations:(location:"Secreted [SL-0243]" type:component) AND organism:"Homo 

sapiens (Human) [9606]". The list of FDA approved targeted proteins was downloaded on the 2020/02/05 

from http://mrmassaydb.proteincentre.com/fdaassay/.  

The protein classes were taken from Myriad RBM Discovery Map V3.3 table. Proteins were considered 

enriched or depleted in a specific class when the proportion of proteins in that class was larger than in 

10,000 randomly sampled set of proteins of the same size, coming from the tested set of 229 proteins. 

Previous reports of pQTLs associated with monogenic Mendelian disease genes, with primary 

immunodeficiency genes or with genes coding for FDA approved biomarkers were identified through 

QTLbase (http://mulinlab.org/qtlbase)48. 

 

Disease loci enrichment 

To assess the potential association with diseases or other traits of the cis and trans pQTLs reported in this 

work was assessed, we used hits from the NHGRI-EBI Genome Wide Association Studies (GWAS) Catalog, 

downloaded on the 2019/03/22 (file name gwas_catalog_v1.0-associations_e95_r2019-03-22.tsv). SNPs 

associated with a trait or a disease with a reported p-value <= 1e-08 and mapped to autosomes were kept. 

SNPs associated with traits containing “blood”, “plasma” or “serum” and “protein” were removed. A set of 

pQTLs was declared as enriched when the proportion of pQTLs in a set that were GWAS SNPs or in linkage 

disequilibrium with GWAS SNPs (r2 >= 0.8) was larger in 95% of 10,000 randomly sampled set of SNPs of 

the same size, matched by MAF (bins of 5%). Randomly sampled SNPs were drawn from 122,757 and 

384,897 SNPs, selected respectively from the 1,674,134 and 5,201,100 SNPs tested for cis and trans 

associations respectively (with the --indep-pairwise 100 5 0.5 function of PLINK v1.9). When several traits or 

diseases were associated with one locus, the most significant one was selected. 
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Functional annotation of pQTLs 

The cis-pQTL molecular consequences were assessed using VEP v97. Each cis-pQTL was annotated based 

on the canonical transcript of the gene coding for the regulated protein. 
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Sample Information 

Samples came from the Milieur Intérieur Cohort, which was approved by the Comité de Protection des 

Personnes – Ouest 6 (Committee for the protection of persons) on June 13th, 2012 and by French Agence 

nationale de sécurité du médicament (ANSM) on June 22nd, 2012. The study is sponsored by Institut 

Pasteur (Pasteur ID-RCB Number: 2012-A00238-35), and was conducted as a single centre interventional 

study without an investigational product. The original protocol was registered under ClinicalTrials.gov (study 

NCT01699893). The samples and data used in this study were formally established as the Milieu Interieur 

biocollection (NCT03905993), with approvals by the Comité de Protection des Personnes – Sud 
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All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.26.21254301doi: medRxiv preprint 

http://clinicaltrials.gov/
https://doi.org/10.1101/2021.03.26.21254301


  

Data Access 

The SNP array data that support the findings of this study have been deposited in the European Genome-

Phenome Archive (EGA) with the accession code EGAS00001002460. Further data access is provided for 

research use only after review and approval by the Milieur Intérieur data access committee. Requests can be 

sent to milieuinterieurdac@pasteur.fr 

 

Acknowledgments 

This work benefited from support of the French government's Invest in the Future programme. This 

programme is managed by the Agence Nationale de la Recherche, reference ANR-10-LABX-69-01. The 

Clinical Bioinformatics Laboratory of the Imagine Institute was partly supported by the French National 

Research Agency (ANR) “Investissements d’Avenir” Program (Grant ANR-10-IAHU-01). 

 

References 

1. Belardelli, F. Role of interferons and other cytokines in the regulation of the immune response. APMIS 

103, 161–179 (1995). 

2. Ray, S., Patel, S. K., Kumar, V., Damahe, J. & Srivastava, S. Differential expression of serum/plasma 

proteins in various infectious diseases: Specific or nonspecific signatures. Prot. Clin. Appl. 8, 53–72 

(2014). 

3. Davie, E. W. Introduction to the blood coagulation cascade and cloning of blood coagulation factors. J 

Protein Chem 5, 247–253 (1986). 

4. Pardridge, W. M. Plasma protein-mediated transport of steroid and thyroid hormones. American Journal 

of Physiology-Endocrinology and Metabolism 252, E157–E164 (1987). 

5. Pardridge, W. M. Targeted Delivery of Hormones to Tissues by Plasma Proteins. in Comprehensive 

Physiology (ed. Terjung, R.) cp070114 (John Wiley & Sons, Inc., 2011). doi:10.1002/cphy.cp070114. 

6. Qaid, M. M. & Abdelrahman, M. M. Role of insulin and other related hormones in energy metabolism - A 

review. Cogent Food & Agriculture 2, (2016). 

7. Dimou, E. & Nickel, W. Unconventional mechanisms of eukaryotic protein secretion. Current Biology 28, 

R406–R410 (2018). 

8. Rabouille, C. Pathways of Unconventional Protein Secretion. Trends in Cell Biology 27, 230–240 (2017). 

9. Zhao, K.-W., Murray, E. J. B. & Murray, S. S. HK2 Proximal Tubule Epithelial Cells Synthesize and 

Secrete Plasma Proteins Predominantly Through the Apical Surface. J. Cell. Biochem. 118, 924–933 

(2017). 

10. Geyer, P. E., Holdt, L. M., Teupser, D. & Mann, M. Revisiting biomarker discovery by plasma proteomics. 

Mol Syst Biol 13, 942 (2017). 

11. Anderson, N. L. The Clinical Plasma Proteome: A Survey of Clinical Assays for Proteins in Plasma and 

Serum. Clinical Chemistry 56, 177–185 (2010). 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.26.21254301doi: medRxiv preprint 

mailto:milieuinterieurdac@pasteur.fr
https://doi.org/10.1101/2021.03.26.21254301


12. Heutinck, K. M., ten Berge, I. J. M., Hack, C. E., Hamann, J. & Rowshani, A. T. Serine proteases of the 

human immune system in health and disease. Molecular Immunology 47, 1943–1955 (2010). 

13. Jia, L. et al. An Attempt to Understand Kidney’s Protein Handling Function by Comparing Plasma and 

Urine Proteomes. PLoS ONE 4, e5146 (2009). 

14. Amur, S., LaVange, L., Zineh, I., Buckman-Garner, S. & Woodcock, J. Biomarker Qualification: Toward a 

Multiple Stakeholder Framework for Biomarker Development, Regulatory Acceptance, and Utilization. 

Clin. Pharmacol. Ther. 98, 34–46 (2015). 

15. Leth-Larsen, R., Lund, R. R. & Ditzel, H. J. Plasma Membrane Proteomics and Its Application in Clinical 

Cancer Biomarker Discovery. Mol Cell Proteomics 9, 1369–1382 (2010). 

16. Enroth, S. et al. High throughput proteomics identifies a high-accuracy 11 plasma protein biomarker 

signature for ovarian cancer. Commun Biol 2, 221 (2019). 

17.  Rho, J. & Lampe, P. High-Throughput Analysis of Plasma Hybrid Markers for Early Detection of Cancers. 

Proteomes 2, 1–17 (2014). 

18. Wu, A. C. et al. Current Status and Future Opportunities in Lung Precision Medicine Research with a 

Focus on Biomarkers. An American Thoracic Society/National Heart, Lung, and Blood Institute Research 

Statement. Am J Respir Crit Care Med 198, e116–e136 (2018). 

19. Goudy, K. et al. Human IL2RA null mutation mediates immunodeficiency with lymphoproliferation and 

autoimmunity. Clinical Immunology 146, 248–261 (2013). 

20. Ojha, A., Ojha, U., Mohammed, R., Chandrashekar, A. & Ojha, H. Current perspective on the role of 

insulin and glucagon in the pathogenesis and treatment of type 2 diabetes mellitus. CPAA Volume 11, 

57–65 (2019). 

21. Sun, B. B. et al. Genomic atlas of the human plasma proteome. Nature 558, 73–79 (2018). 

22. Suhre, K. et al. Connecting genetic risk to disease end points through the human blood plasma 

proteome. Nat Commun 8, 14357 (2017). 

23. Alzheimer’s Disease Neuroimaging Initiative (ADNI) et al. Genetic studies of plasma analytes identify 

novel potential biomarkers for several complex traits. Sci Rep 6, 18092 (2016). 

24. Yao, C. et al. Genome‐wide mapping of plasma protein QTLs identifies putatively causal genes and 

pathways for cardiovascular disease. Nat Commun 9, 3268 (2018). 

25. Moriya, H. Quantitative nature of overexpression experiments. MBoC 26, 3932–3939 (2015). 

26. Piasecka, B. et al. Distinctive roles of age, sex, and genetics in shaping transcriptional variation of human 

immune responses to microbial challenges. Proc Natl Acad Sci USA 115, E488–E497 (2018). 

27. Astle, W. J. et al. The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common 

Complex Disease. Cell 167, 1415-1429.e19 (2016). 

28. Thomas, S. et al. The Milieu Intérieur study — An integrative approach for study of human immunological 

variance. Clinical Immunology 157, 277–293 (2015). 

29. Lehallier, B. et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat Med 

25, 1843–1850 (2019). 

30. Bjelosevic, S. et al. Quantitative Age-specific Variability of Plasma Proteins in Healthy Neonates, Children 

and Adults. Mol Cell Proteomics 16, 924–935 (2017). 

31. Enroth, S., Johansson, Å., Enroth, S. B. & Gyllensten, U. Strong effects of genetic and lifestyle factors on 

biomarker variation and use of personalized cutoffs. Nat Commun 5, 4684 (2014). 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.26.21254301doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.26.21254301


32. Zhong, W. et al. Whole-genome sequence association analysis of blood proteins in a longitudinal 

wellness cohort. Genome Med 12, 53 (2020). 

33. Doerstling, S., Hedberg, P., Öhrvik, J., Leppert, J. & Henriksen, E. Growth differentiation factor 15 in a 

community-based sample: age-dependent reference limits and prognostic impact. Upsala Journal of 

Medical Sciences 123, 86–93 (2018). 

34. Shi, H., Seeley, R. J. & Clegg, D. J. Sexual differences in the control of energy homeostasis. Frontiers in 

Neuroendocrinology 30, 396–404 (2009). 

35. Manicourt, D.-H., Fujimoto, N., Obata, K. & Thonar, E. J.-M. A. Serum levels of collagenase, stromelysin-

1, and timp-1. Arthritis & Rheumatism 37, 1774–1783 (1994). 

36. Svechnikov, K. & Söder, O. Ontogeny of gonadal sex steroids. Best Practice & Research Clinical 

Endocrinology & Metabolism 22, 95–106 (2008). 

37. Kontush, A. et al. Structure of HDL: Particle Subclasses and Molecular Components. in High Density 

Lipoproteins (eds. von Eckardstein, A. & Kardassis, D.) vol. 224 3–51 (Springer International Publishing, 

2015). 

38. Zewinger, S. et al. Apolipoprotein C3 induces inflammation and organ damage by alternative 

inflammasome activation. Nat Immunol 21, 30–41 (2020). 

39. Huttunen, R. & Syrjänen, J. Obesity and the risk and outcome of infection. Int J Obes 37, 333–340 

(2013). 

40. Falagas, M. E. & Kompoti, M. Obesity and infection. The Lancet Infectious Diseases 6, 438–446 (2006). 

41. de Vries, P. S. et al. Whole-genome sequencing study of serum peptide levels: the Atherosclerosis Risk 

in Communities study. Human Molecular Genetics 26, 3442–3450 (2017). 

42. Ruffieux, H. et al. A fully joint Bayesian quantitative trait locus mapping of human protein abundance in 

plasma. http://biorxiv.org/lookup/doi/10.1101/524405 (2019) doi:10.1101/524405. 

43.  Emilsson, V. et al. Co-regulatory networks of human serum proteins link genetics to disease. Science 

361, 769–773 (2018). 

44. Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, 

supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research 47, 

D607–D613 (2019). 

45. Shih, S.-J. et al. Duplicated Downstream Enhancers Control Expression of the Human Apolipoprotein E 

Gene in Macrophages and Adipose Tissue. Journal of Biological Chemistry 275, 31567–31572 (2000). 

46. LifeLines Cohort Study et al. Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-

expression QTLs. Nat Genet 50, 493–497 (2018). 

47. Gillies, C. E. et al. An eQTL Landscape of Kidney Tissue in Human Nephrotic Syndrome. The American 

Journal of Human Genetics 103, 232–244 (2018). 

48. Zheng, Z. et al. QTLbase: an integrative resource for quantitative trait loci across multiple human 

molecular phenotypes. Nucleic Acids Research 48, D983–D991 (2020). 

49.  Gass, J. et al. Progranulin regulates neuronal outgrowth independent of Sortilin. Mol Neurodegeneration 

7, 33 (2012). 

50. Prudencio, M. et al. Misregulation of human sortilin splicing leads to the generation of a nonfunctional 

progranulin receptor. Proceedings of the National Academy of Sciences 109, 21510–21515 (2012). 

51. Jian, J. et al. Progranulin directly binds to the CRD2 and CRD3 of TNFR extracellular domains. FEBS 

Letters 587, 3428–3436 (2013). 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.26.21254301doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.26.21254301


52. Rhost, S. et al. Sortilin inhibition limits secretion-induced progranulin-dependent breast cancer 

progression and cancer stem cell expansion. Breast Cancer Res 20, 137 (2018). 

53. Lee, W. C. et al. Targeted manipulation of the sortilin–progranulin axis rescues progranulin 

haploinsufficiency. Human Molecular Genetics 23, 1467–1478 (2014). 

54. The UK10K Consortium. The UK10K project identifies rare variants in health and disease. Nature 526, 

82–90 (2015). 

55. Khan, Z. et al. Primate Transcript and Protein Expression Levels Evolve Under Compensatory Selection 

Pressures. Science 342, 1100–1104 (2013). 

56. Popadin, K. Y. et al. Gene Age Predicts the Strength of Purifying Selection Acting on Gene Expression 

Variation in Humans. The American Journal of Human Genetics 95, 660–674 (2014). 

57. Josephs, E. B., Stinchcombe, J. R. & Wright, S. I. What can genome-wide association studies tell us 

about the evolutionary forces maintaining genetic variation for quantitative traits? New Phytol 214, 21–33 

(2017). 

58. Nichols, W. L. et al. von Willebrand disease (VWD): evidence-based diagnosis and management 

guidelines, the National Heart, Lung, and Blood Institute (NHLBI) Expert Panel report (USA). Haemophilia 

14, 171–232 (2008). 

59. Bonnefoy, A. et al. Thrombospondin-1 controls vascular platelet recruitment and thrombus adherence in 

mice by protecting (sub)endothelial VWF from cleavage by ADAMTS13. Blood 107, 955–964 (2006). 

60.  Patel, L. et al. Resistin is expressed in human macrophages and directly regulated by PPARγ activators. 

Biochemical and Biophysical Research Communications 300, 472–476 (2003). 

61. Buckley, A. R. Prolactin, a lymphocyte growth and survival factor. Lupus 10, 684–690 (2001). 

62. Montgomery, D. W. Prolactin production by immune cells. Lupus 10, 665–675 (2001). 

63. Katakura, T., Miyazaki, M., Kobayashi, M., Herndon, D. N. & Suzuki, F. CCL17 and IL-10 as Effectors 

That Enable Alternatively Activated Macrophages to Inhibit the Generation of Classically Activated 

Macrophages. J Immunol 172, 1407–1413 (2004). 

64. Achuthan, A. et al. Granulocyte macrophage colony-stimulating factor induces CCL17 production via 

IRF4 to mediate inflammation. Journal of Clinical Investigation 126, 3453–3466 (2016). 

65. Hosomi, S. et al. CEACAM1 on activated NK cells inhibits NKG2D-mediated cytolytic function and 

signaling: Innate immunity. Eur. J. Immunol. 43, 2473–2483 (2013). 

66. Sarantis, H. & Gray-Owen, S. D. Defining the Roles of Human Carcinoembryonic Antigen-Related 

Cellular Adhesion Molecules during Neutrophil Responses to Neisseria gonorrhoeae. Infect. Immun. 80, 

345–358 (2012). 

67. Kolla, V. et al. Carcinoembryonic cell adhesion molecule 6 in human lung: regulated expression of a 

multifunctional type II cell protein. American Journal of Physiology-Lung Cellular and Molecular 

Physiology 296, L1019–L1030 (2009). 

68. Fischer, A. & Rausell, A. What do primary immunodeficiencies tell us about the essentiality/redundancy of 

immune responses? Semin Immunol 36, 13–16 (2018). 

69. Casanova, J.-L. & Abel, L. Human genetics of infectious diseases: Unique insights into immunological 

redundancy. Semin Immunol 36, 1–12 (2018). 

70. Munthe-Fog, L. et al. Immunodeficiency Associated with FCN3 Mutation and Ficolin-3 Deficiency. N Engl 

J Med 360, 2637–2644 (2009). 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.26.21254301doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.26.21254301


71. Roth, T. L. et al. Reprogramming human T cell function and specificity with non-viral genome targeting. 

Nature 559, 405–409 (2018). 

72. Caudy, A. A., Reddy, S. T., Chatila, T., Atkinson, J. P. & Verbsky, J. W. CD25 deficiency causes an 

immune dysregulation, polyendocrinopathy, enteropathy, X-linked–like syndrome, and defective IL-10 

expression from CD4 lymphocytes. Journal of Allergy and Clinical Immunology 119, 482–487 (2007). 

73. Bezrodnik, L., Caldirola, M. S., Seminario, A. G., Moreira, I. & Gaillard, M. I. Follicular bronchiolitis as 

phenotype associated with CD25 deficiency: CD25 deficiency. Clin Exp Immunol 175, 227–234 (2014). 

74. Sharfe, N., Dadi, H. K., Shahar, M. & Roifman, C. M. Human immune disorder arising from mutation of 

the chain of the interleukin-2 receptor. Proceedings of the National Academy of Sciences 94, 3168–3171 

(1997). 

75. Qasim, A. N. & Reilly, M. P. Genetics of Atherosclerotic Cardiovascular Disease. in Emery and Rimoin’s 

Principles and Practice of Medical Genetics 1–37 (Elsevier, 2013). doi:10.1016/B978-0-12-383834-

6.00061-6. 

76. Suhre, K., McCarthy, M. I. & Schwenk, J. M. Genetics meets proteomics: perspectives for large 

population-based studies. Nat Rev Genet 22, 19–37 (2021). 

77. Acevedo, J. M., Hoermann, B., Schlimbach, T. & Teleman, A. A. Changes in global translation elongation 

or initiation rates shape the proteome via the Kozak sequence. Sci Rep 8, 4018 (2018). 

78. Hanson, G. & Coller, J. Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol 

Cell Biol 19, 20–30 (2018). 

79. Collart, M. A. & Weiss, B. Ribosome pausing, a dangerous necessity for co-translational events. Nucleic 

Acids Research 48, 1043–1055 (2020). 

80. Nedialkova, D. D. & Leidel, S. A. Optimization of Codon Translation Rates via tRNA Modifications 

Maintains Proteome Integrity. Cell 161, 1606–1618 (2015). 

81.  Nachtergaele, S. & He, C. The emerging biology of RNA post-transcriptional modifications. RNA Biology 

14, 156–163 (2017). 

82. Duffy, D. et al. The ABCs of viral hepatitis that define biomarker signatures of acute viral hepatitis: 

DUFFY ET AL. Hepatology 59, 1273–1282 (2014). 

83. Michalski, M. et al. H-ficolin (ficolin-3) concentrations and FCN3 gene polymorphism in neonates. 

Immunobiology 217, 730–737 (2012). 

84. Behar, D. M. et al. The genome-wide structure of the Jewish people. Nature 466, 238–242 (2010). 

85.  Michalski, M. et al. Ficolin-3 activity towards the opportunistic pathogen, Hafnia alvei. Immunobiology 

220, 117–123 (2015). 

86.  Zuber, V. & Strimmer, K. High-Dimensional Regression and Variable Selection Using CAR Scores. 

Statistical Applications in Genetics and Molecular Biology 10, (2011). 

87. Fischer, A. & Rausell, A. Primary immunodeficiencies suggest redundancy within the human immune 

system. Sci. Immunol. 1, eaah5861 (2016). 

88. Deschamps, M. et al. Genomic Signatures of Selective Pressures and Introgression from Archaic 

Hominins at Human Innate Immunity Genes. The American Journal of Human Genetics 98, 5–21 (2016). 

89. Rausell, A. et al. Common homozygosity for predicted loss-of-function variants reveals both redundant 

and advantageous effects of dispensable human genes. Proc Natl Acad Sci USA 117, 13626–13636 

(2020). 

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.26.21254301doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.26.21254301


90. Caron, B., Luo, Y. & Rausell, A. NCBoost classifies pathogenic non-coding variants in Mendelian 

diseases through supervised learning on purifying selection signals in humans. Genome Biol 20, 32 

(2019). 

91. Endo, Y., Matsushita, M. & Fujita, T. Role of ficolin in innate immunity and its molecular basis. 

Immunobiology 212, 371–379 (2007). 

92. Michalski, M. et al. Primary Ficolin-3 deficiency – Is it associated with increased susceptibility to 

infections? Immunobiology 220, 711–713 (2015). 

93. Schlapbach, L. J. et al. Congenital H-ficolin deficiency in premature infants with severe necrotising 

enterocolitis. Gut 60, 1438–1439 (2011). 

94. Hein, E. et al. Functional Analysis of Ficolin-3 Mediated Complement Activation. PLoS ONE 5, e15443 

(2010). 

95. Barkai, L. J. et al. Decreased Ficolin-3-mediated Complement Lectin Pathway Activation and Alternative 

Pathway Amplification During Bacterial Infections in Patients With Type 2 Diabetes Mellitus. Front. 

Immunol. 10, 509 (2019). 

96. Chen, L. et al. Genetic Drivers of Epigenetic and Transcriptional Variation in Human Immune Cells. Cell 

167, 1398-1414.e24 (2016). 

97. Patsopoulos, N. A., the Bayer Pharma MS Genetics Working Group, the Steering Committees of Studies 

Evaluating IFNβ-1b and a CCR1-Antagonist, ANZgene Consortium, GeneMSA, International Multiple 

Sclerosis Genetics Consortium & de Bakker, P. I. W. Genome-wide meta-analysis identifies novel multiple 

sclerosis susceptibility loci. Ann Neurol. 70, 897–912 (2011). 

98. Risk Alleles for Multiple Sclerosis Identified by a Genomewide Study. N Engl J Med 357, 851–862 (2007). 

99. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease 

susceptibility loci. Nat Genet 42, 1118–1125 (2010). 

100. Yamada, A., Arakaki, R., Saito, M., Kudo, Y. & Ishimaru, N. Dual Role of Fas/FasL-Mediated Signal in 

Peripheral Immune Tolerance. Front. Immunol. 8, (2017). 

101. Rieux-Laucat, F., Magérus-Chatinet, A. & Neven, B. The Autoimmune Lymphoproliferative Syndrome 

with Defective FAS or FAS-Ligand Functions. J Clin Immunol 38, 558–568 (2018). 

102. Magerus-Chatinet, A. et al. Onset of autoimmune lymphoproliferative syndrome (ALPS) in humans as a 

consequence of genetic defect accumulation. J. Clin. Invest. 121, 106–112 (2011). 

103. Kuehn, H. S. et al. FAS Haploinsufficiency Is a Common Disease Mechanism in the Human 

Autoimmune Lymphoproliferative Syndrome. J.I. 186, 6035–6043 (2011). 

104. Magerus-Chatinet, A. et al. FAS-L, IL-10, and double-negative CD4−CD8− TCR α/β+ T cells are reliable 

markers of autoimmune lymphoproliferative syndrome (ALPS) associated with FAS loss of function. Blood 

113, 3027–3030 (2009). 

105. Le Deist, F. et al. Clinical, immunological, and pathological consequences of Fas-deficient conditions. 

The Lancet 348, 719–723 (1996).  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.26.21254301doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.26.21254301


Figures 

Figure 1: Contribution of environmental and genetic factors to the variability of plasma protein levels. The 

variability explained by the associated genetic and non-genetic factors in the levels of 229 plasma protein levels, taken 

independently (A) or altogether (B). Each vertical bar represents the total variability of a protein, with the contribution of 

the considered (colored) or other and unknown (grey) factors summing up to 1. Age (blue), sex (brick-red), cis (light 

brown) and trans (dark brown) pQTLs correspond directly to the assessed relative importance, the cell fractions category 

(green) represents the cumulated relative importance of lymphocytes, leukocytes, neutrophils, eosinophils, basophils, 

monocytes and platelets, and the “Others” category (orange) represent the sum of the relative importance all other non-

represented variables. In A, the grey area represents 1 minus the sum of all non-considered and unknown factors. In B, 

the “Uncharacterized” category was computed as 1 minus the sum of all other variables or groups of variables. 

A 

B 
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Figure 2: Relative contribution of selected factors in the variability of plasma protein levels 

Relative contribution (CAR score86) of the 20 significantly associated factors to the variability of plasma protein levels. 

Variables are sorted depending on the number of significant associations with proteins. The number of proteins 

significantly associated with each variable is reported on the x axis. The diameter of each dot represents the median  

CAR score of the corresponding factor in the variation of the associated plasma proteins. 
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Figure 3: Plasma protein QTLs localization and co-regulation 

The genomic positions of the cis (blue) and trans (orange) pQTLs identified in this work (x axis) and the genomic location 

of the gene coding for the associated protein (y axis). The point size is proportional to the uncorrected association p-

value as reflected in the legend. 
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Figure 4: Replication of cis-pQTLs 

The percentage of replication of previously reported cis-regulated proteins between our analysis and  three previous 

studies: Sun et al.,  201821; Suhre et al., 201722 and Deming et al., 201623. For each dataset, the percentage of 

replication (y-axis) as a function of the significance threshold (x-axis) was computed as the number of cis-regulated 

proteins reported in this workthat were also reported in the corresponding dataset as cis-regulated (the “replicated” 

proteins) divided by the total number of proteins reported as cis-regulated in a previous study that were analyzed in our 

work (the “replicable” proteins). The dashed vertical lines represent the p-value significance threshold corresponding to 

the FDR of cis-pQTLs (red) and to the nominal replication threshold (orange). 

  

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted March 29, 2021. ; https://doi.org/10.1101/2021.03.26.21254301doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.26.21254301


Figure 5: Clinical relevance of pQTLs and associated genes 

Enrichment in GWAS hits (orange) of cis-pQTLs (A - left) and trans-pQTLs (B - left) in comparison with, respectively, 

10,000 randomly sampled set of cis-SNPs matched by MAF (bins of 5%) (A - right) and 10,000 randomly sampled set of 

trans-SNPs matched by MAF (bins of 5%) (B - right). Empirical resampling p-values are shown. 

   

A              B 
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Figure 6: Impact of the novel pQTLs identified on the expression of the 3 target primary immunodeficiency 

genes 

Expression levels of the two homozygous states and the heterozygous state of (A) Ficolin 3 x rs2504780, (B) 

Interleukine 2 receptor alpha x rs12722497 (left) and rs2104286 (right) and (C) Ficolin 3. Each dot corresponding to the 

non-transformed plasma levels of an individual. 
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Supplementary notes 

 

Supplementary note 1. Genome-wide analysis of plasma proteins excluding blood-cell fractions 

For the purpose of evaluating the contribution of blood-cell fractions in the pQTL assessment, the genome-

wise association analysis was performed as previously detailed, while removing the 7 blood-cell fractions 

from the model (Methods). This approach identified 115 protein quantitative trait loci (pQTLs) collectively 

involving 94 proteins and 113 SNPs (FDR<=0.05). Among them, 103 were defined as cis-pQTLs. In addition, 

12 pQTLs were identified in trans, i.e. located further than 1MB far from the  gene boundaries, or located on 

another chromosome. 73 proteins were associated with only one SNP, while 21 were associated with two 

independent SNPs. Among the 94 proteins with significant pQTLs, 83 proteins were associated exclusively 

with cis-pQTLs, 9 exclusively with trans-pQTLs and 2 with both cis and trans pQTLs. In comparison with the 

first analysis, 92 pQTLs were reproduced, 81 in cis and 11 in trans. An association was considered as 

reproduced when the SNP, or a SNP in linkage disequilibrium with R2 >= 0.8, was significantly associated 

with the same protein at FDR <= 0.05. 12 cis-pQTLs were no longer associating with the same SNPs or to 

SNPs in high LD (R2 >= 0.8) with it, but with other cis SNPs; and 8 pQTLs (7 cis, 1 trans) were not 

reproduced. On the opposite, 10 additional cis- and 1  trans- pQTLs were obtained. 

 

Supplementary Note 2. Primary immune deficiencies caused by genes for which a novel pQTL 

association was identified in our study: potential role of pQTL as modifier variants. 

 

Ficolin-3 autosomal recessive primary immuno deficiency (OMIM 613860) 

Ficolin 3 is secreted from by the liver and the lungs83, and, among other protein from the ficolin family, is 

responsible for the activation of the lectin pathway of the complement system91. A heterozygous frameshift 

mutation of FCN3, the gene coding for Ficolin-3, is found at a frequency of 1% in the healthy population, and 

leads to a 50% decrease in Ficolin-3 plasma levels, while homozygous state leads to complete Ficolin-3 

deficiency. Ficolin-3 deficiency is an autosomal recessive primary immunodeficiency (OMIM 613860) 

associated with bacterial infections83,85,92,93, and, as of today, only reported in males. It was shown that the 

activation of the Lectin pathway by Ficolin-3 was dose-dependent70,94, and that lower activation of the Ficolin-

3 lectin pathway was associated with post-infection mortality95. The common variant (AF = 10.7%) identified 

in this work, rs2504780 (1:27710876, T>A), is located 9.5kb upstream of FCN3, and associated with a 

diminution of Ficolin-3 levels (size effect = -3.79 μg/mL per alternative allele, Figure 6A) comparable with 

heterozygous FCN3 loss-of-function70. Interestingly, this effect was substantially higher in male than in 
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females (size effect = -4.42 and -3.05 μg/ml per alternative allele, respectively). This variant could be a risk 

factor for Ficolin-3 deficiency and might play a role in the observed etiology of both complete Ficolin-3 

deficiency or Ficolin-3 lectin pathway reduced activation in the response to infection, and also in the 

development of autoimmune diseases caused by a reduced clearance of apoptotic cells. Future analysis of 

auto-antibodies in our cohort may allow us to directly test this hypothesis. 

 

IL2RA deficiency and immunodeficiency 41 with lymphoproliferation and autoimmunity (OMIM 

606367) 

IL2RA is expressed at the surface of regulatory T cells (Tregs) and is a part of the Interleukin 2 receptor 

(CD25), which induce the growth and proliferation of Tregs. IL2RA expression follows a co-dominant pattern, 

where heterozygous missense or nonsense mutations found in healthy individuals lead to the expression of 

only half of IL2RA at the membrane of Tregs72. However, cases of homozygous or compound heterozygous 

missense and nonsense IL2RA variants were reported in immunodeficient patients, also affected by 

lymphoproliferation and autoimmunity (OMIM 606367)19,72–74. Carriers of such variants did not express CD25 

at the plasma membrane, which resulted in the failure of the patients’ Tregs to respond to IL2 stimulation. 

Family members with heterozygous mutations were healthy, although their Tregs only presented half the 

amount of cell surface CD25, as compared with homozygous wild-type individuals, and showed a decreased 

ability to control the proliferation of responder T cells71. We identified two independent cis-pQTLs associated 

to interleukin 2 receptor alpha (IL2RA) levels, i.e. rs12722497 (6:6095928; C>A, AF = 10%) and rs2104286 

(6:6099045; T>C, AF = 24%), both located in the first intron of IL2RA. rs12722497 associated with an 

increased expression of IL2RA (size effect = +699 pg/mL per alternative allele; Figure 6B left), contributing 

to 17.8% of the total observed variability of IL2RA plasma levels, and rs2104286 associated with a 

decreased expression of IL2RA (size effect = -200 pg/mL per alternative allele; Figure 6B right), further 

contributing to 7% of IL2RA variability. These variants might potentially alter the normal ability of regulatory T 

cells to control the proliferation of responder T cells, in a way similar to individuals carrying heterozygous 

IL2RA loss-of-function variants71. In addition, rs2104286 is in partial linkage disequilibrium (R² = 0.55) with 

rs12722489, a SNP previously reported as an eQTL and a pQTL for IL2RA21,96 and also as a susceptibility 

factor to multiple sclerosis97,98 and Crohn’s disease99. Interestingly, in our cohort, we previously reported 

rs12722497, but not rs2104286, as an eQTL after whole blood stimulation with whole microbes26. Whether 

healthy microbiome species act on the same genetic variant to impact plasma levels of the IL2RA protein will 

be an interesting area for future study. 
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FAS deficiency and Autoimmune Lymphoproliferative Syndrome (ALPS, OMIM 601859) 

FAS, a member of the tumor necrosis factor receptor superfamily, is expressed at the membrane of T cells 

and other immune cells. In normal conditions, the binding of FAS ligand (FASL) to FAS triggers apoptosis 

through the caspase cascade in a dose-dependent manner, preventing the accumulation of peripheral T 

cells in organs100. Heterozygous missense or nonsense variants in FAS extracellular domain result in the 

expression of only half of FAS receptors at the cellular membrane, reducing the sensitivity of T cells to FASL 

binding and allowing the proliferation and the accumulation of auto-reactive CD4- CD8- T cells in organs. 

Several patients affected by the autoimmune lymphoproliferative syndrome (ALPS, OMIM 601859), 

characterized by autoimmunity, multi-lineage cytopenia and lymphadenopathy, have been shown to carry 

such heterozygous FAS mutations, causing the observed symptoms. However, these haploinsufficient 

mutations are not fully penetrant, as healthy relatives of the patients were identified101–105, suggesting that 

epistatic factors could either prevent or promote the development of ALPS in heterozygous carriers. We 

identified a common variant, rs687621 (9:136137065, A>G, AF = 36%), contributing to 8.4% of FAS plasma 

protein level variability and associating with an increased expression of FAS (size effect = +2.79 ng/mL per 

alternative allele; Figure 6C). Our results raise the question of whether rs687621 could contribute to a 

protective role against ALPS by increasing the expression of the wild-type allele in heterozygous carriers and 

consequently increasing the sensitivity of peripheral T cells to FASL. However, the rs687621 polymorphism 

is located at the ABO locus, which is known to associate with the expression of many plasma 

proteins21,24,41,42. Such an association hotspot could be explained by the glycosyltransferase activity of ABO 

proteins75, which by transferring glycosyl residuals on target proteins may potentially alter its binding affinity 

of the associated antibody in immunoassays, thus constituting a technical artifact. In light of these potential 

caveats the biological relevance of the FAS-associated trans-pQTL identified should be taken with caution, 

prior to replication. 
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