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Abstract
Protein post-translational modifications (PTMs) are essential elements of cellular com-

munication. Their variations in abundance can affect cellular pathways, leading to cellular
disorders and diseases. A widely used method for revealing PTM-mediated regulatory net-
works is their label-free quantitation (LFQ) by high-resolution mass spectrometry. The raw
data resulting from such experiments are generally interpreted using specific software, such
as MaxQuant, MassChroQ or Proline for instance. They provide data matrices contain-
ing quantified intensities for each modified peptide identified. Statistical analyses are then
necessary (1) to ensure that the quantified data are of good enough quality and sufficiently
reproducible, (2) to highlight the modified peptides that are differentially abundant between
the biological conditions under study. The objective of this chapter is therefore to provide a
complete data analysis pipeline for analyzing the quantified intensities of modified peptides in
presence of two or more biological conditions using the R software. We illustrate our pipeline
starting from MaxQuant outputs dealing with the analysis of A549-ACE2 cells infected by
SARS-CoV-2 at different time stamps, freely available on PRIDE (PXD020019).

Key words Statistics, R, Data quality control, Clustering, Post-translational modifi-
cations, Label-free proteomics, Relative quantification

1 Introduction
Mass spectrometry (MS)-based proteomics allow the identification and quantification of a
large number of post-translational protein modifications [1] [2]. A general workflow consists
of (i) a proteolytic digestion of proteins into peptides, (ii) an enrichment step to increase the
concentration ofmodified peptides in the samples, and (iii) the analysis of the samples by liquid
chromatography-tandemmass spectrometry (LC-MS/MS) [3]. It is often used to study protein
phosphorylations [4][5], which is the most commonly studied post-translational modification.
This workflow can also be adapted to study other post-translational modifications such as
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ubiquitinations [6], methylations [7], acetylations [8], or several kind of modifications in
unified pipelines [9].
Label-free quantification enables large-scale analyzes and can be applied to experiments

composed of many samples and biological conditions, as it can be the case in the field of
clinical screening for instance. It allows avoiding drawbacks of labeling methods, whether
metabolic (SILAC) or chemical (iTRAQ), which are limited by the cost of labeling reagents,
some ineffective labeling, or the limited number of samples that can be analyzed. However,
label-free quantification requires careful experimental designs to achieve good reproducibility
of quantified values. Indeed, the enrichment step introduces additional variations to the ones
traditionally produced by the fluctuation of the liquid chromatography and the ionization
conditions inMS-based proteomics. This is the reasonwhy a special caremust be taken during
this step to carry it out as rigorously as possible in order to maximize the reproducibility of
experiments.
The MS/MS spectra obtained after the LC-MS/MS analysis have to be associated to

peptides. The identification of spectra is generally carried out by searching the measured
MS/MS spectra in a theoretical database, freely downloadable from UniProt website for
instance (https://www.uniprot.org/). The localization of a modification on a specific amino-
acid of the identified peptide is assessed using a score or a probability, depending on the
method applied. It is usually calculated by comparing the measured spectrumwith theoretical
spectra where themodification is placed on each possible amino acid of the considered peptide
[10]. Currently, this research is generally done thanks to specific software, such as MaxQuant
[11], MassChroQ [12] or Proline [13], but can also be performed from R (see Note 1).
Depending on the quantification method, either the MS spectra or the MS/MS spectra are
next used to quantify the abundance of each modified peptides identified. In the end, such
bioinformatics analyses result in data matrices composed of the intensities measured in each
of the samples for all the modified peptides identified.
It is common to identify and quantify several tens of thousands peptides in usual ex-

periments. To extract useful information from these large data sets, statistical analyzes of
quantified data matrices are required, to check the reproducibility of the analyses and to
determine the modified peptides of interest. The objective of this chapter is therefore to
provide a data analysis pipeline for analyzing the quantified intensities of modified peptides,
in presence of two or more biological conditions using the R software. This analysis pipeline
is provided with examples of R codes adapted to a case study. The informed reader can easily
change these codes to adapt them to his/her problematic and to what seems relevant to put
forward in his/her analysis. We start from outputs of the MaxQuant software [11], which is
one of the most popular software tool for this kind of analysis, but the proposed data analysis
pipeline can easily be applied to the outputs of various software, as long as they provide the
intensities of the modified peptides and the proteins they belong to.

2 Material
2.1 R and RStudio installation
R can be freely installed on most operating systems (Windows, Linux, Mac OS) from
https://cran.r-project.org/. The basic R installation includes the language itself as well as
packages, most of which are geared towards statistical analysis. One of the strengths of R
is the large number of packages that can be downloaded, mainly from the CRAN repository
(https://cran.r-project.org/) and, as far as bioinformatics is concerned, from Bioconductor
(http://bioconductor.org/). In addition to R, we recommend that the reader install RStudio
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(https://rstudio.com/products/rstudio/download/) which is a development environment to fa-
cilitate the development of R codes and packages. However, all the codes presented herein
can be executed from a basic R installation.
Throughout this chapter we assume that the reader has some prior knowledge of R, and

we give code examples without dealing with the basics of R, as for example the different types
of R objects. For more details on R and its programming language, the reader may refer to
the many courses available for free on the R and Bioconductor websites as well as many good
books on R and Bioconductor such as [14], [15], [16].

2.2 R packages
In addition to the functions provided in the standard version of R, we will use functions from
other R packages in the sample codes provided. These packages are the next: VennDiagram
[17], UpSetR [18], ggplot2 [19], grid, ggplotify, jaccard, ggdendro [20], ggridges
[21], limma [22], cp4p [23], ssize.fdr [24], imp4p [25], car [26], multivariance [27],
factoextra [28], cluster, reshape2 [29], ggpubr [30].
It is up to the reader to download these packages and to check that they are properly

installed on his/her machine.

2.3 Data type
Throughout this chapter we assume that the data are outputs from software used to identify
and quantify the abundance of modified peptides and their proteins, such as MaxQuant [11],
MassChroQ [12] or Proline [13]. The quantitative data should fit into two matrices: the first
contains quantified intensities for PTMs identified on peptides; the second contains quantified
intensities for the non-modified proteins to which the modified peptides of the first matrix are
associated (i.e. intensities deduced from non-modified peptides of associated proteins).
For instance, when using MaxQuant [11], the first dataset can be extracted from the

“Phospho (STY)Sites.txt” (phosphorylation) or “GlyGly (K)Sites.txt“ (ubiquitination), while
the second dataset is in the “proteinGroups.txt” file.
The first matrix thus makes it possible to determine the dynamics of the abundance of a

PTM between several biological conditions; while the second makes it possible to compare
this dynamic with that of the unmodified protein across multiple biological conditions. This
comparison is important to ensure that a difference in the abundance of a modified peptide is
actually due to the abundance of the modification and not to the dynamic of the associated
unmodified protein between compared conditions.

2.4 Case study dataset
To illustrate this protocol, we used a dataset that the reader can freely download from PRIDE
(PXD020019). On this server, the reader will find MaxQuant outputs as well as the raw data
from the mass spectrometers, such as he/she can reanalyze them using their own workflow
and software of interest. This dataset corresponds to the analysis of phosphorylated and ubiq-
uitinated peptides in A549-ACE2 cells infected by SARS-CoV-2 at different time stamps [31].
Hereafter, we will focus on the analysis of phosphorylated peptides, but the same analyses
can be performed from the ubiquitinated peptides. To reproduce the results presented along
this protocol, the careful reader has to download the MaxQuant outputs "proteinGroups.txt"
and "Phospho (STY)Sites.txt" from the PRIDE website.
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3 Methods
3.1 Data preprocessing steps
1. Importing data in R: First, the software outputs used to identify and quantify the proteins
as well as the peptides have to be saved into a format easily loadable in R. Generally,
this can be performed by saving the software outputs into a “txt” or “csv” file. Then,
these files can be imported in the R session into a data frame object (see Note 2). For
instance, using MaxQuant outputs, the read.csv function can be used for this purpose:
> data.prot=read.csv("(path_to_your_file)/proteinGroups.txt",
header=TRUE,sep="\t",quote="")
> data.ptm=read.csv("(path_to_your_file)/Phospho (STY)Sites.txt",
header=TRUE,sep="\t",quote="")

2. Filtering peptideswhich are associated to “Reverse” or “Potential contaminant” peptides:
In MaxQuant, “reverse” peptides are artefactual peptides whose amino acid sequence
corresponds to the one of peptides of the input database used for the identification,
yet in reverse order (see Note 3). Additionally, “Potential contaminant” peptides are
associated with proteins that commonly contaminate samples. Thus, these two kinds of
identified peptides can be deleted before subsequent analysis. They are indicated by “+”
in the reverse and potential contaminant columns:
> data.ptm=data.ptm[which((data.ptm$Reverse!="+")&
(data.ptm$Potential.contaminant!="+")),]

3. Filtering peptides which PTM location is not sufficiently well identified: In MaxQuant
outputs, the maximum localization probability that has been estimated in one of the
analyzed samples is in the “Localization.prob” column. In literature, it is common to
keep only the modified peptides for which this probability is greater than 75% (see Note
4):
> data.ptm=data.ptm[which(data.ptm$Localization.prob>0.75),]

4. Separating intensities from metadata: The metadata generally contains multiple infor-
mation, notably related to the identification of the modified peptides and the proteins
they belong to. To separate the quantified intensities from the metadata, columns con-
taining quantified intensities can be searched using the grep function, and the data can
be converted into a matrix object in R with the as.matrix function:
> int.prot=as.matrix(data.prot[,grep("Intensity.",
names(data.prot), value=TRUE)])

For the proteins, only the columns relative to the quantification of the unmodified proteins
can be kept using (see Note 5):
> int.prot=int.prot[,!colnames(int.prot)%in%grep("Phospho",
colnames(int.prot), value=TRUE)]
> int.prot=int.prot[,!colnames(int.prot)%in%grep("Ubi",
colnames(int.prot), value=TRUE)]

Similarly, the intensities of the modified peptides can be extracted using (see Note 6):
> int.ptm=as.matrix(data.ptm[,grep("Intensity.Phospho",
names(data.ptm), value=TRUE)])

5. Replacing 0 by NA: This step is useful to easily detect missing values in subsequent
analyses:
> int.prot[int.prot==0]=NA
> int.ptm[int.ptm==0]=NA
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6. Distinguishing between the different versions of a modified peptide: In MaxQuant
outputs, the quantified intensities derived from one two or three and higher PTMs are in
columns whose name ends with ___1, ___2, ___3. Thus three lines must be created for
each modified peptide of the file.
> int.ptm.mod=rbind(int.ptm[,grep("___1",colnames(int.ptm))],
int.ptm[,grep("___2",colnames(int.ptm))],
int.ptm[,grep("___3",colnames(int.ptm))])
> colnames(int.ptm.mod)=unlist(strsplit(colnames(int.ptm)[
grep("___1",colnames(int.ptm))],split ="___1"))

Each modified peptide is next characterized by its identification number, the proteins
to which it may belong (quantified in the “proteinGroups.txt” file) and the number of
PTMs used to quantify (“multiplicity” column):
> id.ptm=rep(data.ptm$id,3)
> id.pg=rep(data.ptm$Protein.group.IDs,3)
> multiplicity=c(rep("___1",nrow(int.ptm)),rep("___2",
nrow(int.ptm)),rep("___3",nrow(int.ptm)))

7. Removing modified peptide with no quantification values: The modified peptides asso-
ciated with no quantification value in any sample are useless for performing subsequent
statistical analysis (see Note 7):
#Compute the number of observed values on each row
> sum_notna=apply(int.ptm.mod,1,function(x)sum(!is.na(x)))

#Extract peptides with at least one observed value
#on each row
> int.ptm.mod=int.ptm.mod[which(sum_notna>0),]
> id.ptm=id.ptm[which(sum_notna>0)]
> id.pg=id.pg[which(sum_notna>0)]
> multiplicity=multiplicity[which(sum_notna>0)]

8. Renaming the columns of the dataset: It can generally be useful to rename the columns
with shorter names for further analyses, in particular to make them appear in graphics:
> short.name=unlist(strsplit(colnames(int.ptm.mod),
split="Intensity.Phospho_"))
> short.name=short.name[short.name!=""]
> colnames(int.ptm.mod)=short.name
> data.ptm.mod=data.frame(id.ptm,id.pg,multiplicity,
int.ptm.mod)

9. Defining vectors containing the design of experiments: The experimental design is
specific to each experiment. It is extremely important, especially for the subsequent
statistical analysis. The vectors containing the experimental design must correspond
to the columns containing the intensity values. It is advisable to do one for modified
peptides, another for proteins, and one containing both. In our case study, we have two
factors, the time (6h or 24h) and the biological conditions (mock or SARS-Cov-2 infected
samples), 3 replicated samples have been performed in each condition for studying the
modifications and 4 replicates have been used for the unmodified proteins. Experimental
design corresponding to the columns of int.ptm.mod is defined by:
#colnames(int.ptm.mod) can be used to check the column names
#of int.ptm.mod
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> Cond.ptm=factor(c(rep("mock",6),rep("SARS_COV_2",6)),levels=
c("mock","SARS_COV_2"))
> Time.ptm=factor(rep(c(rep("24h",3),rep("6h",3)),2),levels=
c("6h","24h"))
> CondTime.ptm=as.factor(paste(Cond.ptm,Time.ptm,sep="."))

Experimental design corresponding to the columns of int.prot is defined by:
> Cond.prot=factor(c(rep("mock",8),rep("SARS_COV_2",8)),

levels=c("mock","SARS_COV_2"))
> Time.prot=factor(rep(c(rep("24h",4), rep("6h",4)),2),levels=

c("6h","24h"))
> CondTime.prot=as.factor(paste(Cond.prot,Time.prot,sep="."))

Both experimental designs can be combined using:
> Cond.ptmprot=unlist(list(Cond.ptm,Cond.prot))
> Time.ptmprot=unlist(list(Time.ptm,Time.prot))

Additionally, a vector indicating whether the combined design is for the peptide or
protein will be useful in subsequent statistical analysis (see Subheading 3.9, Step 1):
#Comp.ptmprot is equal to 1 if the coordinate is related
#to the modified peptide and 0 otherwise
> Comp.ptmprot=c(rep(1,length(Cond.ptm)),
rep(0,length(Cond.prot)))

3.2 Checking the reproducibility of identifications
When the samples are highly reproducible, one can expect that the same modified peptides
will be identified in each of the samples. The intersections between the sets of modified
peptides identified in the samples can be visualized using Venn diagrams or UpSet graphs to
highlight any aberrant sample.
1. Creating a matrix containing the row number of an identified peptide if it is quantified:
> tr.int.ptm=int.ptm.mod;
> tr.int.ptm[tr.int.ptm>0]=1;
> vecto=as.matrix(1:nrow(tr.int.ptm));
> row.nb.id=apply(tr.int.ptm,2,function(x) x*vecto);

2. Calculating the size of each intersection between samples using the intersect function:
> peptid=row.nb.id[,grep("SARS_COV2_6h",colnames(row.nb.id))]
> nb.sample=ncol(peptid)
#n2 contains the sizes of intersections between 2 samples
> n2=matrix(0,nb.sample,nb.sample);
#n3 contains the sizes of intersections between 3 samples
> n3=array(0,dim=rep(nb.sample,3));
> for (i in 1:nb.sample){for (j in i:nb.sample){
inter=intersect(peptid[,i],peptid[,j]);
n2[i,j]=length(inter[inter!=0]);
for (k in j:nb.sample){
inter=intersect(peptid[,i],intersect(peptid[,j],peptid[,k]));
n3[i,j,k]=length(inter[inter!=0]);
}

}}
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3. Using the draw.triple.venn() function of R package VennDiagram to plot a Venn
diagram (see Note 8): The following code displays the numbers of modified peptides
found in common or specific of each SARS-Cov-2 samples at 6h (as illustrated in
Fig.1A):
> require(VennDiagram)

> venn.plot = draw.triple.venn(
area1=n2[1,1], area2=n2[2,2], area3=n2[3,3], n12=n2[1,2],
n13=n2[1,3], n23=n2[2,3], n123=n3[1,2,3],
category = colnames(peptid),
fill = c("dodgerblue", "goldenrod1", "seagreen3"),
cat.col = c("dodgerblue", "goldenrod4", "seagreen4"),
cat.cex = 1.5,cat.dist=0.1,
margin = 0.1,
cex = c(1.5,1.5,1.5,1.5,2,1.5,1.5), ind=TRUE);

4. Visualizing the intersections using UpSet graphs: Venn diagrams represent the sets of
identified peptides using circles or ellipses. However, the larger the number of samples,
the more difficult the Venn diagrams are readable. This is the reason why it may be
preferable to use UpSet graphs (see Fig.1B) when the number of samples becomes large
(i.e. superior to 5):
> require(UpSetR)

> data.upset=as.data.frame(tr.int.ptm)
> names(data.upset)=colnames(data.upset)
> data.upset[is.na(data.upset)]=0

> upset.plot = upset(data.upset, order.by = "freq",
number.angles=315, main.bar.color=4, nsets=ncol(data.upset),
sets.x.label="Nb", text.scale = c(1.5,1.5,1.5,1.5,1.5,1));

#To visualize
> upset.plot

5. {Optional step} Converting the plots into ggplot objects: It can be useful to convert the
obtained UpSet plot or the Venn diagram into ggplot objects (see Note 9). For this,
the grid and ggplotify R packages can be used:
> require(ggplot2)
> require(ggplotify)
> require(grid)

> grid.newpage();
> p = grobTree(venn.plot);
> venn.plot = as.ggplot(p);
> upset.plot = as.ggplot(upset.plot);

6. Clustering samples using Jaccard index-based distances: The reproducibility of the
identifications between two samples can be evaluated using Jaccard index. This index
can be computed using the jaccard() function of the R package jaccard:
> require(jaccard)

> mat.jaccard=matrix(NA,ncol(data.upset),ncol(data.upset))
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> for (i in 1:ncol(data.upset)){
for (j in 1:ncol(data.upset)){
mat.jaccard[i,j]=jaccard(data.upset[,i],data.upset[,j]);

}}
> colnames(mat.jaccard)=colnames(data.upset)
> rownames(mat.jaccard)=colnames(data.upset)

This matrix can be visualized using shades of blue (see Note 10). Additionally, a
distance matrix based on this index can be computed with the as.dist() function, and
a hierarchical clustering of samples can be performed with the hclust() function:
> hv = hclust(as.dist(1-mat.jaccard),method="ward.D2")

The clustering can be visualized with the ggdendrogram function of the R package
ggdendro:
> require(ggdendro)

> ggd = ggdendrogram(hv, rotate = TRUE, theme_dendro = FALSE)
> ggd = ggd + theme(axis.text.y = element_text(hjust = 1))
> ggd = ggd + xlab("Sample")
> ggd = ggd + ylab("Height")
> ggd = ggd + ggtitle("Ward’s method with a \n
Jaccard index-based distance")

Additionally, the same approach can be used to evaluate the replication of the non-
identifications between samples (see Note 11).

3.3 Checking the reproducibility of quantified values
When the samples are highly reproducible, one can expect the quantified values of a same
modified peptides to be similar across the biological replicates.
1. Log2-transforming the intensity values: Before analyzing quantified values, a log2
transformation is usually applied, in particular to decorrelate the intensity levels of
peptides from their variances (see [32] and its supplementary material):
> log2.int.ptm=log2(int.ptm.mod);

2. Plotting the distributions of observed values in all samples: The differences between the
distributions of the observed values can be used to see whether samples have globally
lower or higher quantified values than in the others (see Fig.1C). To check if the
distribution of quantified values are the same in different samples, it is important to
focus exclusively on modified peptides which are quantified in all samples you want to
compare (see Note 12).
#compute number of observed values on each row
> sum_notna=apply(log2.int.ptm,1,function(x){sum(!is.na(x));})

#keeping log2 intensities of modified peptides with no
#missing values
> log2.int.ptm.notNA=log2.int.ptm[sum_notna==ncol(log2.int.ptm),]

#formatting into a dataframe to use ggplot
> df=stack(data.frame(log2.int.ptm.notNA));
> colnames(df)=c("log2_intensities","Samples");
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#plotting using stat_density_ridges function
> require(ggridges)

> dis.obs = ggplot(df, aes(x=log2_intensities, y=Samples, fill=
stat(x)))
> dis.obs=dis.obs+stat_density_ridges(geom="density_ridges_gradient",
scale=3,size=0.3,rel_min_height = 0.01,quantile_lines=TRUE,
quantiles = 0.5, alpha = 0.7)
> dis.obs = dis.obs + scale_fill_viridis_c(name="log2(int.)",
option="C", direction=-1)
> dis.obs = dis.obs + labs(title = "Distribution of intensities
for phosphopeptides\n without missing values")

3. Clustering samples using the Pearson correlation matrix: A Pearson correlation matrix
using only complete pairs of observations between two samples to compute each Pearson
correlation coefficient can be obtained by using:
> mat.cor=cor(log2.int.ptm, use = "pairwise.complete.obs");

The correlation matrix can next be visualized using shades of blue using the qplot
function as in Fig.1D (see Note 13). Of note, Principal Component Analysis is strongly
related to this matrix (see Note 14) and can also be used to check the clustering of
samples by condition. Clustering methods can be applied from the obtained Pearson
correlation-based distance matrix to evaluate if the intensities measured in different
samples are close or not:
> hv = hclust(as.dist(1-mat.cor),method="ward.D2")

> require(ggdendro)
> ggd = ggdendrogram(hv, rotate = TRUE, theme_dendro = FALSE)
> ggd = ggd + theme(axis.text.y = element_text(hjust = 1))
> ggd = ggd + xlab("Sample")
> ggd = ggd + ylab("Height")
> ggd = ggd + ggtitle("Ward’s method with a \nPearson
correlation-based distance")

Such clustering can be useful for determining which biological conditions are similarly
distributed, and which are less so (see Fig.1E).

3.4 Is the number of replicates sufficient in each condition?
A sufficient number of samples to confidently trust the results of a statistical test can be
determined by seeking the minimum number of samples reaching a satisfactory statistical
power. The calculation of this statistical power depends on several factors. In case of a
classical t-test comparing the average intensities between two conditions, it depends on the
minimal average difference intensity between conditions that is expected to be detectable, the
variance of the intensities, the type 1 error (threshold on the p-values), and the number of
samples in each condition (sample size). That is why it is logical to conduct a power analysis
from a first MS-based experiment to assess how many samples are sufficient to obtain robust
statistical results in a subsequent analysis (see Note 15). This analysis can also be performed
after the final data have been acquired to evaluate what is the confidence in the results.
The R package ssize.fdr contains several functions that can be used to calculate

minimum sample sizes [24]. The purpose of each of these functions is to estimate an
average statistical power over all the tests carried out on all the peptides in function of the
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sample size. In case of more than two conditions, the functions ssize.F and ssize.Fvary
can be used by defining a level of false discovery rate, a user-specified proportion of non-
differentially abundant peptides, a design matrix and a standard deviation (or the parameters
of inverse gamma distribution followed by variances of peptides for ssize.Fvary). We
detailed hereafter how to use the latter one.
1. Creating a design matrix from the vectors defining the design of experiment: Additional
explanations on this matrix and the contrast matrix can be found in see Subheading 3.9,
Step 1 and see Subheading 3.9, Step 2.
> dat.design=data.frame(Cond.ptm,Time.ptm)
> design=model.matrix(~Cond.ptm+Time.ptm,data=dat.design)

2. Creating a contrast matrix specific to a statistical test from which average statistical
power will be computed:
#test if the second coefficient related to biological
#condition (mock or SARS-CoV-2) is null
# ct=cbind(c(0,1,0))
#test if the second coefficient related to biological
#condition (mock or SARS-CoV-2)) is null
#and the third coefficient related to the time is also null
> ct=cbind(c(0,1,-1),c(0,0,1))

3. Using limma [22] to estimate the model and determine prior variance and degrees of
freedom related to the test:
> require(limma)
> fit=eBayes(contrasts.fit(lmFit(log2.int.ptm.notNA,design),ct),
robust=TRUE)
> s02=fit$s2.prior;
> d0=mean(fit$df.prior);

4. Estimating the proportion of non-differentially abundant peptides: Histogram and cali-
bration plot of p-values [23][32] are displayed in Fig.2A-B.

> pval_ct=fit$F.p.value
#histogram of pvalues
> hist(pval_ct,50,main="Histogram of pvalues",col=4)

> require(cp4p)
#Calibration plot of pvalues to choose a method
> calibration.plot(pval_ct,"ALL")

#The proportion of non-differentially abundant peptides is
#estimated using the distribution of the p-values related
#to the contrasted test with default method ("pounds")
> prop=estim.pi0(pval_ct)

5. Using the ssize.Fvary function: Additional explanations can be found in [24].

#FDR level required
> fdr=0.01

#Minimum statistical power required
> pwr=0.75
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#Function computing the degrees of freedom related to the
#design of experiment: here we have 4 groups (two conditions
#at two time points) and two parameters estimated in the model
> df=function(n){4*n-2;}

#parameters of the inverse gamma distribution of the variances
> alph=d0/2
> beta=d0*s02/2

#eps represents values for the model parameters related to
#biological conditions and the time. Because we test the
#nullity of the parameters, more this value is close to 0
#and the harder it will be on the statistical test to know
#if the coefficients are indeed zero or not from data:
#the average statistical power will logically be lower.
> eps=0.1

> require(ssize.fdr)
> ftv=ssize.Fvary(X=design,beta=c(1,eps,-eps),L=ct,dn=df,a=alph,
b=beta,fdr=fdr,power=pwr,pi0= prop$pi0.est$pi0.Pounds,maxN=20)

Fig.2C-D represents the average statistical power in function of the sample size for different
values of eps. The closer it is to 0, and lower the statistical power will be.

3.5 Normalisation step
As explained in the introduction, the enrichment step induces a lower reproducibility among
the reported intensities. That is why a normalization step is of prime importance to correct
the variations of intensities. In literature, several methods have been proposed [34][35].
Several normalization methods can be used from the wrapper.normalizeD function of
the R package DAPAR [36] after creating an object of class MSnSet. A classical approach
consists to apply a median-centering function in the samples which are a replication of a same
biological condition.
1. Creating a median-centering function:
> median.norm=function(intensities,condition){
int.norm = intensities
lev=levels(condition)
medianes=rep(0,ncol(intensities))
for (i in 1:length(lev)){
#column of the condition
col_cond=which(condition == lev[i])
#nb missing values in the condition for proteins/peptides
nbna_cond=apply(intensities[,col_cond],1,
function(x){sum(is.na(x));})
#medianes from proteins/peptides without missing values
medianes[col_cond]=apply(intensities[which(nbna_cond==0),
col_cond],2,median,na.rm=T);
moy=mean(medianes[col_cond]);
for (j in col_cond){
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#computing differences between each median and
#the average median in each condition
int.norm[,j] = intensities[,j] - medianes[j] + moy

}}
return(int.norm)

}

2. Performing the normalization on intensities of modified peptides:
> log2.int.ptm.norm=median.norm(intensities=log2.int.ptm,
condition= CondTime.ptm)

3. Performing the normalization method on the protein intensities:
> log2.int.prot=log2(int.prot)
> log2.int.prot.norm= median.norm(intensities=log2.int.prot,
condition=CondTime.prot)

3.6 Dealing with missing values
In case ofmultiple biological conditions, modified peptides can have similar detection profiles:
they are detected, or not detected, under the same biological conditions. These detection
profilesmay be of greatest interest. Indeed, non-detection is generally synonymous either with
an absence of the modified peptide in the biological condition; or with its low abundance, as
missing values mainly result of the limit of detection of the mass spectrometer. The detection
profile of the modified peptide have to be compared with those of their belonging protein in
order to highlight over- or under-abundance of the modification relatively to the one of the
unmodified protein they belong to (see Note 16).
1. Creating a function returning detection profiles (1 if the modified peptide is detected
and 0 if not):
> detect.prof=function(mat,condition){
lev=levels(condition)
detect=matrix(0,nrow(mat),length(lev))
for (k in 1:nrow(mat)){

for (i in 1:length(lev)){
for (j in which(condition ==lev[i])){

if (!is.na(mat[k,j])){
detect[k,i]=1

}
}

}
}
colnames(detect)=levels(condition)
return(detect)
}

2. Computing detection profiles for modified peptides and their proteins:
> detect.ptm=detect.prof(log2.int.ptm.norm,CondTime.ptm)
> detect.prot=detect.prof(log2.int.prot.norm,CondTime.prot)

Missing values can be replaced within a same condition using imputation algorithms. If
no value have been measured along replications of a same experiment in a condition, then
either a value can be inferred assuming that there is a relationship to the values measured
in the other conditions, or no value can be inferred (see Note 17). Two main kinds of
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missing values arise in MS-based proteomics: either missing not at random (MNAR) values
or missing completely at random (MCAR) values [37]. The R package imp4p proposes a
multiple imputation strategy to deal with these two kinds of missing values and functions to
analyze missing value mechanisms [25].
3. Analyzing missing value mechanisms:
> require(imp4p)
> log2.int.ptm.impMCAR=impute.mle(log2.int.ptm.norm,
conditions=CondTime.ptm)
> resmod=estim.mix(tab=log2.int.ptm.norm,
tab.imp=log2.int.ptm.impMCAR,conditions= CondTime.ptm)
> resmod$pi.na
> resmod$pi.mcar

The proportion of missing values is almost 30% in each sample. The proportion of
MCAR values is estimated between 0 and 30% depending on the considered sample.

4. Imputing missing values of peptides using a multiple imputation strategy combining
MCAR and MNAR values with the impute.mi() function:
> log2.int.ptm.imp=impute.mi(tab = log2.int.ptm.norm,
conditions = CondTime.ptm)
> colnames(log2.int.ptm.imp)=colnames(log2.int.ptm)

5. Imputing missing values of proteins using a MCAR-devoted imputation algorithm:
> log2.int.prot.impMCAR=impute.mle(log2.int.prot.norm,
conditions=CondTime.prot)
> colnames(log2.int.prot.impMCAR)=colnames(log2.int.prot.norm)

3.7 Mapping the quantified values of the unmodified protein to the ones
of modified peptides.
After the steps of data pre-processing, normalization and imputation, it is useful to create a
dataset containing all the modified peptides retained on rows with their values by columns,
as well as the values of the potential proteins to which they belong for subsequent statistical
analysis. For each modified peptide, these intensities can be retrieved using the identifi-
cation numbers of their protein groups in MaxQuant: they are in the column "id" of the
"proteinGroups.txt" file.
The following R code creates a dataset containing all the information necessary for

subsequent analysis:
> int.ptm.prot=NULL;id.ptm.mod=NULL;
> id.pg.mod=NULL;multiplicity.mod=NULL;
> prof.ptm=NULL;prof.prot=NULL;id.prot.mod=NULL;
> for (i in 1:nrow(data.ptm.mod)){
id_prot=unlist(strsplit(data.ptm.mod$id.pg[i],split =";"))
for (j in 1:length(id_prot)){
id.ptm.mod=c(id.ptm.mod,data.ptm.mod$id.ptm[i])
id.prot.mod=c(id.prot.mod,id_prot[j])
id.pg.mod=c(id.pg.mod,data.ptm.mod$id.pg[i])
prof.ptm=rbind(prof.ptm,detect.ptm[i,])
multiplicity.mod=c(multiplicity.mod,

data.ptm.mod$multiplicity[i])
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if (length(data.prot$id%in%id_prot[j])!=0){
prof.prot=rbind(prof.prot,

detect.prot[which(data.prot$id%in%id_prot[j]),])
int.ptm.prot=rbind(int.ptm.prot,c(log2.int.ptm.imp[i,],
log2.int.prot.impMCAR[which(data.prot$id%in%id_prot[j]),]))
}else{
prof.prot=rbind(prof.prot,rep(NA,ncol(detect.prot)))
int.ptm.prot=rbind(int.ptm.prot,c(log2.int.ptm.imp[i,],

rep(NA,ncol(log2.int.prot.impMCAR))))
}

}}
> data.ptm.prot=data.frame(id.ptm.mod,id.pg.mod,id.prot.mod,
multiplicity.mod,prof.ptm,prof.prot,int.ptm.prot)

3.8 Extracting modified peptides with specific detection profiles rela-
tively to their unmodified protein.
Before analyzing the quantified intensities, specific detection profiles can be extracted to
highlight modified peptides that are detected while their unmodified protein is not quantified
for instance. For instance, this can be performed with the following steps for the “mock”
condition of our case study dataset:
1. Putting aside peptides with no quantified values in the considered condition:
> nb.mock.ptm=apply(prof.ptm[,grep("mock",colnames(prof.ptm))],
1,function(x){sum(x==1)})
> ind_noval=which(nb.mock.ptm==0)

2. Putting aside peptides with associated proteins having no quantified values in the con-
sidered condition:
> nb.mock.prot=apply(prof.prot[,grep("mock",colnames(prof.prot))],
1,function(x){sum(x==1)})
> ind_noprot=which(nb.mock.prot==0)

3. Putting aside peptides quantified at time stamps where their protein is not quantified:
#peptides quantified at time stamps where their protein is
#not quantified.
> ind=NULL
> for (i in 1:nrow(prof.ptm)){

if (length(which(
prof.ptm[i,grep("mock",colnames(prof.ptm))]==
prof.prot[i,grep("mock",colnames(prof.prot))]
))==0){
ind=c(ind,i)

}
}
> ind_diffprof=ind[!ind%in%c(which(nb.mock.prot==0),
which(nb.mock.ptm==0))]

4. {Optional steps} Exporting data in a txt file: Next, peptides of interest can be exported
outside R in "txt" files using the write.table function for instance. For peptides
quantified at time stamps where their protein is not quantified, they can be exported
using:
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> write.table(data.ptm.prot[ind_diffprof,],
"(path_to_your_file)/pept_wo_prot.txt",sep="\t",row.names=F)

3.9 Extracting modified peptides evolving significantly differently from
their unmodified protein.
A common strategy aims to focus on the evolution of the intensities of modified peptides at
different time stamps and under different biological conditions, notably to highlight PTM-
mediated pathways involved in diseases or cellular disorders. For example, this can happen
if one has samples related to patients belonging to different categories, and whose modified
proteomes are measured at different time stamps. In this framework, the measured intensity
of a modified peptide in a sample can be explained by three factors: the abundance of its
membership protein, the patient’s category and the time stamps.
When no value is missing in the dataset, the following linear model can easily be estimated

in each condition using R:

𝑦 𝑗 = 𝛼 + 𝛽1𝑐𝑜𝑚𝑝 ( 𝑗)=𝑝𝑒𝑝𝑡 +
∑︁

𝑡 ∈[𝑡1 ,. . . ,𝑡𝑛 ]
\𝑡1𝑡𝑖𝑚𝑒 ( 𝑗)=𝑡 + 𝛿𝑡1𝑡𝑖𝑚𝑒 ( 𝑗)=𝑡1𝑐𝑜𝑚𝑝 ( 𝑗)=𝑝𝑒𝑝𝑡 + 𝜖 𝑗 (1)

where 𝜖 𝑗 is a Gaussian white noise.
In this equation, 𝑌 = (𝑦 𝑗 ) 𝑗∈[1,𝐽 ] is a vector containing the intensities of both the modified

peptide and its unmodified protein, and the function 1𝑐𝑜𝑚𝑝 ( 𝑗)=𝑝𝑒𝑝𝑡 is equal to 1 if the 𝑗 𝑡ℎ

coordinate of the vector𝑌 is an intensity related to the modified peptide and 0 if it is related to
the protein. Similarly, the function 1𝑡𝑖𝑚𝑒 ( 𝑗)=𝑡 is equal to 1 if the 𝑗 𝑡ℎ coordinate of the vector
y is an intensity related to the time stamp t and 0 otherwise. Here, the measured intensity
𝑦 𝑗 is explained in function of four parameters: the intercept 𝛼 which represents the average
intensity level of the protein to which the peptide belongs at time 𝑡0; the 𝛽 parameter which
represents the gap between this average at 𝑡0 and the one of the intensities of the modified
peptide; the list of \𝑡 which are the effects of each other time point regardless of whether
the intensity is that of the peptide or the protein; and the list of 𝛿𝑡 that correspond to the
interaction effects between the peptide intensities and the time stamps.
Testing the nullity of a linear combination of the model coefficients allow to select

peptides of interest. For this, a design matrix (defining the linear model) and a constrast
matrix (defining the linear combination of model coefficients that have to be tested) has to be
specified in R.
1. Defining the design matrix: The model (1) can also be represented as a product between
a design matrix X, composed of ones and zeros, and a vector of parameters 𝐵 =

(𝛼, 𝛽, \1, . . . , \𝑇 , 𝛿1, . . . , 𝛿𝑇 )𝑇 , such as 𝑌 = 𝑋𝐵 + 𝜖 , where 𝜖 = (𝜖 𝑗 ) 𝑗∈[1,𝐽 ] . In R, the
design matrix can be defined by using the model.matrix function (see Note 18):
> design = model.matrix(~Comp.ptmprot*Time.ptmprot)

2. Defining the contrast matrix: This matrix (referred to as 𝐶) is used to test if a linear
combination of coefficients composing the estimated model is null. In this framework,
the null hypothesis of the test is defined by 𝐻0 : 𝐶𝑇 𝐵 = 0 and the alternative hypothesis
by 𝐻1 : 𝐶𝑇 𝐵 ≠ 0.
To test if the modified peptide has a dynamic similar to that of the protein over time,
we have to test that all the interaction parameters 𝛿𝑡 are equal to 0, i.e. 𝛿1 = 0 and
𝛿1 − 𝛿2 = 0, 𝛿2 − 𝛿3 = 0, etc. For instance, this contrast matrix will test 𝛿1 = 0 and
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𝛿1 − 𝛿2 = 0:

𝐶𝑇 𝐵 = 0 ⇐⇒
(
0 0 0 · · · 0 1 0 · · · 0 0
0 0 0 · · · 0 1 −1 · · · 0 0

)
©«

𝛼

𝛽

\1
...

\𝑇
𝛿1
...

𝛿𝑇

ª®®®®®®®®®®®®®¬
=

(
𝛿1

𝛿1 − 𝛿2

)
= 0

(2)
In our case study dataset of two time stamps, only one interaction parameter is in the
model defined by the design matrix. Using this model, the contrast matrix testing the
nullity of this parameter is defined by only one column:
> ct=cbind(c(0,0,0,1))

Alternatively, if it is desired to remove all the peptides which are constant over time, it
is advisable to test the nullity of all the coefficients in relation to time, i.e. the nullity of
the (\𝑡 ) and (𝛿𝑡 ) parameters. In our case study, the contrast matrix to be used is:
> ct=cbind(c(0,0,1,0),c(0,0,1,-1))

3. For the following steps, we consider a dataset without missing values in order to be able
to estimate linear models and perform statistical tests:
nbna=apply(int.ptm.prot,1,function(x)sum(is.na(x)))
data.ptm.prot=data.ptm.prot[which(nbna==0),]
int.ptm.prot=int.ptm.prot[which(nbna==0),]

4. a. Applying a classical Fisher’s F test: Once the design matrix and the contrast matrix
have been defined, a classical Fisher’s F test can be applied in a condition (here, "mock")
for all the modified peptides of our dataset using the linearHypothesis function of
the car R package [26]:
> require(car)
> condition="mock"
#condition="SARS_COV_2"
> p.value_ANOVA=rep(NA, nrow(int.ptm.prot))
> for (i in 1:nrow(int.ptm.prot)){
Int=int.ptm.prot[i,Cond.ptmprot==condition]
Comp=Comp.ptmprot[Cond.ptmprot==condition]
Time=Time.ptmprot[Cond.ptmprot==condition]
mod <- lm(Int ~ Comp * Time)
p.value_ANOVA[i]=linearHypothesis(mod,t(ct))$‘Pr(>F)‘[2]
}

b. Applying a Fisher’s F test using limma: The limma R package can alternatively be
used to test the nullity of the linear combination of coefficients with Fisher’s F test. It
uses a regularisation of the variances based on the assumption that they follow an inverse
Gamma distribution [22]:
> require(limma)
> design=model.matrix(~Comp.ptmprot[Cond.ptmprot==condition]
*Time.ptmprot[Cond.ptmprot== condition])
> fit=eBayes(contrasts.fit(lmFit(int.ptm.prot[,Cond.ptmprot==
condition], design),ct),robust=TRUE)
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> p.value_LIMMA=fit$F.p.value

5. Selecting peptides with a significantly different dynamic than their parent unmodified
protein with a chosen FDR threshold: For this, an adaptive FDR control procedure can
be applied to get adjusted pvalues using the cp4p R package [23]:
> require(cp4p)
> a=adjust.p(p.value_ANOVA,pi0.method = "pounds")
> a.pvalue_ANOVA=a$adjp$adjusted.p
> ptm.sel.mock=which(a.pvalue_ANOVA<0.01)

Here, a 1% FDR threshold has been used and the proportion of true null hypotheses
has been estimated using the method of Pounds and Cheng [33]. Likewise, modified
peptides which have a significantly different dynamic from their unmodified protein in
the SARS-CoV-2 condition can be recovered by using condition="SARS_COV_2" and
listing them in a vector ptm.sel.sarscov2 from previous step (see Subheading 3.9,
Step 4).

6. Extracting peptides of interest: Finally, a dataset containing all the modified peptides
evolving significantly differently than their unmodified proteins in at least one condition
can be extracted from ptm.sel.mock and ptm.sel.sarscov2 with:
> data.ptm.prot.sel=data.ptm.prot[unique(c(ptm.sel.mock,
ptm.sel.sarscov2)),]
> int.ptm.prot.sel=int.ptm.prot[unique(c(ptm.sel.mock,
ptm.sel.sarscov2)),]

They can next be exported outside R using the write.table function for instance (see
Subheading 3.8, Step 4).

3.10 Clustering of modified peptides using their dynamics relatively to
their unmodified protein.
When prior information is not available to perform groupings of peptides, unsupervised
clustering methods can be applied to highlight clusters of peptides behaving similarly for
subsequent biological interpetation.

In label-free proteomics, many physico-chemical properties can lead to higher or lower
intensity levels for different peptides with similar abundance in different conditions. Conse-
quently, the cluster analysis of peptides has to be performed without considering the global
intensity levels of the peptide, or the one of its protein, but rather their deviation from a
reference intensity level. With this purpose, the intensities of the modified peptide and of its
unmodified protein can be modeled by a linear model with interaction parameters using the
three factors that are time stamps, biological conditions, and the studied component (protein
or peptide):

𝑦 𝑗 = 𝛼 + 𝛽01𝑐𝑜𝑚𝑝 ( 𝑗)=𝑝𝑒𝑝𝑡

+∑𝑘∈[1,𝐾 ] 𝛽𝑘1𝑐𝑜𝑛𝑑 ( 𝑗)=𝑘 + 𝛾𝑘1𝑐𝑜𝑛𝑑 ( 𝑗)=𝑘1𝑐𝑜𝑚𝑝 ( 𝑗)=𝑝𝑒𝑝𝑡

+∑𝑡 ∈[𝑡1 ,𝑡𝑛 ] \𝑡1𝑡𝑖𝑚𝑒 ( 𝑗)=𝑡 + 𝜗𝑡1𝑡𝑖𝑚𝑒 ( 𝑗)=𝑡1𝑐𝑜𝑚𝑝 ( 𝑗)=𝑝𝑒𝑝𝑡

+∑𝑘∈[1,𝐾 ]
∑
𝑡 ∈[𝑡1 ,𝑡𝑛 ] 𝛿𝑡 𝑘1𝑡𝑖𝑚𝑒 ( 𝑗)=𝑡1𝑐𝑜𝑛𝑑 ( 𝑗)=𝑘 + 𝜑𝑡 𝑘1𝑡𝑖𝑚𝑒 ( 𝑗)=𝑡1𝑐𝑜𝑛𝑑 ( 𝑗)=𝑘1𝑐𝑜𝑚𝑝 ( 𝑗)=𝑝𝑒𝑝𝑡

+𝜖 𝑗 (3)
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where 𝜖 𝑗 is a Gaussian white noise.
Thus, the dynamics of the modified peptide compared to the one of its unmodified

protein is characterized by all the parameters multiplied by 1𝑐𝑜𝑚𝑝 ( 𝑗)=𝑝𝑒𝑝𝑡 , with the exception
of the 𝛽0 parameter which represents the overall difference between the intensity level of
the modified peptide and that of its unmodified protein. Therefore, the dynamic of the
modified peptide relative to that of its protein can be characterized by the parameter vector
(𝛾1, · · · , 𝛾𝐾 , 𝜗𝑡1 , · · · , 𝜗𝑡𝑛 , 𝜑𝑡11, · · · , 𝜑𝑡𝑛𝐾 )𝑇 , while the dynamic of its protein is characterized
by the parameter vector (𝛽1, · · · , 𝛽𝐾 , \𝑡1 , · · · , \𝑡𝑛 , 𝛿𝑡11, · · · , 𝛿𝑡𝑛𝐾 )𝑇 . A clustering of these
vectors can be performed to cluster peptides with similar dynamics.
1. Extracting model parameters using a classical approach:
> param=matrix(NA, nrow(int.ptm.prot.sel),6)
> for (i in 1:nrow(int.ptm.prot.sel)){
Int=int.ptm.prot.sel[i,]
mod <- lm(Int ~ Cond.ptmprot*Time.ptmprot*Comp.ptmprot)
param[i,]=mod$coefficients[unique(c(grep("Cond",
names(mod$coefficients)),
grep("Time",names(mod$coefficients))))]
}
> colnames(param)=names(mod$coefficients[unique(
c(grep("Cond",names(mod$coefficients)),
grep("Time",names(mod$coefficients))))])

#Extract coefficients only related to the dynamics of the
#modified peptides relatively to their protein
> param_pept=param[,grep(":Comp.ptmprot",colnames(param))]

2. Extracting model parameters using limma R package:
> require(limma)
> design=model.matrix(~Cond.ptmprot*Time.ptmprot*Comp.ptmprot)
> fit=eBayes(lmFit(int.ptm.prot.sel, design),robust=TRUE)
> param_LIMMA=fit$coefficients[,unique(c(grep("Cond",
names(mod$coefficients)), grep("Time",
names(mod$coefficients))))]

3. Choosing the clustering algorithm: Many unsupervised clustering algorithms proposed
in the literature could be applied on our dataset. We propose in the next to use the clas-
sical “hard” version of the k-means algorithm (see Note 19). This algorithm depends
on two main parameters that have to be shortlisted by the user: the distance measure and
the number of clusters.

4. Distance measure and dissimilarity matrix: Generally, Euclidean distances or Pearson
correlation-based distances between observed values are used (see Note 20). The Eu-
clidean distance aims to measure the absolute deviations between the vector coordinates,
while the Pearson correlation-based distance characterizes the linear evolution between
the vector coordinates. In our case, we search to cluster parameter vectors and no
dynamic is expected between these parameters. Thus, a classical Euclidean distance
seems to be an appropriate choice. Once the distance chosen, a dissimilarity matrix
can be computed. To this end, the multivariance R package [27] provides a function
fastdist allowing fast computation of Euclidean distance matrix, which is of definite
interest with respect to the data set size (several tens of thousands of peptides):
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> require(multivariance)
> diss.mat=fastdist(param)

5. Determining the optimal number of clusters: Many indices can be used to determine an
optimal number of clusters [38]. A classical method consists in using a Gap statistic
[39]. For this, the fviz_nbclust function of the R package factoextra can be used:
> require(factoextra)
> gap.stat=fviz_nbclust(param,diss = diss.mat, kmeans,
nstart = 25, method = "gap_stat", nboot = 10, k.max = 30)
> gap.stat=gap.stat+labs(subtitle = "Gap statistic method")
> gap.stat

Fig.3A-B display the Gap statistics in function of the number of clusters for param and
param_pept vectors see Subheading 3.10, Step 1.

6. Performing the clustering: The eclust function of factoextra R package can be
used for enhancing the workflow of clustering analyses and ggplot2-based elegant data
visualization.
#Using a k-means clustering with 20 clusters.
> res.km=eclust(param, hc_metric = "euclidean", "kmeans",
k=20, nstart = 10, graph=TRUE)

Alternatively, the k-medioids algorithm can be used using the pam R function from
cluster R package, while a visualization of this clustering using Principal Component
Analysis is obtained with the fviz_cluster function:
> require(cluster)
> res.pam=pam(x=diss.mat,k=20,diss=TRUE)
> res.pam$data=param
> fviz_cluster(res.pam,main = "K MEDIOIDS Clustering")

7. Visualization of results: There is two main ways to visualize cluster results. One way
is to use dimension reduction methods as Principal Component Analysis or Multidi-
mensional Scaling Methods. The graph=TRUE option of the eclust function or the
fviz_cluster function can be used with this purpose. A second way is to plot the
profiles of the model parameters used to cluster. The clusters associated to strong de-
viations from 0 of these parameters are synonym of profiles strongly discriminant, and
are thus of main interest. These clusters can be highlighted by computing the average
norms of parameter vectors.

a. Estimating the average norms of parameter vectors by cluster:
> dataplot=data.frame(param_pept,cluster=res.pam$clustering,
peptID=1:nrow(param))
#compute the norms of parameter vectors for param_pept
> normv=apply(param_pept,1,function(x)sqrt(sum(x^2)))
#average norm for each cluster
> mc=NULL
> for (i in 1:length(levels(as.factor(dataplot$cluster)))){

mc=c(mc,mean(normv[dataplot$cluster==i]))
}
> names(mc)=levels(as.factor(dataplot$cluster))
#rank clusters by their average norms
> mc=mc[order(-mc)]
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b. Displaying the two clusters with the highest average norms as in Fig.3E:
> require(reshape2) #for melt
> require(ggpubr) #for facet_grid

> nb_to_plot=2
> cl_to_plot=as.numeric(names(mc)[1:nb_to_plot])
> dataplot=dataplot[dataplot$cluster%in%cl_to_plot,]
> datap=melt(dataplot,id.var=c("cluster","peptID"))

> gg= ggplot(datap, aes(x = variable, y = value) )
> gg=gg+geom_boxplot(aes(fill = variable), alpha = 0.5)
> gg=gg+facet_grid(cluster~variable,scales="free_x")
> gg=gg+scale_x_discrete(labels = "")
> gg=gg+theme(legend.position = "none")
> gg

3.11 Subsequent functional analysis
1. Motif enrichment analysis: Motif analysis can be used to know the main sequence of
amino acids surrounding modification sites of interest. For instance, this kind of analysis
can be useful to find out which kinases are involved in phosphorylation. In R, motif
analysis can be done using the rmotifx R package [40] and the ggseqlogo R package
can be used to visualize the results [41] (see Note 21).

2. Enrichment analysis of Gene Ontology terms and Pathways: An analysis of the enrich-
ment of Gene Ontology terms or biological pathways referenced in databases such as
KEGG or Reactome is often carried out to highlight biological processes or specific
signaling pathways enriched in the lists of modified peptides of interest coming from
statistical analysis. Two important points have to be kept in mind when performing these
analyses in our framework:
i) This enrichment is generally carried out in relation to a “background” using hyperge-
ometric tests. In our context, it is very important to choose the set of modified proteins
identified by mass spectrometry as background. Indeed, the enrichment protocols can
display a bias in favor of enrichment for peptides with a single modification versus
peptides with several modifications, or towards enrichment for hydrophobic versus hy-
drophilic modified peptides. Such biases will not be taken into account if the whole
proteome or genome of the organism studied is used as background.
ii) Most enrichment tools are based on gene-centric databases. However, two modified
peptides of the same protein can sometimes evolve differently between two conditions,
for example if the abundance of one proteoform of the protein decreases while that of
another increases. In such a case, using the annotations of the reference protein without
taking the modification into account may lead to falsely highlighting certain biological
processes that are associated with a particular proteoform and not with another. Fortu-
nately, recent resources have been developed to take this aspect into account [42].

3. Visualizing networks of PTMomics data: This step can be insightful to find modified
proteins with known interactions. To do so, the reader can start from the statistical
analyzes carried out from R, export them and then use the Cytoscape software [43] to
visualize interaction networks. Two Cytoscape applications freely downloadable from
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the Cytoscape App Store are particularly interesting for visualizing PTMomics data:
stringApp [44] and Omics Visualizer [45]. stringApp is an application allowing to
query the protein-protein interaction database of STRING [46] from Cytoscape, while
Omics Visualizer allows to optimize the visualization of the obtained network. The
latter is particularly suitable for viewing information on each node of the network, for
instance the number of modified peptides regulated for each protein. Specific tutorials
are freely available online (https://jensenlab.org/training/).

Notes
1. A number of recently proposed packages allow one to consider pipelines of
analyzes performed entirely from R: for example, the rawR package can read RAW
files frommass spectrometers [47], while theBioconductor packages rTandem [48] or
MSGFplus [49] [50] can be used to perform identification of mass spectra from these
RAW files. Additionally, the RforProteomics package offer useful functionnalities
to manipulate and visualize mass spectra [51].
2. The first line of the input file has to contain the column names of the data table.
Decimal separator for quantitative values has to be the dot “.”. Other R functions,
such as read.xlsx() , from the R package openxlsx ; or read_excel() from the
R package readxl can also be used if the file is exported from Excel.
3. These peptides are used to calculate a false discovery rate linked to the identifi-
cation of peptides [52].
4. The higher the probability of localization, the more certain it is that the measured
spectrum is associated with the peptide containing the modification.
5. The "proteinGroups.txt" contains intensities for the proteins using either their
unmodified peptides or their modified peptides in different columns. In the case
study dataset, samples enriched in phosphorylation contain "Phospho", while the
ones enriched in ubiquitination contain "Ubi". However, these names can be different
with other datasets depending on how they have been defined in MaxQuant or in
the used software. Thus, the reader has to adapt these names in such cases. The
colnames function can be used to check these names.
6. Similarly to previous note, the names of enriched samples can be different with
other datasets depending on how they have been defined in MaxQuant or in the used
software: the reader has to adapt these names in such cases.
7. These peptides are generally present because they have been identified. However,
no quantified values are available because of the quantification algorithm used in
MaxQuant.
8. The same approach can be usedwith 2, 4 or 5 samples using thedraw.pairwise.venn
, draw.quad.venn and draw.quintuple.venn functions of the VennDiagram
package.
9. It is generally useful to convert a plot into a ggplot object, for example to easily
include it in a pdf or powerpoint document created automatically with R Markdown
or the officer R package.
10. This can be performed using the qplot function of R package ggplot2 with
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the following R code:
> require(reshape2)
> gradientRate=1.2;
> text=element_text(colour="black",size=8,face="bold");
> plot.j=qplot(x=Var1,y=Var2,data=melt(mat.jaccard),fill=value,
geom="tile")
> plot.j=plot.j+theme(axis.text=element_text(size=10),
axis.title=element_text(size=10,face="bold"),
axis.text.x=element_text(angle=90,vjust=1,hjust=1),legend.text=text)
> plot.j=plot.j+theme(legend.title=element_blank())
> plot.j=plot.j+labs(x="",y="")
> plot.j=plot.j+scale_fill_gradientn(colours=colorRampPalette(
c("white","lightblue","darkblue"))(101),values=c(pexp(seq(0,1,0.01),
rate=gradientRate),1),limits=c(0,1))
11. For this, the same approach has to be applied from vectors equal to 1 is the
modified peptide is not identified and 0 if it is identified. Of note, the Jaccard index
does not give the same value when evaluating mutual presence or mutual absence,
such that the result of this second approach will be different from the first. An
alternative to the Jaccard index consists to use the Rand index, this one will lead to a
single value measuring at the same time mutual presence and absence.
12. In this way, the differences observed between the various distributions will high-
light whether if the intensities measured in one sample are lower or higher than in
others, without confounding effects related to different sets of peptides used to plot
the distributions.
13. This can be performed similary as in Note 10, except that data=melt(mat.cor)
in theqplot function. Also, we advise to choosegradientRate=3.5 for correlation
matrix based on quantified values to seemore clearly clusters of samples in thematrix.
14. Because the Principal Component Analysis (PCA) is based on the eigendecom-
position of the covariancematrix, it will summarize the same information that appears
in the correlation matrix. The prcomp function can be used to perform PCA in R.
15. In general, it is necessary to carry out a first MS-based experiment with a
minimum number of replicates per biological condition (at least 3 to be able to
estimate the variance of intensities for each modified peptide in each condition). This
kind of test experiment is generally intended to check that the enrichment step has
worked correctly but can also be used to assess how many samples are sufficient to
obtain robust statistical results in a subsequent analysis.
16. In each condition, there are therefore two possibilities: either the modified
peptide is detected in one of the samples of the condition, or it is not. In the case of
𝑁 conditions, 2𝑁 − 1 detection profiles are possible. These detection profiles should
be compared with the ones associated with the corresponding proteins, which further
increases the number of possible cases. Hopefully, it can generally be expected that
many detection profiles will not be encountered in the experiment. It should be noted
that some cases lead to not being able to conclude on the over or under abundance
of the modified peptide compared to the unmodified protein. For example, if they
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are detected in the same condition and not in another, nothing can be concluded by
comparing these conditions.
17. For example, with conditions representing different time stamps, a value can be
deduced by applying methods developped for time series data [53]. In the case where
no value can be inferred in the condition from observed ones, then an analysis of the
detection profiles can be conducted to highlight interesting modified peptides.
18. Here, the "*" operator is used to specify that interaction parameters has to be
included in the model. If one does not want interactor parameters, one uses only the
"+" operator.
19. Either hierarchical clustering methods or partitional clustering methods (such as
the k-means algorithm) can be used [54]. Moreover, either hard clustering versions
of these methods, assigning a unique cluster for each peptide, or fuzzy clustering
versions, assigning probabilities of belonging to each cluster for each peptide could
be used [55]. The main advantage of hierarchical methods is that they does not need
to specify a number of clusters. Their results are generally represented in the form of
a dendrogram. However, in our context, it is preferable to cluster the peptides into a
finite number of clusters in order to facilitate the subsequent biological interpretation
of the results. Partitional clustering methods seem thus more appropriate. The most
famous one is the k-means algorithm. The fuzzy version of this algorithm has serious
limitations in high dimensional spaces, as it is generally the case in peptidomics
datasets [56].
20. However, alternative distances can also be investigated as, in case of time series,
Dynamic Time Warping distances [57] or Short time series distances [58].
21. Pre-alignment of the modified peptides around the detected sites of modification
has to be performed before to use these packages.
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Figure 1: Graphs to check the reproducibility of experiments. A: Venn diagram
checking the reproducibility of modified peptides identified in SARS-CoV-2 sam-
ples at 6h. B: UpSet graph checking the reproducibility of modified peptides
identified in all samples (3871 are found in common). C: Estimated distributions
of log2(intensities) of modified peptides found in all samples. This makes it possi-
ble to detect shifts in all the intensity values of one or more samples. D: Pearson
correlation matrix between all samples using shades of blue. Darker blues (higher
correlation values) should appear between replicates of the same condition. E:
Hierarchical clustering of samples from Pearson correlation values. Samples of a
same condition should cluster together, and not with the one of another condition if
the conditions proteomes are not close. If they are, clustering may have a hard time
distinguishing them, but they will appear close (with darker blue) in the correlation
matrix plotted in D.
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Figure 2: A: Histogram of pvalues related to the used test. B: Calibration plot to
choose a method to estimate the proportion of true null hypotheses. C: Average
power in function of the sample size with eps=0.1 and the proportion of true null
hypotheses estimated by the method of Pounds and Cheng [33]. D: Average
power in function of the sample size with eps=0.5 and the proportion of true null
hypotheses estimated by the method of Pounds and Cheng [33].

30



Figure 3: A: Gap statistic in function of the number of clusters for param vectors,
see Subheading 3.10, Step 1. B: Gap statistic in function of the number of clusters
for param_pept vectors, see Subheading 3.10, Step 1. C: Visualization using
PCA of 20 clusters of param vectors found with kmeans. D: Visualization using
PCA of 11 clusters of param_pept vectors found with kmeans. E: Profiles of
parameters for the clusters with the highest average norms for param_pept vectors.
Here, param_pept contains coefficients only related to the dynamics of the modified
peptides relatively to their protein. The cluster 1 is characterized by peptides with
positive coefficients for Time 24h and SARS-Cov-2 conditions, as well as negative
coefficients for their interaction.
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