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SUMMARY
How are distinct memories formed and used for behavior? To relate neuronal and behavioral discrimination
during memory formation, we use in vivo 2-photon Ca2+ imaging and whole-cell recordings from hippocam-
pal subregions in head-fixed mice performing a spatial virtual reality task. We find that subthreshold activity
as well as population codes of dentate gyrus neurons robustly discriminate across different spatial environ-
ments, whereas neuronal remapping in CA1 depends on the degree of difference between visual cues. More-
over, neuronal discrimination in CA1, but not in the dentate gyrus, reflects behavioral performance. Our re-
sults suggest that CA1 weights the decorrelated information from the dentate gyrus according to its
relevance, producing a map of memory representations that can be used by downstream circuits to guide
learning and behavior.
INTRODUCTION

To distinctly represent similar objects and events that have

different behavioral significance, the hippocampus is charged

with the fundamental task of transforming similar inputs into

well-separated neuronal memory representations. The input re-

gion of the hippocampus, the dentate gyrus, has been sug-

gested to implement this function by orthogonalizing cortical in-

puts through sparse firing activity and cellular expansion (Gilbert

et al., 2001; GoodSmith et al., 2017; Leutgeb et al., 2007;

McNaughton and Nadel, 1990; Neunuebel and Knierim, 2014;

O’Reilly and McClelland, 1994; Rolls and Treves, 1998; Treves

and Rolls, 1992). In contrast, the downstream circuits CA3 and

CA1 are thought to retrievememorized patterns from incomplete

or degraded input via attractor dynamics and to transfer these

memory representations to the neocortex, where they are pro-

cessed to drive behavior (Frankland and Bontempi, 2005; Guz-

man et al., 2016; Hasselmo et al., 1995;Marr, 1971;McNaughton

and Morris, 1987). However, it is unclear how and where the hip-

pocampus encodes distinct memories of similar objects and

events (Danielson et al., 2016a, 2017; van Dijk and Fenton,

2018; Gilbert et al., 2001; GoodSmith et al., 2017; Hainmueller

and Bartos, 2018; Leutgeb et al., 2007; Neunuebel and Knierim,

2014; Senzai and Buzsáki, 2017). In particular, little is known

about how these distinct representations are used for behavioral

decisions (Leal and Yassa, 2018).
Neuron 108, 1103–1112, Decemb
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RESULTS

To precisely control the degrees of difference between spatial

environments while accurately monitoring neuronal activity and

behavior, we performed in vivo 2-photon Ca2+ imaging from hip-

pocampal subregions of head-fixed mice executing a spatial

memory discrimination task in virtual reality (Schmidt-Hieber

and H€ausser, 2013; Figures 1 and S1). Mice were initially trained

to stop in a reward zone at the end of a linear virtual corridor

that contained several distinct objects and that was enclosed

by lateral walls covered with vertical grating patterns (Figure 1A).

After successful training (~7 sessions; Figures 1B and 1C;

reward rate, session 1 versus session 7, p < 0.001), mice were

introduced to a novel environment with oblique grating patterns

on the lateral walls but otherwise identical visual cues. To quan-

tify the mouse’s behavioral discrimination between the memo-

rized familiar (F) environment and the novel (N) one, we moved

the reward zone to the middle of the N corridor.

We focused our recordings on the input and output regions of

the hippocampus, the dentate gyrus and CA1 (Figures 1D–1J

and S1). We compared the firing properties of spatially modu-

lated cells in the two similar but distinct virtual environments.

Spatially modulated neurons in the dentate gyrus (20.5% [F]

and 20.9% [N] of all active cells in the respective environment)

differed significantly in their spatial firing patterns in the two en-

vironments, as quantified by low correlations between the
er 23, 2020 ª 2020 The Author(s). Published by Elsevier Inc. 1103
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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corresponding spatial activity maps (Figures 1H and 1I; spatial

correlations in FF versus FN, p < 0.05; see Table S1 for statistics

details of the linear mixed model; Figures S1A and S1B). In the

downstream region CA1, spatial population firing patterns were

similar across the two environments (Figures 1H and 1I; spatial

correlations in FF versus FN, p > 0.05; Figures S1C and S1D).

We then directly compared spatial decorrelation (i.e., the reduc-

tion in correlation; STARMethods) between the two regions. This

analysis revealed that decorrelation between F and N environ-

ments was significantly more pronounced in the dentate gyrus

than in CA1 (Figure 1J; decorrelation in the dentate gyrus [DG]

versus CA1, p < 0.01; Figure S1E). Thus, our data suggest that

small visual differences between environments are sufficient to

result in pronounced pattern separation in the DG, whereas

pattern completion in the downstream circuit CA1 leads to

similar spatial representations of familiar and novel

environments.

In addition to physical space, the hippocampus also encodes

non-spatial dimensions and experiences (Aronov et al., 2017;

Hampson et al., 1999; Lenck-Santini et al., 2005; Stefanini

et al., 2020; Tanaka et al., 2018; Wiener et al., 1989; Wood

et al., 1999). To assess neuronal coding beyond spatial decorre-

lation, we sought to analyze neuronal discrimination of the

different contexts (vertical versus oblique gratings) independent

of the spatial position of the animal (Figure 2). We first quantified

how selectively neurons, including all spatially modulated and

unmodulated cells, fired in the F or N environment (Figure 2A).

We defined ‘‘selectivity’’ as the normalized absolute difference

in event rates between the two environments (STAR Methods).

Our analysis revealed that population activity in the DG was

significantly more selective for the environment than in CA1 (Fig-

ure 2B; selectivity in the DG versus CA1, p < 0.001). The higher

selectivity in the DG was not only a consequence of its overall

lower activity levels because selectivity in the DG was higher

than in CA1 throughout the whole range of observed activity
Figure 1. Small Differences in Virtual Environments Lead to Larger Sp

(A) Left: views of the familiar (F; vertical grating) and novel (N; oblique grating) virtua

the track. Right: experimental timeline.

(B) Quantification of behavioral performance, measured as reward rate (hits p

represent performance of individual animals, whereas large circles indicate mean

F = 7.78, p = 1 3 10�6; DG: n = 7 mice; one-way RM ANOVA, F = 3.08, p = 0.01

(C) Comparison of behavioral performance during session 1 and session 7 for

0.15 ± 0.01; day 7, 0.60 ± 0.09; n = 7;Wilcoxon test, t = 28, p = 0.015) or CA1 (orang

animals: day 1, 0.23 ± 0.05; day 7, 0.68 ± 0.06; Wilcoxon test, t = 99, p = 0.0006

(D) Top: schematic of the imaging implant in the DG. Bottom: representative fluo

(E) Representative imaging session showing animal speed, position along the tr

rescence extracted from example regions of interest (ROIs) in the DG. Significan

(F and G) Same as in (D) and (E) but for CA1.

(H) Spatial population vector (PoV) correlation matrices. PoV correlations were co

environment (y axis). Note the absence of distinct high correlations in the DG (left

CA1, indicating that neuronal activities are correlated at corresponding positions

(I) Correlations between mean spatial activity maps across recording sessions wit

in the DG (left; spatial correlation: F even-odd, 0.62 ± 0.05; FN, 0.30 ± 0.03, n = 7 m

odd, 0.51 ± 0.03; FN, 0.48 ± 0.02, n = 7 mice; Wilcoxon test, t = 11, p = 0.61). Sym

represent recording sessions.

(J) Spatial decorrelation, quantified as the difference between spatial correlations

the DG and CA1. Circles indicate single recorded sessions from different animal

mixed model [LMM], p = 0.002). Same symbols as in (I).

*p < 0.05. **p < 0.01. ***p < 0.001. See also Figures S1A–S1F.
rates (Figure 2C). This observation was confirmed when cells

with near-perfect selectivity (absolute selectivity > 0.99) were

excluded from the analysis (Figure S1I), suggesting that the

higher selectivity in the DG is not only driven by cells that exclu-

sively fire in one or the other environment.

To quantify more rigorously how informative the population

activity is about the environment, we established a binary

decoder that uses activity rates to classify population activity

vectors into one of the two environments (Posani et al., 2017).

We found that the decoder was significantly more successful

at classifying DG than CA1 activity (Figure 2D; F-N decoder per-

formance [area under the receiver operating characteristic (ROC)

curve (AUC)] in the DG versus CA1, p < 0.05). To control for

possible contributions of the different reward locations, we ran

the same analysis only on data collected in the first part of the

track, before any reward is presented. This analysis yielded com-

parable performance values (Figure S1L; F-N decoder perfor-

mance [AUC] in the DG versus CA1, p < 0.05), indicating that

the reward location had little effect on the observed differential

neuronal discrimination. Thus, our results indicate that, indepen-

dent of positional information and reward location, activity in two

similar environments is more orthogonalized in the DG than

in CA1.

To further explore the role of spatial representations in

neuronal discrimination, we ran the analysis on the population

activity of spatially unmodulated cells only (STAR Methods).

Consistent with our results above, we found that selectivity

and decoding performance were significantly higher in the DG

than in CA1when only spatially unmodulated cells were included

in the analysis, with CA1 performance comparable with chance

levels (Figures S1G and S1J; AUC in the DG versus CA1, p <

0.01). When only spatially modulated cells were included in the

analysis, differences in selectivity and decoding performance

were less pronounced between the DG and CA1 (Figures S1H

and S1K). In conjunction with our previous results, this finding
atial Remapping in the DG Than in CA1

l reality environments. Center: schematic indicating the reward locations along

er lap), during the training sessions in the F virtual environment. Grey lines

± SEM across all animals (n = 14; one-way repeated-measures (RM) ANOVA,

5; CA1: n = 7 mice; one-way RM ANOVA, F = 5.27, p = 0.0005).

mice implanted in the dentate gyrus (DG, blue; reward rate [hits/lap]: day 1,

e; day 1, 0.30 ± 0.09; day 7, 0.77 ± 0.06; n = 7;Wilcoxon test, t = 26, p = 0.03; all

).

rescence image of GCaMP6f-expressing DG neurons in vivo.

ack, and context type for each lap (F or N). Traces at the bottom show fluo-

t transients during running periods are indicated by red tick marks.

mputed for each spatial bin in the N environment (x axis) with each bin in the F

) throughout the matrix. In contrast, correlations are high along the diagonal in

in F and N along the linear track.

hin the F environment (even-odd laps) and between different environments (FN)

ice; Wilcoxon test, t = 0, p = 0.018) and CA1 (right; spatial correlation: F even-

bols with error bars represent mean ± SEM of individual animals. Gray circles

within the F environment (even-odd) and between different environments (FN) in

s (spatial decorrelation: DG, 0.32 ± 0.06, n = 7; CA1, 0.03 ± 0.05, n = 7; linear

Neuron 108, 1103–1112, December 23, 2020 1105
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Figure 2. The DG Discriminates between Small Changes in Contextual Information

(A) Top: example session recorded from the DG, showing the position of the animal against time, the context type for each lap (F, vertical gratings in green; N,

oblique gratings in yellow), and fluorescence traces extracted from the 25 most active neurons (gray), with significant transients during running periods indicated

by red tick marks. For each fluorescence trace on the left, the corresponding event rate in the F (green) and N (yellow) environments is reported on the right.

Bottom: decoder outcome for the session shown above. Light and dark color shades refer to training and test data, respectively (same color code as above).

Black bars connected by blue areas represent the decoder outcome (difference in log likelihood of the two environments; F, positive; N, negative). Bottom right:

summary of decoder outcome for the test data of the example session. Data points represent time bins.

(B) Absolute selectivity (STARMethods) for the two environments F and N in DG (blue) and CA1 (orange) (DG, 0.74 ± 0.02; n = 7mice; CA1, 0.59 ± 0.05; n = 6mice;

LMM, p = 0.0007). Symbols with error bars represent mean ± SEM of individual animals. Gray circles represent recording sessions.

(C) Left: absolute selectivity for DG and CA1 neurons plotted against their firing rate. Right: cumulative histogram; each neuron was scored depending on its

selectivity for the F (positive) or N (negative) environment (DG, n = 4,667 active cells; CA1, n = 10,587 active cells).

(D) Left: example quantification of decoder performance (receiver operating characteristic [ROC]). Blue trace, DG session; orange trace, CA1 session. Right:

comparison of decoder performance, quantified as area under the ROC curve (AUC), between the DG and CA1 (DG, 0.65 ± 0.04, n = 7mice; CA1, 0.56 ± 0.02, n =

6 mice; LMM, p = 0.04; chance level, 0.5). Same symbols as in (B).

*p < 0.05, ***p < 0.001. See also Figures S1G–S1L.
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is consistent with the notion that CA1 performs ‘‘rate remapping’’

(Leutgeb et al., 2005) in the subpopulation of spatially modulated

cells, which only change their firing rates but not their firing loca-

tions. Consequently, spatial correlations in CA1 are relatively

high, but the environments can still be decoded from spatially

modulated cells because of the change in their firing rates. In

contrast, the DG performs ‘‘global remapping;’’ i.e., independent
1106 Neuron 108, 1103–1112, December 23, 2020
populations of spatially modulated and unmodulated neurons

are active in the two environments, consistent with the definition

of neuronal pattern separation (GoodSmith et al., 2017; Lee

et al., 2020).

Because previous work has shown that spatial coding in CA1

is affected by goals, task relevance, and engagement (Danielson

et al., 2016b; Dupret et al., 2010; Markus et al., 1995; Sarel et al.,
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2017), we next examined how decorrelation in the DG and CA1

relates to behavioral discrimination of small and large environ-

mental differences (Figure 3). Addressing this question required

us to explore a large range of degrees of neuronal discrimination

in the DG and CA1. However, because the similar environments

F and N we had used so far had failed to elicit substantial decor-

relation in CA1 (Figures 1 and 2), we designed another N environ-

ment (N*) that differed substantially from the F onewith the aim of

increasing neuronal discrimination in CA1 (Figures 3A and 3B).

To assess behavioral discrimination, the reward zone was

placed at the center of N*. Animals showed higher performance

in discriminating between F and N* than between F and N (Fig-

ure 3C; reward rate, N versus N*, p < 0.05; Figures S2E–S2G).

This increase in behavioral performance was accompanied by

larger neuronal discrimination in CA1 but not in the DG (Figures

3D–3G; spatial decorrelation in DG: FN versus FN*, p > 0.05; in

CA1: FN versus FN*, p < 0.001; Figures S2A–S2D). These data

indicate that neuronal discrimination in CA1, but not in the DG,

reflects behavioral discrimination between the two environ-

ments. Further supporting this notion, we found that in CA1,

but not in the DG, behavioral and neuronal discrimination were

positively correlated (Figure 3H; reward rate versus spatial de-

correlation in DG, p > 0.05; in CA1, p < 0.05; Figure 3I; reward

rate versus decoding AUC in DG, p > 0.05; in CA1, p < 0.05; Fig-

ures S2H–S2K). Our data suggest that neuronal discrimination in

the DG can occur below the animal’s threshold for behaviorally

relevant changes in the environment, whereas representations

in CA1 reflect the behavioral decision of the animal.

How is the sparse and selective fraction of DG neurons synap-

tically recruited from the total population? Inputs that are specific

to an environment could be selectively routed to the active pop-

ulation, sparing the silent neurons. In such a scenario, selectivity

would be largely governed by the connectivity between the ento-

rhinal cortex and the DG. Alternatively, all neurons may receive

similarly specific inputs, but only some of them are sufficiently

depolarized to fire action potentials. These firing neurons would
Figure 3. Neuronal Discrimination in CA1, but Not in the DG, Reflects B

(A) Views of the virtual environment pairs (similar pair, F versus N; distinct pair, F

(B) Representative recording sessions in the F-N (top) and F-N* (bottom) environm

tick marks indicate animal licks. Green rectangles indicate the correct licking choi

(i.e., the animal licking in the wrong reward zone) for the F and N (N or N*) laps.

(C) Quantification of behavioral performance in the N (N and N*) environments, m

DG-implanted animals, orange lines refer to single sessions of CA1-implanted a

0.37 ± 0.04; n = 42 sessions; Wilcoxon test, t = 204, p = 0.02).

(D) PoV correlations between all pairs of positions in the two tracks FN (left) or FN*

panel shows the same data as Figure 1H, left panel, but with a different color ma

(E) Left: paired spatial decorrelation between different environments (FN and FN*) i

p = 0.49). Right: spatial decorrelation, quantified as the difference between spatial

(FN, 0.32 ± 0.06, n = 7; FN*, 0.29 ± 0.04, n = 3 mice; LMM, p = 0.99). FN decorrela

error bars represent mean ± SEM of individual animals. Gray circles represent re

(F) Same as (D) but for CA1-implanted animals. The left panel shows the same d

(G) Same analysis and same symbols as in (E) but for CA1-implanted anima

t = 1, p = 2 3 10�5); right: FN, 0.03 ± 0.05, n = 7 mice; FN*, 0.18 ± 0.05, n =

the same data as Figure 1J, right.

(H) Correlation between behavioral performance (reward rate) and spatial decorr

p = 0.75) and CA1 (right: n = 7 mice and 69 sessions; Pearson’s r = 0.43; LMM,

(I) Correlation between behavioral performance (reward rate) and decoder perfor

LMM, p = 0.95) and in CA1 (right: n = 7 mice and 61 sessions, Pearson’s r = 0.25

ns, not statistically significant. *p < 0.05, **p < 0.01, ***p < 0.001. See also Figure

1108 Neuron 108, 1103–1112, December 23, 2020
then silence the others in a ‘‘winner takes all’’ fashion; for

example, by lateral inhibition. To distinguish between these pos-

sibilities, we obtained whole-cell patch-clamp recordings from

DG granule cells during a virtual discrimination task between

an F and an N environment (Figures 4A, 4B, and S4). To compare

the selectivity of whole-cell-recorded silent neurons with the

selectivity of active neurons we had recorded by imaging, we in-

ferred the expected firing profile of silent neurons by applying a

range of thresholds to the membrane potential (Vm) trace and

imposing a minimal interspike interval (Figure 4C; STAR

Methods). We then computed the selectivity for one or the other

environment using these putative spikes in the same way as for

the imaging data. We observed that cells showed substantial

selectivity for the F or N environment (Figure 4D). This selectivity

was significantly larger than the one expected from shuffled (S)

data from the same recordings (Figure 4E; mean absolute selec-

tivity, FN versus S, p < 0.05). Thus, our results are consistent with

recent work indicating that silent granule cells receive spatially

tuned input (Zhang et al., 2020) and support a scenario where

active and silent neurons similarly receive specific information

about the environment, but the small fraction of firing neurons

then silences the others.

DISCUSSION

In summary, our data reveal that the DG produces highly orthog-

onalized output by activating sparse non-overlapping subpopu-

lations of neurons in response to small or large changes between

environments. This high selectivity is observed in the population

firing patterns of active cells as well as in the subthreshold mem-

brane potential dynamics of silent neurons, consistent with a

scenario where pattern separation is implemented by expansion

coding in concert with inhibition (Cayco-Gajic and Silver, 2019;

Espinoza et al., 2018; Guzman et al., 2019; Marr, 1969;

McNaughton and Nadel, 1990; Rolls and Treves, 1998). Such a

model does not require any specifically targeted connectivity
ehavioral Discrimination

versus N*).

ents. Blue traces represent the position of the animal along the track, and black

ce in the F and N (N or N*) laps, whereas red ones indicate the incorrect choice

easured as reward rate (STAR Methods). Blue lines refer to single sessions of

nimals, and circles with error bars represent mean ± SEM (N, 0.28 ± 0.03; N*,

(right) across all imaging recording sessions in DG-implanted animals. The left

p scale.

n the DG (FN, 0.33 ± 0.07; FN*, 0.37 ± 0.06; n = 8 sessions;Wilcoxon test, t = 13,

correlations within the same and different environments (FN and FN*), in the DG

tion in the right panel represents the same data as Figure 1J, left. Symbols with

cording sessions.

ata as Figure 1H, right panel, but with a different color map scale.

ls (left: FN, 0.12 ± 0.02; FN*, 0.26 ± 0.02; n = 19 sessions, Wilcoxon test,

6 mice; LMM, p = 0.0004). FN decorrelation in the right panel represents

elation in the DG (left: n = 7 mice and 70 sessions; Pearson’s r = –0.03; LMM,

p = 0.0002).

mance in the DG (AUC; left: n = 7 mice and 41 sessions, Pearson’s r = –0.01;

; LMM, p = 0.04).

S2.
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Figure 4. Subthreshold Contextual Selectivity in DG Granule Cells

(A) Example recording. Left: sub- and suprathreshold membrane potential responses to current injections in a DG granule cell. Right: fluorescence image of a

biocytin-filled granule cell. GCL, granule cell layer.

(B) Example recording from a ‘‘silent’’ neuron in F and N virtual environments. Traces show animal speed (top), position along the virtual corridor (center), and Vm

(bottom).

(C) The same recording at higher magnification, as indicated by the gray bar at the bottom in (B). Membrane potential was thresholded (see bottom trace,

threshold q). The resulting predicted spikes are shown as a raster plot (red tick marks) in the middle.

(D) Selectivity for an environment was computed from the predicted spikes (STARMethods) and plotted against the threshold q. Selectivity was computed for 100

values of q spanning a range of 2 standard deviations around themean Vmof the recording. Examples show a recording with higher selectivity for the N than for the

F environment (left), a recording with higher selectivity for the F environment (center), and a bootstrapped recording showing lack of clear selectivity for any two

groups of S laps (A versus B, right).

(E) Bar graph summarizing mean absolute selectivity ± SEM across cells recorded with environment alternation (FN) versus bootstrap (S) (FN, 0.073 ± 0.012; S,

0.035 ± 0.004; n = 7 cells, Wilcoxon test, t = 0, p = 0.018).

*p < 0.05. See also Figure S4.

ll
OPEN ACCESSReport
from the entorhinal cortex because sub- and suprathreshold

selectivity can emerge from random feedforward connectivity

between an input population to an expanded layer (Marr,

1969), with feedforward or lateral inhibition ensuring that only a

sparse population is firing. In addition, excitatory interneurons

in the DG, the mossy cells, may contribute to pattern separation

by controlling the level of activity in granule cells (Danielson et al.,

2017;Myers and Scharfman, 2009), and their dense firing activity
has been shown recently to display robust remapping across en-

vironments (Danielson et al., 2017; GoodSmith et al., 2017; Sen-

zai and Buzsáki, 2017), which may provide an additional pattern

separation signal (Lee et al., 2020). In contrast to the feedforward

circuitry of the DG, recurrent connectivity between CA3 principal

neurons enables them to perform a ‘‘pattern completion’’ opera-

tion, where representations fall into one of several ‘‘attractor’’

states that are robust to degraded or incomplete input
Neuron 108, 1103–1112, December 23, 2020 1109
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information (Guzman et al., 2016; Marr, 1971; McNaughton and

Morris, 1987). Thus, representations in CA3 abruptly switch from

pattern completion to separation when differences exceed a

threshold (Alme et al., 2014; Leutgeb et al., 2004; Neunuebel

and Knierim, 2014). Although this switch between pattern

completion and separation may be less pronounced in CA1

(Leutgeb et al., 2004), attractor properties can still explain why

population activity in CA1 sharply remaps from one representa-

tion to the other when the differences between environments are

sufficiently large (Wills et al., 2005), whereas the DG feedforward

circuit produces a more constant decorrelation throughout a

range of differences between environments, as observed in our

experiments.

How can we reconcile the notions that the DG performs con-

stant decorrelation, whereas the downstream circuits appear to

remap independently? During exploration of the novel environ-

ment, the robustly decorrelated inputs from the DG are pushing

downstream circuits toward forming a new representation,

whereas their attractor dynamics counteract this process by

stabilizing the familiar map (Knierim and Neunuebel, 2016).

Additional inputs, such as information about the saliency and

unexpectedness of the novel environment, are required to

switch from recalling a familiar memory to formation of a new

representation in CA3 and CA1. Several candidate input

streams may contribute to this switch, such as cholinergic in-

puts from the medial septum, which are thought to provide a

signal indicating novelty and attention to several hippocampal

subregions (Hasselmo, 2006). Direct inputs from the entorhinal

cortex to CA3 may act as a cue for recall, with recent modeling

work suggesting that nonlinear interactions between entorhi-

nal, dentate, and neuromodulatory inputs are essential for re-

calling large numbers of memories with low interference (Kai-

fosh and Losonczy, 2016).

Our data suggest that the levels of saliency and behavioral

relevance decide whether the decorrelated information from

the DG can shift CA3 and CA1 cell assemblies toward a

new attractor state. We observe that the DG population activ-

ity distinguishes between familiar and novel environments

even when the animal performs poorly in the discrimination

task. This apparent lack of relation between behavioral and

neuronal discrimination in the DG can be explained by our

observation that the DG produces highly decorrelated repre-

sentations throughout a range of small and large changes in

the environment. In contrast, we find a close relationship be-

tween behavioral and neural discrimination in CA1, suggesting

that the degree of separation in downstream hippocampal

populations is related to the ability of the animal to behave

differently in the two settings. Although further experiments

are needed to establish a definite causality between hippo-

campal remapping and task performance, our data are

compatible with a scenario where behavioral relevance and

saliency trigger formation of new representations in CA3/1, in-

structed by the highly decorrelated information from the DG,

that are then critical for ensuing behavioral decisions (Fig-

ure S4C). How neuronal and behavioral discrimination in the

DG and downstream circuits evolve as the animal familiarizes

itself with the novel stimuli remains to be explored. Recent

work suggests that experience shapes remapping in CA1 (Plitt
1110 Neuron 108, 1103–1112, December 23, 2020
and Giocomo, 2019), whereas classification of learned olfac-

tory stimuli by the DG correlates with behavioral discrimina-

tion after training in a contextual fear conditioning task

(Woods et al., 2020).

Previous work on neuronal discrimination in different hippo-

campal subregions has provided inconsistent results, reporting

stronger (Leutgeb et al., 2007; Neunuebel and Knierim, 2014)

or weaker (Hainmueller and Bartos, 2018; Senzai and Buzsáki,

2017) neuronal pattern separation in DG granule cell populations

compared with principal neurons in downstream hippocampal

circuits. Our finding that the behavioral relevance of the naviga-

tional task is differentially related to the amount of neuronal

discrimination can partly explain these discrepancies because

it follows that differences in spatial cues alone are not the sole

determinants of neuronal discrimination. Furthermore, neuronal

‘‘pattern separation’’ can be quantified in multiple ways, such

as spatial correlations between place fields or population firing

vectors across different environments (Hainmueller and Bartos,

2018). However, when pattern separation is defined inmore gen-

eral terms, independent of any assumptions of the spatial firing

patterns, as implemented by our selectivity and decoder ana-

lyses, most studies to date report strong orthogonalization in

DG representations (Lee et al., 2020), consistent with the present

study.

Our data reveal how orthogonalized neuronal memory

representations in the input and output regions of the hippo-

campus are related to behavioral discrimination. We propose

that the DG robustly reports changes in external and internal

variables even when they are not sufficiently relevant to reach

the animal’s perception. In contrast, representations in the

output region CA1, instructed by decorrelated inputs from

the DG, remap in response to behaviorally relevant changes

in sensory inputs that exceed a saliency threshold. Down-

stream neocortical circuits then use this map to drive behav-

ioral decisions.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Bacterial and Virus Strains

pAAV.Syn.GCaMP6f.WPRE.SV40 Addgene 100837-AAV1

Chemicals, Peptides, and Recombinant Proteins

Biocytin Sigma-Aldrich B4261; CAS: 576-19-2

Deposited Data

Analyzed data This paper N/A

Experimental Models: Organisms/Strains

Mouse: C57BL/6J Janvier Labs SC-C57J-M4S

Software and Algorithms

Suite2p Pachitariu et al., 2017 https://github.com/MouseLand/suite2p

Python https://www.python.org N/A

Blender https://www.blender.org N/A
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the Lead Contact, Christoph

Schmidt-Hieber (christoph.schmidt-hieber@pasteur.fr).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The datasets and analysis code supporting the current study are available from the lead contact on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All procedures were carried out in accordance with European and French guidelines on the ethical use of animals for experimentation

(EU Directive 2010/63/EU) and were approved by the Ethics Committee CETEA of the Institut Pasteur (protocol number 160066). 6-

16 week-old male C57BL/6J wild-type mice (Janvier Labs) were used for all experiments. After their arrival at 4-5 weeks old, mice

were housed in a room kept at 21�C in groups of two to four in polycarbonate individually ventilated cages enriched with running

wheels, with a 12 h inverted light/dark cycle and ad libitum access to food and water until the start of the experiments. All animals

were treated identically. When experiments started, mice were placed under controlled water supply (0.5 mg of HydroGel per day,

ClearH2O) and maintained at 80%–85% of their initial body weight over the course of imaging and electrophysiology experiments. In

total, imaging data from 14 mice (DG, n = 7; CA1, n = 7) and electrophysiology data from 7 mice were used in this study.

METHOD DETAILS

Surgical procedures
All surgical procedures were performed in a stereotaxic apparatus (Kopf instruments). Combined analgesia, buprenorphine

(0.05 mg/kg, Vetergesic) and meloxicam (10 mg/kg, Metacam), was administered through intraperitoneal injection at least 30 min

before any surgical intervention and the incision sites were infiltrated with lidocaine. Mice were anesthetized with isoflurane

(3%–5% for induction and 1%–2% for maintenance, vol/vol). During the surgery, mice were kept at a body temperature of ~36�C
using a heating blanket, and their eyes were protected with artificial tear ointment. Postoperative analgesia (meloxicam 5 mg/kg)

was administered orally in combination with surgical recovery DietGel (ClearH2O) for 2 days after surgery.
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Stereotaxic injections
After application of povidone-iodine (Betadine), the skin was incised and the exposed skull was cleared of overlying connective tis-

sue. A small craniotomy was performed above the right dorsal hippocampus (2 mm posterior and 1.5 mm lateral to bregma), and 500

nL of AAV1.Syn.GCaMP6f.WPRE.SV4 (titer 3.4x1012 TU/mL; Addgene) were injected via a glass micropipette (Wiretrol, 5-000-1010

Drummond) at a depth of 1.7mm from the dural surface for targeting the DG, and 1.2mm for CA1.Mice were allowed to recover for at

least 2 days after injection before undergoing any subsequent procedure.

Chronic imaging window and headpost implantation
To record Ca2+-dependent fluorescence changes of the GCaMP6f sensor, we used two different imaging implant strategies, either a

custom-made imaging cannula, or a graded index lens (GRIN; 1 mm diameter, 3.4 mm height, NA = 0.5, G2P10 Thorlabs). The im-

aging cannula was assembled by UV curing (Norland optical adhesive) a circular coverglass (1.6 mm diameter, 0.16 mm thickness,

produced by Laser Micromachining) to a cylindrical stainless-steel tube (2 mm height, 1.65 mm outer and 1.39 mm inner diameter;

Coopers Needleworks). Imaging window implantations were performed several days after the initial viral injection. Mice were anes-

thetized as described above and, after the skull was exposed, a craniotomy (~1 or ~1.6 mm diameter) was centered on the previous

injection site. For cannula implants, the overlying cortex (including parts of the somatosensory and posterior parietal association

cortices) was gently aspirated with a 27 gauge needle while constantly being rinsedwith aCSF solution (Danielson et al., 2016a; Dom-

beck et al., 2010), and bleeding was controlled with a gel dental sponge (Gelfoam, Pfizer). We terminated the aspiration when the

external capsule became visible. The outer part of the external capsule was then gently peeled away using fine forceps, leaving

the inner capsule and the hippocampal formation itself undamaged for CA1 imaging recordings. To provide optical access to the

dorsal blade of the dentate gyrus, we continued to gently aspirate CA1 directly dorsal to the dentate gyrus until the loose fibers

and vasculature of stratum moleculare were visible. GRIN lens implants were used as an alternative strategy to the optical cannula

that reduces the lesion to the tissue. For GRIN lens implants, a beveled stainless-steel cylinder (1mmdiameter) was slowly lowered to

the target region (1.2mmdepth for CA1, 1.85mm for the dentate gyrus) without any cortical aspiration, and removed before proceed-

ing with the implant. For cannula implants, the window was gradually lowered into the craniotomy until the tip was in contact with the

internal capsule for CA1 imaging, or 100-200 mm above the hippocampal fissure for dentate gyrus imaging. GRIN lenses were im-

planted at a final depth of 1.2 mm for CA1 or 1.85 mm for the dentate gyrus. Protruding parts of the GRIN lens or cannula were

secured to the skull with opaque dental cement (Super-bond C&B, Sun Medical). Mice were then implanted with a stainless-steel

headpost for head fixation (Luigs & Neumann) during imaging and electrophysiology experiments. Finally, the conical portion of a

nitrile rubber seal (749-575, RS Components) was glued to the headpost with dental cement and filled with a silicone elastomer

(900-2822, Henry Schein) to protect the window preparation during recovery and between recording sessions.

A comparison of neuronal activity in GRIN- and cannula-implanted animals revealed that in both DG and CA1, there was no sig-

nificant difference in spatial decorrelation between the two implant strategies (Figures S3A and S3B). When a decoder was used to

assess neuronal discrimination, FN decoding performance was higher in GRIN implants than in cannula implants in both regions,

suggesting that the lesion size similarly affects DG and CA1, without introducing any region-specific bias (Figures S3C and S3D).

When we examined whether the implant strategy affected the animals’ behavioral performance (measured as both reward rate

and d-prime), we did not observe any systematic differences between GRIN- and cannula-implanted animals (Figures S3E–S3H).

Furthermore, all DG-implanted animals showed similar reward rates and d-prime scores as CA1 animals (Figures S2E–S2G), sug-

gesting that our conclusions are independent of the depth of the implant (CA1 versus dentate gyrus) and the surgical implant strategy

(GRIN versus cannula).

Virtual-reality environments
A virtual reality setup was implemented as previously described (Schmidt-Hieber and H€ausser, 2013). Briefly, head-fixed mice navi-

gated on a cylindrical polystyrene treadmill (20 cm in diameter), rotating forward or backward. Cylinder rotation associated with an-

imal locomotion was read out with a computer mouse (G203, Logitech) at a poll rate of 1KHz and linearly converted to one-dimen-

sional movement along the virtual reality corridor. The virtual environments were projected onto a spherical dome screen (120 cm in

diameter, 240�), covering nearly the entire field of view of the animal, using a quarter-sphere mirror (45 cm diameter) and a projector

(Casio XJ-A256) located below the mouse. The virtual linear corridor was 1.2 m long, with objects placed along the linear track and

vertical or oblique grating textures on the lateral walls. A reward zonewas locatedwithin each linear virtual track, at the end (0.81-1.15

m) or at the center (0.34-0.68m) of the vertical and oblique corridors, respectively. An enriched environment, used to increase behav-

ioral discrimination and neuronal discrimination in CA1, consisted in a substantially different virtual scene, with different visual cues

and textures on the walls, but maintaining the same reward location as for the oblique corridor. For the electrophysiology experi-

ments, two different variations of the virtual environment were used as familiar and novel environments (Figure S4). The Blender

Game Engine (https://www.blender.org/) was used in conjunction with the Blender Python API to drive the virtual reality system.

Behavioral training and analysis
Two weeks after the imaging window implantation, water-restricted mice were handled 10 min per day for 3 days and placed on the

treadmill for 10-20 min for 2 consecutive days to get habituated to both the experimenter manipulation and the experimental setup.

After habituation, mice underwent 7 training sessions, 30 min each, over the course of 1-2 weeks before recordings (Figures 1B and
e2 Neuron 108, 1103–1112.e1–e6, December 23, 2020
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1C). Mice were trained to run along the linear virtual corridor. A drop of sugar water (10 ml, 8 mg/mL sucrose) was dispensed by a

spout placed in front of their mouth as a reward if they spent 2 s or more within the reward zone. When the animals reached the

end of the linear track, they were ‘‘teleported’’ back to the start of the virtual corridor after crossing a black frontal wall, indicating

the end of a lap and the onset of the subsequent one. No punishments were provided in our experimental design. During the training,

only the familiar (vertical gratings) environment was displayed, while from the first day of imaging sessions, mice were presented with

a random alternation of familiar and novel environments. Each imaging session was organized into about 10 min of recording, where

similar environments (familiar: vertical gratings (F) versus novel: oblique gratings (N)) or substantially different environments (familiar:

vertical gratings (F) versus novel: enriched environment (N*)) were randomly displayed. Training and imaging recordings were per-

formed during the dark cycle of the mice.

In vivo two-photon calcium imaging
In vivo imaging was performed using a resonant-galvanometer high speed laser-scanning two-photonmicroscope (Ultima V, Bruker),

with a 16x, 0.8 NA water immersion objective (Nikon). Time-series images were acquired at 30 Hz frame rate (5123 512 pixels, 0.8–

1.2 mm/pixel), with a femtosecond-pulsed excitation laser beam (Chameleon Ultra II, Coherent) tuned to 920 nm for imaging

GCaMP6f expressing cells. To block diffused light from the projection system, a black foam rubber ring was positioned between

the animal’s implant and the objective, and a green light blocking filter (FES0450, Thorlabs) was placed in front of the projector light

output.

In vivo whole-cell patch-clamp recordings
Two craniotomies (0.5 mm diameter) were drilled 3–24 h before the recording session for the recording electrode (right hemisphere,

2.0 mm posterior and 1.5 mm lateral from Bregma) and the reference electrode (left hemisphere, 2.0 mm posterior and –1.5 mm

lateral from Bregma). The dura mater was removed and the cortical surface was kept covered with artificial cerebrospinal fluid of

the following composition: 150 mM NaCl, 2.5 mM KCl, 10 mM HEPES, 2 mM CaCl2, 1 mMMgCl2. Recording electrodes were pulled

from filamented borosilicate glass and filledwith internal solution of the following composition: 135mMpotassiummethanesulfonate,

7 mM KCl, 0.3 mM MgCl2, 10 mM HEPES, 0.1 mM EGTA, 3.0 mM Na2ATP, 0.3 mM NaGTP, 1 mM sodium phosphocreatine and

5mg/ml biocytin, with pH adjusted to 7.2 with KOH. Pipette resistance was 4–8MU. Electrodes were positioned to penetrate perpen-

dicularly to the cortical surface at the center of the craniotomy and the depth of the recorded cell was measured from the distance

advanced with themicromanipulator (Luigs & Neumann), taking as a reference the point where the recording electrodemade contact

with the cortical surface. Whole-cell patch-clamp recordings were obtained using a standard blind-patch approach, as previously

described (Margrie et al., 2002). Only recordings with a seal resistance >1 GU were used. Recordings were made in current-clamp

mode with no holding current. No correction was applied for the liquid junction potential. Typical recording durations were ~5 min,

although longer recordings (~30 min) were occasionally obtained. Membrane potential signals were low-pass filtered at 10 kHz and

acquired at 50 kHz. To synchronize behavioral and electrophysiological recordings, TTL pulses were triggered by the virtual reality

systemwhenever a new framewas displayed (frame rate: 100 Hz) and recordedwith both the behavioral and the electrophysiological

acquisition systems.

Histology for imaging area detection and cell identification
At the end of the experiments, mice were deeply anesthetized with an overdose of ketamine/xylazine administered intraperitoneally

and transcardially perfused with phosphate-buffered saline (PBS, 1x) followed by 4% paraformaldehyde solution. Brains were

removed and post-fixed overnight in 4% paraformaldehyde/PBS. Brains were then cut into 60-70 mm coronal slices. Sections con-

taining the area underneath the imaging window were collected, and the correct positioning of the imaging cannula or GRIN lens was

confirmed by fluorescence microscopy. Brain slices from electrophysiology experiments were stained with Alexa Fluor 488-strepta-

vidin to reveal biocytin-filled neurons and patch electrode tracts. DAPI was applied as a nuclear stain to reveal the general anatomy of

the preparation. Fluorescence imageswere acquiredwith a spinning disc confocal microscope (Opterra, Bruker). The accuracy of the

recording coordinates was confirmed in all cases by either identification of the recorded neuron or the recording electrode tract.

QUANTIFICATION AND STATISTICAL ANALYSIS

Imaging data processing
Motion correction of the imaging data was performed using a phase-correlation algorithm built into the suite2p software (Pachitariu

et al., 2017; https://github.com/cortex-lab/Suite2P). Segmentation into regions of interest (ROIs) was performed with suite2p using a

singular value decomposition algorithm. To select dentate gyrus granule cells, we only used ROIs corresponding to small, densely

packed cell bodies. ROIs corresponding to large isolated cell bodies were discarded in order to exclude putative interneurons and

mossy cells. The neuropil signal was subtracted from the extracted fluorescence using suite2p. Neuronal activity was quantified by

adapting previously published methods (Dombeck et al., 2010): ‘‘events’’ were identified as contiguous regions in the normalized

relative change in fluorescence (DF/F) signal exceeding a threshold of mean + 2.5 standard deviations of the overall DF/F signal,

a minimal duration above threshold of 300 ms (approximately the half decay time of the GCaMP6f signal (Dana et al., 2019)), and

exceeding an integral of 50 DF/F 3 1 s. These parameters were confirmed by visual inspection of the event detection result.
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Identification of spatially modulated cells and place fields
To compute spatial activity maps, we used data from continuous running periods with a duration >1 s at a speed >0.5 cm/s. For each

lap crossing, spatial maps were computed by dividing the track into 50 spatial bins. We then divided the sum of events in each spatial

bin by the occupancy (dwell time) of the animal in this bin. Spatial maps were smoothed with a Gaussian filter (sigma = 5 cm).

We defined spatially modulated cells as those neurons that fire consistently at the same location across different lap crossings,

independently of the exact shape of their place fields. Therefore, we identified spatially modulated cells by computing the mean pair-

wise circular cross-correlation between spatial maps across all different lap crossings within a session. We used circular (periodic)

cross-correlation to account for the circular nature of our data, as the animals are teleported back to the beginning of the track when

they reach the end of the previous track. We then searched for maximum cross correlation within 4 bins surrounding lag 0 (out of a

total of 50 bins). Using Pearson’s R instead of circular cross correlation yielded consistent results (Figure S1E). To obtain a null model

for themean cross correlation, for each neuron, we dissociated firing activity and spatial position by shuffling the recorded position in

chunks of 300 ms, and repeated this bootstrap procedure 100 times. Those neurons whose mean cross-correlation exceeded the

bootstrap with a Z-score higher than 2.0 were identified as spatially modulated cells. This approach accounts for both coherence

and stability of spatially modulated cells, as a cell will not be identified as spatially modulated if it only fires in one lap (low stability),

or if it fires in different locations across laps (low coherence), or if it fires sparsely yielding a high mean pairwise correlation by chance

(low stability, giving low Z score from the bootstrap procedure).

To determine the width of place fields (Figure S1F), we identified place cells according to published methods (Dombeck et al.,

2010; Hainmueller and Bartos, 2018).We define place cells as a subset of spatially modulated cells with one ormore significant peaks

in their spatial firing maps. We divided the linear track into 50 spatial bins and computed the mean DF/F in each bin. Spatial DF/F

maps were then smoothed using a moving average filter across 3 adjacent bins. Potential place fields were initially identified as

contiguous regions in these DF/F maps in which all of the points were greater than 50% of the difference between the bin with

the highest DF/F value and a baseline value (mean of the lowest 25 out of 50 bins’ DF/F values). In addition, the candidate place fields

had to satisfy the following criteria: (i) The corresponding place cell had to fulfill our criteria for spatial modulation (see above); (ii) the

potential field had to have a width of at least 3 bins (7.2 cm); (iii) significant calcium transients had to be present at least 30% of the

time in which themousewasmoving in the field; and (iv) themeanDF/F value inside the field had to be at least three times themean of

the DF/F value outside the field. Place cells (as a subset of spatially modulated neurons) were only used for determining place field

width (Figure S1F) in this study. Place fields in the familiar and novel environments showed similar widths in the dentate gyrus and

CA1 (Familiar F: DG versus CA1, p < 0.05; Novel N: DG versus CA1, p > 0.05).

Spatial correlation and decorrelation
To quantify session-wise correlations between spatial activity maps of the F and N environments (‘‘FN correlation’’), we first

computed the circular cross-correlation between spatial activity maps for the F and for the N environments for each neuron that

was spatially modulated in the F environment (see above), and then computed the mean of these correlation values for a session.

As a reference, we computed correlations within the F environment (‘‘F even-odd correlation’’) by splitting the exploration of the

familiar environment into odd and even lap crossings, and then computing spatial correlations between even and odd spatial activity

maps as described above for the FN correlations. Decorrelation was computed by subtracting the FN correlation from the F even-odd

correlation.

Population vector (PoV) correlations
Population vectors (PoV) were defined as the collection of event rates of the population of all spatially modulated neurons measured

in a spatial bin of a given environment. PoV correlations were obtained by computing Pearson’s R between corresponding PoVs of

different environments (F versus N or N*) or of the same environment split into even and odd lap crossings (F even-odd or N(*) even-

odd). PoV correlation matrices depict color-coded PoV correlations between all spatial bins in F versus all spatial bins in N (or N*). For

PoV correlations comparing F versus N or N*, spatial modulation was assessed in environment F.

Rate vector and selectivity
To compute selectivity, the event rate for the i-th cell ri was defined as the number of identified neural events of a cell divided by the

total running time in a lap or in a session. For each session, selectivity of the i-th neuron was defined as the normalized difference of

event rates of that neuron computed during familiar and novel lap crossings (referred to as F and N, respectively): |ri
F – ri

N| / (ri
F + ri

N).

‘‘Signed’’ selectivity was defined accordingly, with no absolute value at the numerator. The rate vector was defined as the collection

of event rates of a population of neurons during a lap crossing or a session.

Inference-based decoder for environmental representation
To decode the environmental representation from neural activity alone (i.e., with no information on the precise location of the animal

on the track), we employed published methods based on probabilistic modeling of population activity and Bayesian hypothesis

testing (Posani et al., 2017). In brief, two statistical models, one for each environmental condition, were inferred from two collections

of binarized activity vectors (discretized and binarized events in a time window of 120 ms) recorded during exploration of the two

corresponding environments, denoted here as A and B.
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By defining the binarized activity of the i-th cell in a time bin as si ˛ {0, 1}, each model describes a probability distribution for the

activity vector s = (s1, s2, /, sN) given the environmental variable M ˛ {A, B}. The model reads

P sjMð Þ=
YN

i = 1

ehM
i
si

1+ ehM
i

;

where parameters hi
M control themean event rate of the i-th neuron and are inferred such that the probabilistic model reproduces, on

average, the mean event rate observed in the training set. For this particular class of models (statistically independent neurons), this

procedure can be carried out analytically and yields

hM
i = log

CsiDM
1� CsiDM

;

where the notation C.DM indicates the average over the activity vectors in the training set for environment M.

We then decoded the environmental variable M from the test activity vectors by comparing the two probabilistic models in a

Bayesian hypothesis test. For each test vector s, we computed the log-likelihood difference between the two environments as

DL sð Þ= log
P sjAð Þ
P sjBð Þ:

A positive value ofDL (s) indicates that the test activity vector s is more likely to have been sampled from environmental conditions A

than B and vice-versa for negative values.

Cross-validated performance of the environment decoder
Events were discretized into binary population activity vectors corresponding to time windows of 120 ms. Lap crossings in a

recording session were then divided according to the two environmental conditions, and then further into training and test lap cross-

ings (half and half, randomly). Activity vectors corresponding to training lap crossings were used to train the binary decoder, which

was used to predict the environmental conditions of activity vectors sampled during test lap crossings. For each test vector s, we

computed the decoder outcome DL (s) and assessed the performance of the decoder on the population of DL (s) values. Perfor-

mance was assessed by contextualizing the DL (s) signal within the binary decoder theory and receiving-operator characteristic

curves (Bradley, 1997), as established in previous publications (Posani et al., 2017, 2018). In brief, a threshold DL 0 is chosen,

and activity vectorswhose delta log-likelihood differenceDL (s) exceeded the thresholdwere classified as ‘‘positive’’ (corresponding

to environment A), while the ones belowwere classified as ‘‘negative’’ (corresponding to environment B). The threshold value is varied

in a large interval, and for every value we compute the fraction of correctly classified A patterns (true positive rate, TPR) and the frac-

tion of falsely classified A patterns (false positive rate, FPR). Each pair of TPR-FPR draws a point on the so-called ROC curve. The

area under the ROC curve (AUC) is taken as a measure of performance. This procedure was repeated for n = 100 random assign-

ments of training and test labels to individual lap crossings; the mean AUC value over these 100 repetitions was then taken as a mea-

sure of decoding performance for the session.

Inclusion criteria for environment decoding analysis
The decoding analysis aims to establish whether two environmental representations are dissimilar/decorrelated (high decoding per-

formance) or similar/correlated (low decoding performance). However, a negative result (low decoding performance) could also be

caused by the lack of a stable and coherent firing activity within individual environments resulting from external factors such as noise,

mis-positioning of the field of view, or low engagement of the animal. We therefore chose to include only sessions that satisfy a min-

imal criterion of stability of firing activity within the familiar environment, as would be expected from hippocampal representations

after repeated exposure to a context. To assess a position-agnostic measure of stability, we computed the mean firing rate vector

(RV) in each individual lap crossing in the session; we then defined stability as the mean Pearson correlation between RVs of all pairs

of lap crossings in the familiar environment. We included those sessions where stability was higher than a minimal threshold (set

to 0.01).

Selectivity analysis for subthreshold membrane potential
To analyze subthreshold membrane potential, traces were digitally low-pass filtered at 5 kHz and resampled at 10 kHz. Membrane

potential traces were then high-pass filtered at >10�5 Hz to remove slow trends such as reference drifts. To infer the expected firing

profile of silent neurons, we applied a range of thresholdsW to the recordedmembrane potential trace. Action potentials were inferred

whenever membrane potential exceeded W, and a minimal interspike interval of 100 ms was imposed on the inferred action poten-

tials. Environment selectivity was then computed as SAB = (fA – fB) / (fA + fB), where fA and fB are the predicted action potential fre-

quencies in environment A and B, respectively, for a given value of W. A positive value of SAB indicates selectivity for environment A

while a negative value indicates selectivity for environment B.Mean absolute selectivity was calculated by computing the average of

themean absolute value ofSAB for 100 values ofW spanning a range of 2 standard deviations around themeanmembrane potential of

the recording.
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Behavioral discrimination between contexts
For each session, we used the lick behavior of the animal in the novel environment to quantify behavioral discrimination. If the animal

confuses the novel environment with the familiar one, we expect it to lick in anticipation of a reward in the reward zone corresponding

to the wrong (familiar) environment, i.e., at the end of the track. Likewise, we expect the animal to lick only in the correct reward zone

(novel, center of the track) when it recognizes the novel environment and learns the task. To quantify behavioral discrimination, for

each lap crossing we detected a hit if the ratio between number of licks in the correct (novel) reward zone and the region of the track

outside any reward zone was higher than a threshold (set to 1.2). Likewise, an error was detected if the ratio between the number of

licks in the wrong (familiar) reward zone and the region of the track outside the reward zone was higher than the same threshold. By

contrast, in order to exclude noisy data, the ratios below the threshold (1.2) were considered neither correct nor errors, and were not

included in the analysis. d-prime was computed for each session by using all errors and hits of the corresponding lap crossings,

excluding those laps where both an error and a hit were recognized.

In order to minimize the variability between animals and compute a multilevel statistical analysis, the quantifications for the corre-

lations between neuronal and behavioral discrimination were normalized within the range value of each animal. Therefore, both the

behavioral scores (reward rate or d-prime) and the spatial decorrelation (or decoder performance) values have a range score span-

ning from 0 to 1, i.e., from the worst to the best behavioral performance and neuronal discrimination.

To rule out that neuronal discrimination between different environments could be performed when the presentation of the visual

virtual-reality environment is uncoupled from the behavior of the animal, we passively presented previously recorded virtual reality

sessions to the animals in an open-loop paradigm (Figure S3I). These experiments confirmed that neuronal discrimination in both

the dentate gyrus and CA1 required active engagement of the animal in a navigational task, as we found that neuronal discrimination

between highly different virtual environments (F and N*) was reduced in both regions when a movie was passively presented

(Figure S3J).

Statistics and visualization
Data are presented as mean ± SEM across animals, unless stated otherwise. Statistical significance was assessed using Wilcoxon

signed-rank tests (‘‘Wilcoxon tests’’), one-way repeated-measures (RM) ANOVA, or a linear mixed model (LMM; see Table S1), as

appropriate. In some figures, a small amount of jitter was applied to coinciding data points to improve visual clarity.
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