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Abstract The immune response is a first-line systemic defense
to curb tumorigenesis and metastasis. Much effort has been
invested to design antitumor interventions that would boost the
immune system in its fight to defeat or contain cancerous growth.
Tumor vaccination protocols, transfer of tumor-associated-
antigen-specific T cells, T cell activity-regulating antibodies,
and recombinant cytokines are counted among a toolbox filled
with immunotherapeutic options. Although the mechanistic un-
derpinnings of tumor immune control remain to be deciphered,
these are studied with the goal of cancer cell destruction. In con-
trast, tumor dormancy is considered as a dangerous equilibrium
between cell proliferation and cell death. There is, however,
emerging evidence that tumor immune control can be achieved
in the absence of overt cancer cell death. Here, we propose
cytokine-induced senescence (CIS) by transfer of T helper-1 cells
(Ty1) or by recombinant cytokines as a novel therapeutic inter-
vention for cancer treatment. Immunity-induced senescence trig-
gers astable cell cycle arrest of cancer cells. Itengages the immune
system to construct defensive, isolating barriers around tumors,
and prevents tumor growth through the delivery or induction of
Tyl-cytokines in the tumor microenvironment. Keeping cancer
cells in a non-proliferating state is a strategy, which directly copes
with the lost homeostasis of aggressive tumors. As most studies
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show that even after efficient cancer therapies minimal residual
disease persists, we suggest that therapies should include
immune-mediated senescence for cancer surveillance. CIS has
the goal to control the residual tumor and to transform a deadly
disease into a state of silent tumor persistence.
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1 Cellular senescence
1.1 The concept of cellular senescence

Cellular senescence has been linked to a number of physiological
and patho-physiological conditions such as aging, age-related
diseases, tissue homeostasis, and embryogenesis (for review see
[1]). In the context of aging of multicellular organisms, cellular
senescence has been described as one of the nine hallmarks of
aging. Besides, senescence is considered to be part of the com-
pensatory or antagonistic damage responses [2]. Some
senescence-associated biomarkers, foremost the cell cycle inhib-
itor cyclin-dependent kinase inhibitor 2A (p16™4*) and telomere-
damage induced foci (TIFS), accumulate in cells of various tissues
of aged individuals, indicating that senescence and aging are
closely linked [3, 4]. Importantly, elimination of senescent cells
from aged tissues improves overall tissue fitness [5], whereas the
tissue-degenerative effects of senescence are likely to be transmit-
ted by the senescence-associated secretory phenotype (SASP), at
least in part [6] (Fig. 1a). Developmental senescence (Fig. 1b)isa
physiologically programmed senescence pathway that has recent-
ly been described to actively contribute to embryonic patterning
[7, 8]. This process is also accompanied by a SASP that attracts
macrophages which in turn seem to be necessary to remove se-
nescent cells in a coordinate manner in order to foster the physical
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Fig.1 Cellular senescence in aging, embryogenesis, and tumorgenesis. a
During aging of the organism, normal cells may enter the cell cycle. After
several cell divisions, the chromosomal telomere length decreases and the
expression of the cell cycle inhibitor p16™“* increases. This leads to
permanent arrest of the cell cycle and in the case of “old” cells to
replicative senescence. Senescent cells produce secretory factors, and
the SASP may contribute to enhanced tissue degeneration in older
individuals. b During embryogenesis, some embryonic cells may run
through the cell cycle leading to p53-independent p21 accumulation
and permanent cell cycle arrest. On the one hand, these “old”
embryonic cells produce secretory factors (SASP), and on the other
hand, the senescent cells are cleared by macrophages. Both mechanisms
then contribute to the tissue shaping during embryogenesis. ¢ During

development of the embryo (Fig. 1b). In contrast, oncogene- or
therapy-induced premature senescence is a mere stress response
mechanism (Fig. 1c). It is a cell intrinsic anticancer mechanism
that is triggered by various genetic or epigenetic perturbations
including hyperactive oncogenes [9, 10], cytotoxic drugs [11,
12], or by cytokines [ 13—15] leading to an essentially irreversible
cell cycle arrest. Oncogene-induced senescence is eventually ac-
companied by macrophage-mediated removal of the affected can-
cer cells, and this clearance mechanism of senescent cancers sub-
stantially improves the anti-cancer defense machinery of the im-
mune system [16]. On the other hand, it is still unclear whether the
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tumorigenesis, normal cells may enter an accelerated cell cycle (for
example by activation of oncogenes). These rapidly cycling tumor cells
upregulate p53 and the cell cycle inhibitor p16™** leading to permanent
cell cycle arrest or oncogene-induced senescence. The tumor cells can
also be driven into senescence by other cellular stressors, e.g., by drugs or
cytokines. Interestingly, tumor cell senescence can both exert a pro- or
antitumoral effect. Whereas the components of the SASP have been
shown to enhance tumor growth, the macrophage-mediated clearance of
senescent tumor cells inhibits tumor growth. M@ macrophages, p16™**
cyclin-dependent kinase inhibitor 2A, p2/ cyclin-dependent kinase
inhibitor 1, p53 cellular tumor antigen p53, SASP senescence-associated
secretory phenotype

SASP, which is an integral part of oncogene- as well as cytokine-
induced senescence, and leads to the secretion of various
chemokines and growth factors, may play a tumor-promoting
role, and should therefore be considered as harmful [17]. Thus,
it is currently believed that it is necessary to clear senescent cells
from the organism.

1.2 Cytokine-induced senescence

Cytotoxic cancer therapy is currently the gold standard of
clinical practice. A bevy of cytotoxic regimens has been
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developed over six decades to destroy or remove cancerous
tissue. The complete surgical excision of cancer tissue includ-
ing all adjacent or distant metastases is the most effective
curative treatment option. It may be accompanied or followed
by other mainly cytotoxic therapies, i.e., radiation therapy
[18], chemotherapy [19], or cytotoxic immunotherapy [20,
21]. These therapies rely on (i) the induction of programmed
cell death [19, 22]; (ii) caspase-independent programmed ne-
crotic cell death [23, 24] or necroptosis, that is dependent on
the ripoptosome [25]; (iii) autophagic cell death [26]; (iv)
target cell lysis [21]; and (v) respiratory burst mediated by
neutrophils [27].

The common goal of all cytotoxic therapies is the ultimate
destruction of the cancer cells [28]. In clear contrast, pro-
senescence therapy is not aimed at destroying cancer cells
but to contain their expansion and thus can be considered as
a non-destructive alternative tumor control mechanism [14,
15, 29-31]. In principle, cancer cell senescence can be trig-
gered by intrinsic or extrinsic pathways (Fig. 2). The intrinsic
pathways are triggered by reactivation/stabilization of the tu-
mor suppressor protein p53 [32], by inactivation of the onco-
gene Myc [33], or by tumor suppressor phosphatase and
tensin homolog deleted on chromosome 10 (Pten) inhibition
by VO-OHpic [34]. Pten inhibition-induced senescence
(PICS) in prostate cancer is especially intriguing, as loss of
Pten is usually associated with oncogenesis, e.g., in aggressive
breast cancer [35] or in follicular thyroid carcinomas [36].
Thus, the fate of a given precancerous cell after Pten loss
may strongly depend on its ancestry and/or its molecular back-
ground. Nevertheless, the three intrinsic senescence pathways
mentioned above lead to cell cycle arrest (Fig. 2a). The acti-
vation of these pathways results either in tumor growth inhi-
bition or in tumor regression. Therapy-induced cancer cell
senescence can be induced by genotoxic stress, i.e., by drugs
targeting genomic DNA (Fig. 2b). Thus, doxorubicin [37] or
cyclophosphamide treatment [12] induces a senescence-like
phenotype in tumor cells. However, chemotherapeutics rather
induce a mixed response including both apoptosis and senes-
cence. In most cases, the senescent phenotype is only ob-
served when the apoptosis machinery has been inhibited
[12]. Thus, targeted therapies, like the B-Raf inhibitor
vemurafenib, trigger senescence primarily in apoptosis-
resistant melanoma cells [38]. First hints that not only
membrane-penetrating drugs with a low molecular weight
can induce intrinsic senescence pathways came from the ob-
servation that cytokines, such as the T helper-1 (Ty1)-cyto-
kines interferon-y (IFN-y) and tumor necrosis factor (TNF)
[14] or transforming growth factor- (TGF-f3) [13], can drive
cancer cells into permanent growth arrest (Fig. 2¢). This is
astonishing as senescence was mainly considered to be an
intrinsic antitumor mechanism. Cytokine-induced senescence
(CIS) is the first example of an extrinsic senescence pathway
leading to a permanent stop of the cell cycle. For the

proinflammatory Tyl cytokines, the senescence signaling
pathways have been partially deciphered: permanent growth
arrest needs the simultaneous activation of TNF receptor 1,
IFN-y-signaling, and downstream stabilization of the
prosenescent pl6™4/Rb pathway [14, 15]. CIS also occurs
in vivo after adoptive transfer of tumor-associated antigen
(TAA)-specific Tyl cells in transgenic rat-insulin promoter
T antigen (RIP-Tag) mice (Fig. 2d) [14], or after vaccination
of sarcoma-bearing mice with an IL-12 transcribing gene con-
struct that induces IFN-y- and TNF-mediated immune re-
sponses [15]. This demonstrates for the first time that (i) ex-
ogenous signals can override endogenous proliferative signals
in cancer cells and (ii) that the immune system is able to
restrict cancer growth by senescence induction without erad-
ication of the cancer cells.

2 The immune system strikes back

2.1 Immune destruction and immune surveillance
of cancer

Apart from the destruction of tumor cells by chemotherapy,
radiation therapy or cytotoxic immune therapy, novel treat-
ment options appear that control cancers without complete
eradication. Some of these treatment options take advantage
of the immune system: (i) adoptive transfer of tumor-specific,
non-cytotoxic T helper cells may lead to durable clinical re-
mission in melanoma patients [39] or to tumor dormancy in
TAA-driven islet-cell cancer [40] and (ii) enhancement of T
cell-mediated antitumor immune response in patients with
stage IV melanoma or non-small-cell lung cancer. Here,
blocking antibodies directed against immune checkpoints,
e.g., primary monoclonal antibodies (mAbs) against the pro-
grammed death 1 (PD-1) receptor or its ligand PD-L1. The
therapeutic efficiency may be enhanced by combining these
mAbs with a mAb against cytotoxic T-lymphocyte-associated
antigen 4 (CTLA-4) [41-44]. The mechanisms underlying the
observed immunotherapeutic effects are still to be defined in
detail. These antibodies can destroy cancers at least in part
[45]. However, under most conditions, tumors of patients are
not completely eradicated and the responding patients contin-
ue to live with stable disease. Thus, at the beginning of im-
mune checkpoint inhibitor therapies, the tumor load tends to
decline, most probably due to infiltration of cytotoxic immune
cells [42, 43, 46-49]. After this first cytotoxic phase, the re-
maining tumor or metastases tend to stay at a constant level
but will not disappear [50, 51]. This indicates that immuno-
therapy may follow the defensive wall concept, which relies
on non-toxic control of the tumor burden [52—54] and which is
based on the induction of tumor dormancy. Tumor dormancy
is considered as an equilibrium between cancer cell prolifera-
tion and killing of cancer cells [55, 56] with apoptosis or
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Fig. 2 Pathways of therapy-induced tumor cell senescence. Tumor cell
senescence during therapy is induced either by intrinsic (a, b) or extrinsic
pathways (¢, d). a Molecular induction of cellular senescence can be
realized by reexpression of pro-senescence factors (e.g., p53), complete
loss of Pten, or oncogene inactivation (e.g., Myc). These molecular
manipulations eventually lead to permanent growth arrest of tumor
cells. b Different drugs, such as doxorubicin or cyclophosphamide,
target the DNA of the cycling tumor cells leading to DNA stress which
in turn induces a permanent cell cycle arrest. More specific drugs, e.g., the
B-Raf kinase inhibitor vemurafenib, target intracellular signaling
pathways and also lead to permanent cell cycle arrest. ¢ Different
cytokines, such as IFN-y, TNF or TGF-f, bind to their specific
receptors on the surface of the tumor cells. Activation of the cytokine

immune cell-mediated lysis of cancer cells being the main
killing mechanisms. This interpretation of the state of silent
tumors has now been complemented by four non-toxic mech-
anisms, namely (i) active cell cycle control through regulation
of cyclin-dependent kinases [57]; (ii) induction of cellular
senescence [9, 14, 15, 58]; (iii) control of differentiation by
regulating inhibitor of DNA binding (ID) proteins [59]; and
(iv) inhibition of angiogenesis [60].

Evasion from immune-mediated control of tumors has
been added to the six original hallmarks of cancer [61]. As
shown in Fig. 3, control of tumors by the immune system can
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receptors then triggers intracellular signaling pathways leading to
permanent cell cycle arrest. d Immune cells are also able to induce
extrinsic senescence in tumor cells. Here, tumor-specific Tyl cells are
activated by MHC-II-positive DCs. After activation, the Ty;1 cells secrete
the soluble factors IFN-y and TNF in the vicinity of the tumors. The
secreted cytokines then bind to their specific receptors on the surface of
the tumor cells thereby activating intracellular senescence pathways.
BRAF proto-oncogene B-Raf or v-Raf murine sarcoma viral oncogene
homolog B1, DC dendritic cells, /FN-7 interferon-y, MHC-II major
histocompatibility complex class II, p53 cellular tumor antigen p53,
Pten phosphatase and tensin homolog deleted on chromosome 10, 7AA
tumor-associated antigen, 7CR T cell receptor, TGF-3 transforming
growth factor-3, 7/ T helper-1 cells, TNF tumor necrosis factor

be divided into a cytotoxic branch leading to tumor eradica-
tion and a non-cytotoxic branch leading either to stable dis-
ease or tumor regression. Immune destruction of tumors relies
on cellular immunity: (i) cytotoxic T cells (CTLs) (Fig. 3a) or
natural killer cells (NK) (Fig. 3b) specifically attack tumors by
releasing pore-forming perforin together with proteases such
as granzyme B or soluble toxic factors such as TNF [55, 56,
62—-641; (ii) specific CTLs may directly target the cancer cells
by inducing death receptor-dependent apoptosis via the cluster
of differentiation 95 ligand/cluster of differentiation 95
(CD95L/CD95) death-inducing signaling complex (for



Cancer Metastasis Rev (2017) 36:357-365

361

Immune destruction

Immune surveillance

LX)
8% TNF

Apoptosis/
Necrosis

fe

Tumor eradication

Fig.3 Toxic and non-toxic pathways of immune system-mediated tumor
suppression. The control of tumors by the immune system is achieved by
immune destruction (a, b) or immune surveillance (¢, d). a CTL either
indirectly or directly attack tumor cells by secretion of toxic factors, such
as perforin, granzyme B, or TNF, or by planting a kiss of death via
CD95L-CD?9S5 interaction and induction of the apoptosis cascade. This
leads to tumor cell death by apoptosis, clearance of apoptotic bodies by
macrophages, necrosis, or to tumor cell lysis. Finally, the immune system
completely eradicates the tumor. b NK cells, like CTL, indirectly attack
tumor cells by secretion of toxic substances, such as perforin, granzyme
B, or TNF. This leads to tumor cell death and complete eradication of the
tumor. ¢ Tyl cells or macrophages silence tumor cells by secretion of
IFN-y and TNF or TGF-f3, respectively. After binding to their specific

review see [62]). If tumor immune destruction is successful,
the apoptotic cells will be cleared by macrophages and the
tumors will be eradicated. In addition, it has been shown that
the immune system can also control tumors by senescence
surveillance, a mechanism mainly based on cytokine-
induced cellular senescence (Fig. 3¢) and an immune-cell-
mediated clearance pathway (Fig. 3d). Senescence has been
shown to be induced in vivo in murine islet cell tumors by a
combination of IFN-y and TNF released from tumor-specific
Tyl cells in the vicinity of the tumors [14]. Similarly, human
sarcoma cell lines can be driven into senescence by IL-12-
mediated induction of a Tyl-phenotype in human T cells
[15]. In this line, it has been demonstrated that the loss of
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receptors on the surface of the tumor cells, the cytokines activate
intracellular senescence pathways leading to permanent cell cycle arrest
and stable disease. d Senescent tumor cells may also be cleared.
Molecular factors released by senescent tumor cells lead to activation of
APC. The APCs then stimulate a Tyl cell response followed by
activation of macrophages which in turn mediate the clearance of
senescent cancer cells. If senescence induction and subsequent
clearance of senescent tumor cells is effective, immune surveillance
may also induce tumor regression. APC antigen-presenting cells, CD95
cluster of differentiation 95, CD95L cluster of differentiation 95 ligand,
CTL cytotoxic T cells, /FN-v interferon-y, M@ macrophages cells, NK
natural killer cells, 7TGF-£ transforming growth factor-3, 777/ T helper-1,
TNF tumor necrosis factor

IFN-y pathway genes in cancer cells serves as a mechanism
of resistance during immune checkpoint inhibitor therapies
[65] and that the disruption of cyclin-dependent kinase 5
(Cdk5) strengthens antitumor immunity [66]. Likewise,
TGF-f3 originating from macrophages was shown to induce
cellular senescence in lymphoma cells [13]. Thus, senescence
induction alone leads to permanent growth arrest and stable
disease with a remarkable prolongation of the survival of
death-prone RIP-Tag mice [40]. In the long run, however, it
may be necessary that senescent cancer cells become cleared:
the SASP of N-ras-expressing senescent hepatocytes leads to
activation of professional antigen-presenting cells (APCs)
which in turn drive a T 1 cell response followed by activation

@ Springer



362

Cancer Metastasis Rev (2017) 36:357-365

of macrophages. One concept then suggests the subsequent
clearance of senescent cancer cells by activated macrophages
[16]. Yet, it remains unclear whether elimination of senescent
cells always supports cancer cure or whether it may on the
contrary promote cancer progression [67]. Senescence-
inducing treatment of cancer patients is apparently based on
re-enhancement or restoration of dormant intrinsic pathways.
As survival with silenced tumors or with disseminated, si-
lenced tumor cells is possible [41, 52], cancer patients will
benefit from successful restoration of intrinsic senescence sur-
veillance. In addition, it is likely that the resulting side effects
of non-cytotoxic, pro-senescence therapies should be less se-
vere as compared with cytotoxic regimens [68]. However,
similar to cytotoxic tumor treatment, the benefits of pro-
senescence therapy described above are only effective if the
vast majority of the tumor cells is driven into senescence.
Furthermore, the resting state of the silenced cancer cells has
to be maintained, either by a permanent growth arrest or by
exogenous (immune)-signals that keep the cancer cells silent.
The main problems of senescence surveillance of tumors
which have to be solved in the near future are therefore: (i)
fast growing tumor cells, e.g., acute leukemias, may escape
senescence surveillance [14, 15]; (ii) resting tumor cells may
eventually awake and start regrowing if CIS turns out to be
reversible, at least in some very aggressive cancers; (iii) the
fate of non-proliferating tumor stem cells is unclear; (iv) the
regeneration of normal tissues may be impaired; and (v)
chronic inflammation [61] and some molecular components
of the SASP [1, 17, 69] may even promote tumorigenesis in
neighboring premalignant cells.

2.2 Evolutionary aspects of immune destruction
and immune surveillance of cancer

Eradication of tumors is mainly based on cytotoxic principles,
and the biological targets of different chemotherapeutics are
genomic DNA (genetic code) as in the case of epirubicin [22],
the plasma membrane (outward demarcation of the cell) as in
the case of miltefosin [70], or the cytoskeleton as in the case of
taxol [22]. This holds also true for the destruction of tumors by
the immune system. It is generally accepted that apoptosis
induction by death receptors (e. g., CD95/CD95L, TNF/
TNFRI, etc.) finally leads to caspase-dependent DNA frag-
mentation [19, 22, 62] whereas the perforin/granzyme B sys-
tem leads to target cell lysis, cell membrane rupture, and acti-
vation of specialized serine proteases [63, 64]. However, if
DNA fragmentation is incomplete, mutated tumor cell clones
might emerge and a Darwinian selection process is triggered
[71]. This is to say that the vast majority of mutated tumor
cells carrying large genomic aberrations (such as loss or gain
of whole chromosome arms) will die, but those mutated cells
that survive will restart proliferation and lose important en-
dogenous or exogenous control mechanisms. Uncontrolled
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proliferation then leads to accumulation of additional DNA
damage and chromosomal chaos. Together, the genetic insta-
bility of cancers and the highly selective local microenviron-
mental forces, e.g., hypoxia, acidosis, and reactive oxygen
species, are able to further promote somatic evolution. In ad-
dition, cytotoxic regimens impose strong selection pressures
on the surviving cancer cells; the treatment should therefore
rather enhance the evolutionary rate and promote selection of
mutated cancer clones [71].

In clear contrast to conventional chemotherapy, immune
surveillance of tumors is not exclusively dependent on tumor
cell destruction, and the biological target structures are mainly
signal transduction pathways and the respective signaling
molecules, e.g., receptors, adaptor proteins, kinases, or kinase
inhibitors. For example, CIS by Tyl cell cytokines (IFN-y,
TNF etc.) leads to stabilization of the p16™*¥/Rb pathway
thereby permanently arresting the tumor cells in the GO/G1
phase of the cell cycle [14]. Furthermore, tumor-specific Ty 1
cells that can now be generated for the use in humans [72]
induce the production of antiangiogenic chemokines, e.g.,
chemokine (C-X-C motif) ligand 9 (CXCL9) and chemokine
(C-X-C motif) ligand 10 (CXCL10) [14, 40] thereby leading
to isolation of the tumor cells [40, 54]. Inhibitory antibodies,
on the other hand, target cellular exhaustion pathways by
interfering with ligand-receptor interactions thereby maintain-
ing the antitumoral activity of specific immune cells [41]. Last
but not least, small molecules targeting signal transduction
pathways, such as proto-oncogene B-Raf (BRAF) inhibitors
or oncogenic BCR-ABL gene fusion product (BCR-ABL)
inhibitors, specifically inhibit kinases thereby driving the can-
cer cells into cell cycle arrest [38]. The common feature of
those strategies is that they directly or indirectly impair cancer
cell proliferation. The selection pressure on the arrested cancer
cells is therefore strongly reduced and the treatment should
not promote somatic evolution.

2.3 Metabolic aspects of immune destruction and immune
surveillance of cancer cells

Cancer cells are distinct from normal cells as they switch from
aerobic to anaerobic metabolism, even in the presence of suf-
ficient oxygen support. Thus, they use anaerobic glycolysis
for adenosin triphosphate (ATP) production rather than oxida-
tive phosphorylation, the so called Warburg effect[1,61]. As a
result, the oxygen consumption by the mitochondria is re-
duced. The cells produce lactic acid which is released into
the blood and transported to the liver where it is used for
gluconeogenesis.

Chemotherapy- or radiation therapy-induced apoptosis
should enhance the switch of tumors towards anaerobic me-
tabolism. In this line, it has been shown that drug-induced
apoptosis signaling leads to dissipation of the mitochondrial
membrane potential, release of cytochrome ¢, and
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downstream activation of caspase-3 [22, 73]. Thus, oxidative
phosphorylation via the mitochondrial respiratory chain is fur-
ther inhibited during drug-induced apoptosis.

On the other hand, cancer cells undergoing oncogene-
induced senescence (OIS) switch back to mitochondrial oxi-
dative phosphorylation. By regulating the mitochondrial gate
keeper pyruvate dehydrogenase, senescent cells make en-
hanced use of pyruvate in the tricarboxylic acid cycle [74].
This causes increased respiration and oxidative stress thereby
counteracting metabolic reprogramming in the cancer cells.
Interestingly, premature senescence is often accompanied by
activation of the target of rapamycin (TOR) pathway which is
considered to be a central regulator of mammalian metabolism
and physiology. Activation of TOR in the context of cell cycle
arrest then leads to real senescence with irreversible loss of the
regenerative potential [75]. Metabolic reprogramming as seen
by the Warburg effect provides tumor cells with ATP and with
the substrates required for biomass generation. Recently, it
was demonstrated that the mitochondrial nicotinamide ade-
nine dinucleotide (NAD)-dependent deacetylase SIRT3 is a
crucial regulator of the Warburg effect by destabilizing
hypoxia-inducible factor-1cx (HIF-1¢0). HIF-1x downregula-
tion then leads to repression of glycolysis and inhibition of
proliferation of breast cancer cells thereby pointing to a new
tumor suppressor mechanism [76]. Activation of the immune
system is also connected with cellular metabolism. It has been
shown that succinate, an important metabolite of the tricarbox-
ylic acid cycle, serves as an inflammatory signal that induces
interleukin-13 (IL-13) through HIF-1« [77]. Thus, there are
several experimental hints that tight connections between the
regulation pathways of the cell cycle and the main metabolic
pathways of eukaryotic cells, i.e., glycolysis, tricarboxylic ac-
id cycle, and oxidative phosphorylation, really exist. Future
work will decipher the signaling networks underlying inflam-
mation, oncogenesis, cancer cell senescence, and metabolic
reprogramming.

3 Outlook: combining cytotoxic and pro-senescence
therapy

Due to the still unsatisfactory clinical success of cancer treat-
ments, additional efforts including new concepts are urgently
needed. As therapy resistance is the most important drawback
of the main cytotoxic cancer regimens, it is reasonable to
target different cellular structures or hallmarks of cancer.
Nevertheless, a combination approach may even be successful
if similar cellular signaling pathways are inhibited or induced
at the same time. For example, the combination of T cell-
activating anti-PD-1 and anti-CTLA-4 antibodies showed im-
proved clinical activity that clearly exceeded monotherapy
[41]. The finding that it is possible to induce extrinsic prema-
ture senescence by treatment of cancer cells with a cytokine

combination of IFN-y and TNF [14] opens the way to non-
toxic treatment options. Both cytokines are endogenous sig-
naling molecules which are already available as drugs. Their
toxicity profiles are known and less toxic alternatives, such as
IFN-«, are at hand. More importantly, stopping the fulminant
growth of malignant cancers by CIS will thus perfectly com-
plement the cytotoxic effect of most anti-cancer drugs. The
combination of cytotoxic drugs in the acute phase of the dis-
ease with CIS as therapy during the consolidation phase is one
of the most promising approaches which may be introduced
into clinical practice in the near future. In conclusion, besides
the development and introduction of new drugs for cancer cell
destruction or senescence induction, clinical research should
also focus on optimized strategies that combine already ap-
proved medication with CIS.
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