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Abstract 

Cancer immunotherapy is seeing an increasing focus on vaccination with tumor-associated 

antigens (TAAs). Human telomerase (hTERT) is a TAA expressed by most tumors to overcome 

telomere shortening. Tolerance to hTERT can be easily broken both naturally and 

experimentally and hTERT DNA vaccine candidates have been introduced in clinical trials. 

DNA prime/boost strategies have been widely developed to immunize efficiently against 

infectious diseases. We explored the use of a recombinant measles virus (MV) hTERT vector 

to boost DNA priming as recombinant live attenuated measles virus has an impressive safety 

and efficacy record. Here, we show that a MV-TERT vector can rapidly and strongly boost 

DNA hTERT priming in MV susceptible IFNAR/CD46 mouse models. The cellular immune 

responses were Th1 polarized. No humoral responses were elicited. The 4 kb hTERT transgene 

did not impact MV replication or induction of cell mediated responses. These findings validate 

the MV-TERT vector to boost cell-mediated responses following DNA priming in humans. 

 

Key words: Cancer, immunotherapy, hTERT, measles virus vaccine, T-cell responses 

 

Précis 

Heterologous prime/boost strategies provide exciting opportunities for use in tumor patients 

because higher immune response to the target antigen can be induced. MV vaccine has 

impressive safety record. 

 

Abbreviations 

AP Alkaline phosphatase 

ATU Additional transcription unit 

BCIP 5-Bromo-4-chloro-3-indolyl phosphate 

CBA Cytometric beads array 

MOI Multiplicity of infection 

MV Measle virus 

NBT Nitro blue tetrazolium chloride 

PVDF Polyvinylidene fluoride 

ROI Region of interest 

Tg Transgenic 

TMB 3,3′,5,5′-Tetramethylbenzidine 

Ubi Ubiquitin 

UCP Universal cancer peptide 
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Introduction 

Tumors manipulate their microenvironment and the adaptive immune response. With this 

understanding, immunotherapy has not surprisingly come to the fore as a means to treat cancer 

[1,2]. To stimulate anti-tumoral adaptive immunity, novel vaccine strategies are required. 

Attenuation and reverse genetics have allowed the development of viral vectors to deliver 

tumor–associated antigens (TAAs) [3]. Some live attenuated viral vectors can deliver 

transgenes directly to professional antigen-presenting cells (APCs) and dendritic cells (DCs) 

[4] allowing enhanced specific cytotoxic T-cells (CTLs) frequencies [5].  

 

Attenuated measles virus (MV), a member of Morbillivirus genus in the Paramyxoviridae 

family, is an enveloped virus with a non-segmented negative single-stranded RNA genome 

which replicates exclusively in the cytoplasm [6]. Today the attenuated Schwarz/Moraten 

vaccine strain has a longstanding efficacy and an excellent safety record [7,8]. This vaccine 

induces strong cellular and humoral immune responses after one or two low-dose injections. 

Indeed, MV specific CD8 T-cells and antibodies persist for life [9]. The cloned MV Schwarz 

strain has proved to be an excellent vector allowing the incorporation of up to an additional 6 

kb, or ~40% of its genome [10,11]. Proof of concept in humans has recently been demonstrated 

for a measles vector-based Chikungunya vaccine (MV-CHIK). The phase I clinical trial of this 

candidate showed that the vaccine was well tolerated and induced robust and functional 

antibody responses in 100% of volunteers after 2 immunizations [12]. This trial also 

demonstrated that pre-existing measles antibodies (anti-vector immunity) did not impair the 

immunogenicity of the heterologous antigen, paving the way for using recombinant MV as a 

vaccine vector [13,12]. Some TAAs like carcinoembryonic antigen (CEA) have also been 

efficiently expressed in this vector [14,15]. 

 

Telomerase reverse transcriptase (TERT) has emerged as a near universal tumor antigen and is 

actively investigated as a target for cancer immunotherapy [16]. Human telomerase (hTERT) 

is the rate-limiting catalytic subunit of the telomerase enzyme that synthesizes telomere DNA 

at chromosome ends [17]. Telomerase transcriptional activation has become the most important 

tumor escape mechanism to circumvent telomere-dependent pathways of cell death [18]. 

Indeed, hTERT is overexpressed in >85% human tumors regardless of their origin [19] and is 

associated with poor prognosis [20,21]. Natural anti-hTERT immune responses in some cancer 

patients and a pre-existing anti-hTERT repertoire in healthy volunteers show that tolerance to 

telomerase may be readily overcome [22]. Towards this end, we have developed a hTERT 
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modified DNA plasmid (INVAC-1) vaccine candidate that elicited strong specific immune 

responses and reduced tumor growth in mice [23]. INVAC-1 is currently in an ongoing phase I 

clinical trial (NCT02301754). 

 

DNA vaccines offer numerous advantages such as their capacity to readily incorporate multiple 

genes, their easy engineering and their stability [24]. Heterologous prime-boost strategies using 

a DNA prime followed by boosting with viral vectors have been shown to increase the 

magnitude of immune responses to HIV [25], Chikungunya virus [26], melanoma [27] or breast 

cancer [28]. Here, we have developed a recombinant MV vector expressing the insert of 

INVAC-1, which is a modified ubiquitin-hTERT fusion protein, as immunotherapeutic agent. 

In mouse models susceptible for MV infection, we demonstrate that immunization with a single 

low-dose of this construct referred to as MV-TERT, elicited strong hTERT specific cytotoxic 

cellular immune responses. The vector could expand primary hTERT memory responses 

induced by DNA priming. 

 

Materials and Methods 

Construction of measles virus telomerase construct 

The pTM-MVSchw-ATU2 plasmid encodes the Ubi-hTERT insert of INVAC-1 [23] cloned 

into the additional transcription unit (ATU) inserted between the P and M genes of an infectious 

molecular clone of the Schwarz MV vaccine strain [11]. The INVAC-1 insert carries a 9 bp 

deletion that removes three amino acids (867VDD869) crucial to hTERT catalytic activity [29]. 

The first 47 residues encoding the nucleolar localization sequence (NoLS) [30] were replaced 

by human ubiquitin (76 residues) according to the ubiquitin-fusion approach [31] along with an 

HLA-A*0201 restricted influenza A virus epitope and V5 tag was added at the carboxy 

terminus to facilitate characterization. The entire transgene was codon optimized. The length 

of the insert (3576 bp) was such that the “rule of six” was respected - the number of nucleotides 

in a MV genome must be a multiple of 6 to allow efficient replication [32]. The transgene was 

synthetized by GeneCust (Luxembourg) and subcloned into the BsiWI/BssHII restriction sites 

of the pTM-MVSchw-ATU2 vector generating a plasmid designated pTM-MV-TERT. 

 

Rescue of recombinant MV-TERT and MVSchw from cloned cDNAs 

Recombinant MV-TERT and MVSchwarz (MVSchw) viruses were recovered using a helper 

cell-based rescue system [33,34]. HEK-293-T7-MV cells stably expressing both the T7-RNA 

polymerase and MVSchw N and P proteins, were co-transfected with 5 µg of pTM-MV-TERT 
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or pTM-MVSchw DNA and 20 ng of the pEMC-L plasmid that expresses the MV polymerase 

L gene. After incubation overnight at 37°C, the cells were heat shocked at 43°C for 3 hours and 

transferred onto Vero cell monlayers and incubated at 37°C for two days. Individual syncytia 

were isolated and transferred to 35 mm wells with a new monolayer of Vero cells and then 

expanded in 25 cm² and finally 150 cm² flasks. Viruses were harvested when syncytia reached 

90% of the culture and titers were determined by an endpoint limit dilution assay on Vero cells. 

Viral titers were calculated using the Kärber method and were expressed as TCID50/mL. 

 

Cell lines  

HEK293-T7-MV helper cells were cultured in DMEM (Gibco) without sodium pyruvate 

supplemented with 10% heat-inactivated fetal calf serum and 1% penicillin/streptomycin (Life 

Technologies, Saint-Aubin, France). Vero cells were maintained in DMEM without sodium 

pyruvate supplemented with 10% heat-inactivated fetal calf serum and 1% 

penicillin/streptomycin (Life Technologies, Saint-Aubin, France). For co-culture, Vero cells 

were seeded at 5 x 106 cells and grown as monolayers in 10 cm dishes at 37°C and 5% CO2 

until single syncytia formation. For amplification, 3 x 105 Vero cells were seeded in 12 well 

plates and grown to 80-90% confluence, at which time each syncytium was then transferred. 

 

Western blotting 

Vero cells were seeded at 2 x 106 cells and grown as monolayers in T-25 flasks and infected at 

a multiplicity of infection (MOI) of 0.1. Forty-eight hours later, when syncytia reached 80-90% 

confluence, cells were lysed in RIPA buffer (Sigma-Aldrich, St. Louis, USA) supplemented 

with a protease inhibitor cocktail (Roche Diagnostic, Indianapolis, USA). Proteins were 

separated on Nu-PAGE® Novex 4-12% Bis-Tris gels (Invitrogen, Carlsbad, USA) and 

electroblotted onto Polyvinylidene fluoride (PVDF) membranes (iBlot® device, Invitrogen, 

Carlsbad, USA). hTERT proteins were detected with primary mouse anti-V5 monoclonal 

antibody (R960-25; Invitrogen, Carlsbad, USA) and nucleoproteins with a primary mouse anti-

MV N monoclonal antibody (Abcys, Courtaboeuf, France). A sheep anti-mouse IgG-HRP 

conjugate (NA931; GE Healthcare, Buckinghamshire, UK) was used as secondary antibody. 

Novex® Sharp Prestained Protein Ladder (Invitrogen, Carlsbad, USA) were used to determine 

molecular weight. -Actin was used as loading control. Peroxidase activity was detected on 

films with chemiluminescence ECL HRP substrate reagent kit (GE Healthcare, 

Buckinghamshire, UK).  

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



6 

 

Immunization 

MV susceptible IFNAR/CD46 and HHD/IFNAR/CD46 mice were obtained as described [34-

36] and were housed under specific pathogen-free conditions at the Institut Pasteur animal 

facility. The IFNAR/CD46 strain has been accepted by the FDA as a model of measles toxicity 

prior to initiation of clinical trials of engineered MV strains. Transgenic mice between 6 and 16 

weeks of age were inoculated intraperitoneally (i.p.) once or twice with 105 TCID50 of 

recombinant MV-TERT or MVSchw. To evaluate induction of humoral specific response, 

transgenic (Tg) mice were inoculated with 105 TCID50 (D0) and 8 x 104 TCID50 (D28) of 

MVSchw and MV-TERT at 1 month intervals. For the heterologous prime-boost, priming was 

performed via the intradermal (i.d.) route at the base of the tail (bilateral injections) using 25 

µg of INVAC-1 plasmid coding for Ubi-hTERT [23] or PBS, as control. Directly after DNA 

vaccination, electroporation was performed using CLINIPORATOR® 2 (IGEA, Carpi, Italy). 

The following train of pulses was applied using non-invasive plate electrodes (P-30-8G, IGEA, 

0.5 cm apart); one high voltage pulse (100 µs duration; 1,000 V/cm) followed 1 s later by one 

low voltage pulse (400 ms duration; 140 V/cm). Twenty-one days later, mice received an i.p. 

boost injection with 105 TCID50 of MV-TERT or MVSchw. 

 

ELISpot assays 

HLA-A*0201 restricted hTERT peptides have been described [37,38]. H2-K/Db and H2-IAb 

restricted hTERT peptides were determined in silico using the following online epitope 

prediction algorithms: Syfpeithi (http://www.syfpeithi.de/), Bimas (http://www-

bimas.cit.nih.gov/), NetMHCpan and SMM (http://tools.immuneepitope.org/main/). All 

synthetic peptides were purchased lyophilized (>90% purity) from Proimmune (Oxford, United 

Kingdom) and are described in Table 1. Peptides were dissolved in sterile water at 2 mg/mL 

and stored at -80°C or -20°C prior use. 

 

Murine IFN-γ kits were purchased from Diaclone (Eurobio, Courtaboeuf, France) and used 

following the manufacturer’s instructions. Ficoll-purified lymphocyte cell suspensions from 

peripheral blood or spleen were stimulated in triplicate at 2 x 105 cells/well with pools of HLA-

A*0201, H2-K/Db or H2-IAb restricted hTERT peptides at 5 µg/mL, with serum free RPMI 

culture medium (as negative control), with MVSchw at MOI = 1 (as immunization control) or 

with PMA-Ionomycin as positive control (0.1 µM and 1 µM respectively). After 19 hours, spots 

were revealed with the biotin-conjugated detection antibody followed by streptavidin-alkaline 

phosphatase (AP) and 5-Bromo-4-chloro-3-indolyl phosphate/Nitro blue tetrazolium chloride 
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(BCIP/NBT) substrate solution. Spots were counted using the Immunospot ELISpot counter 

and software (Cellular Technology Limited, Bonn, Germany).  

 

Bioluminescence imaging 

Transgenic mice were immunized with 105 TCID50 of recombinant MV-Luc expressing the 

luciferase gene [39] or MVSchw as control. Immunized mice received i.p. 150 mg/kg body 

weight of a D-luciferin potassium salt solution at 30 mg/mL (Perkin Elmer Life Sciences, 

Villebon-sur-Yvette, France). Five minutes later, they were anesthetized with 2–3% isoflurane 

(Attane Isoflurane, JD Medical Dist. Co., Inc., Phoenix, AZ, USA) delivered in 100% oxygen 

at a flow rate of 0.8 liter/min and imaged using an IVIS Lumina while the results were analyzed 

using Living Image software (both Caliper Life Sciences, Hopkinton, MA, USA). Luciferin 

signals were followed during 8 days until the mice were euthanized using region of interest 

(ROI) drawing. Bioluminescence signal was expressed as average radiance (ph/sec/cm²/sr). 

 

In vivo cytotoxicity assay 

The capacity of CD8 CTLs to kill peptide loaded target cells in vivo was assessed as described 

[40]. Briefly, splenocytes from naive IFNAR/CD46 mice were split in three and labeled with 

high (5 µM), medium (1 µM) or low (0.2 µM) concentrations of CFSE (Vybrant CFDA-SE 

cell-tracer kit; Life Technologies, Saint-Aubin, France). Subsequently, CFSEhigh-labeled cells 

were pulsed with the immunodominant hTERT p660 peptide and CFSEmedium-labeled cells were 

pulsed with the subdominant p1021 hTERT peptide for 1.5 hours whereas CFSElow-labeled 

cells were left unpulsed. Cells were mixed in a 1:1:1 ratio and 6.8 x 106 cells in 50 µL of PBS 

were intravenously injected at day 7 into mice previously vaccinated with MV-TERT, MVSchw 

or PBS. Fifteen hours later, single-cell suspensions from immunized mice spleen were analyzed 

by MACSQuant® flow cytometer (Miltenyi, Germany). The percentage of specific killing was 

determined as follows:  

[1 − [mean(%CFSElow/CFSEhigh or medium )CONTROL/(%CFSElow /CFSEhigh or medium)IMMUNIZED]] × 

100. 

 

ELISA for humoral responses 

Sera collected before immunization (D0) and 1 month after each vaccination (D28 and D49) 

were heat inactivated. MV-specific Ig antibodies were measured by using commercial ELISA 

kit (Trinity Biotech, USA). Briefly, plates were coated overnight with 50 ng of MV antigens 

and D28 and D49 sera were serially diluted to determine the end point positive limit dilution. 
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An anti-mouse antibody-HRP conjugate (Amersham) was used as secondary antibody with 

3,3′,5,5′-Tetramethylbenzidine (TMB) substrate to obtain sample absorbance. Anti-MV titers 

were calculated as the highest serum dilution between maximum and minimum absorbance 

value of a 1/100 dilution of mixture control sera (mean OD+5SD). 

 

The presence of hTERT-specific binding antibodies in sera was performed by Bertin Pharma 

(France) according to a validated qualitative ELISA immunoassay. Sera were incubated with a 

recombinant hTERT peptide (P165-S348, GenWay, San Diego, USA). A secondary goat anti-

mouse IgG conjugated to AP was added. Antigen-Ab complexes were visualized by addition 

of a chromogenic substrate. Results are expressed as mean ratios (R) where R = OD values/cut 

off point; cut off point = normalized cut off x mean of eight determinations of the negative pool 

of matrices. Positive or negative results were obtained according the control (QC) ratio with an 

anti-hTERT monoclonal antibody (MAB6595, R&D Systems) diluted 1:4000 (Low QC) and 

1:50 (High QC) in pool of negative serum samples from non-immunized mice.  

 

T-cell cytokine secretion 

For the heterologous prime-boost, at day 28, ficoll-purified splenocytes (6 x 105 cells) from 

vaccinated IFNAR/CD46 mice were cultured for 24 h at 37°C with H2-K/Db-restricted hTERT 

peptides (429, 660, 1021, 1034) at 5 µg/mL or with MVSchw at an MOI = 1. IL-2, IFN-γ, TNF-

α, IL-4, IL-6, IL-17a and IL-10 were quantified simultaneously on supernatants using the 

Cytometric beads array mouse kit (CBA, BD biosciences) according to the manufacturer’s 

instructions. Flow cytometry acquisition was performed using the FACScan LSR Fortessa flow 

cytometer (BD Biosciences); quantitative analyses were performed using the FCAP Array TM 

Software version 3.0 (BD Biosciences). 

 

Statistical analyses 

GraphPad Prism 6.0 software was used for data handling, analysis and graphic representations. 

Data are represented as the mean ± standard deviation. Statistical analyses were performed 

using a two-tailed Mann Whitney test. Significance was set at p-value ≤ 0.05. 

 

Results 

Efficient expression of hTERT from recombinant MV vector 

The Ubi-hTERT-Flu-V5 transgene was cloned into pTM-MVSchw-ATU2 (Fig. 1a). 

Expression of hTERT fusion protein was assessed by Western blot using MV-TERT infected-
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cell lysates with V5-specific antibodies (Fig. 1b). The full length Ubi-hTERT-Flu-V5 fusion 

protein was identified at the predicted size of 130.9 kDa. The strongest band at 122.5 kDa 

corresponds to processing and removal of the ubiquitin moiety from the fusion protein as 

previously reported for INVAC-1 [23]. There is an additional, weaker N-terminal degradation 

product around 100 kDa, which is not surprising given that ubiquitin was added to facilitate 

degradation. Both MV-TERT and MVSchw constructs expressed the 57.7 kDa MV 

nucleoprotein to comparable levels (Fig. 1b) indicating the stability of MV-TERT construct. 

 

Immunization elicited high frequencies of hTERT specific CD8 T-cells 

The immunogenicity of MV-TERT recombinant vector was assessed using MV susceptible 

IFNAR/CD46 and HHD/IFNAR/CD46 mice. Mice were immunized i.p. with 105 TCID50 of 

each virus. Both hTERT and MV specific T-cell responses were monitored in splenocytes 

collected at 7 or 14 days post-immunization using an IFN-γ ELISpot assay with specific hTERT 

peptides for ex vivo re-stimulation and MVSchw virus for control stimulation (Fig. 2). To assess 

MV-TERT immunogenicity in HHD/IFNAR/CD46 mice, splenocytes were stimulated in vitro 

with a mix of HLA-A*0201 restricted hTERT peptides for a week. As expected, strong hTERT 

specific CD8 T-cell responses were observed in IFNAR/CD46 or HHD/IFNAR/CD46 

MV-TERT immunized mice at 7 and 14 days after the last immunization compared to the 

MVSchw controls (p<0.01) (Figs. 2a and b). Similarly, hTERT specific CD4 T-cells were 

detected in MV-TERT immunized mice for all H2-restricted hTERT peptides tested, as 

compared to the MVSchw controls (Fig. 2c). Interestingly, the strength of MV specific T-cell 

responses was comparable for the two viruses indicating that the hTERT transgene did not 

impact the existing immunogenicity of MV (Figs. 2a and c).  

 

Specific T-cells frequencies were highest on day 7 for control MVSchw and MV-TERT, while 

their frequencies decreased slightly by day 14 (i.e. Fig. 2a) indicating that both MVSchw and 

MV-TERT replicate efficiently and probably cleared after 6-7 days post-immunization due to 

the ramping up of immune responses. To corroborate this interpretation, vector replication and 

clearance were measured in vivo using a recombinant MV-luciferase vector (pTM2-MV/Luc 

[39]) and monitored by bioluminescence imaging (Fig. 2d). Luciferase activity was detected 

between 1-6 days post-infection (maximum average radiance at D3 = 2.01 x 105 p/s/cm2/sr; Fig. 

2d left) and had virtually disappeared by D8 when sacrificed. Even dissection of the animals 

failed to identify more luciferin activity at day 8 (D8) (Fig. 2d far right). 
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MV-TERT specific CD8 T-cells are cytolytic in vivo 

To demonstrate that recombinant MV-TERT induces cytolytic hTERT specific CD8 T-cells, an 

in vivo killing assay was performed in IFNAR/CD46 mice using, CFSE–labeled and hTERT 

peptide pulsed (p660 and p1021) splenocytes or unpulsed splenocytes as target cells. Flow 

cytometry showed a strong decrease of p660 and p1021 pulsed CFSE cells in MV-TERT 

immunized mice compared to MVSchw controls illustrating that specific target cells were lysed 

when they were adoptively transferred into congenic recipient MV-TERT immunized mice 

(Fig. 3a). Human TERT specific CTLs from MV-TERT immunized mice killed ~50% of p660 

pulsed cells and ~14% of p1021 pulsed cells (Fig. 3 b). 

 

MV-TERT did not elicit hTERT antibodies 

As MV infection is cytolytic, we wondered whether MV-TERT vaccination might induce 

hTERT antibodies. To explore this, IFNAR/CD46 and HHD/IFNAR/CD46 mice were 

immunized twice at a one month interval. MV and TERT specific ELISAs were performed 

using sera collected at D0, D28 and D49 (Fig. 4). The TERT ELISA plates were coated with a 

recombinant protein, residues 165-348, as target. As positive or negative results were 

determined with R = OD values/cut off point and according the control (QC) ratio 

(IFNAR/CD46: R QC high= 7.27-7.67; R QC low= 1.46-1.50; cut-off = 0.252. 

HHD/IFNAR/CD46: R QC high= 8.30-8.99; R QC low= 1.43-1.44; cut-off = 0.279), no anti-

hTERT antibodies were detected in both mouse strains after one or two immunizations (Figs. 

4a and b). By contrast, for both mouse strains, anti-MV antibodies were detected after one 

MV-TERT immunization (D28: IFNAR/CD46 = 81,000; HHD/IFNAR/CD46 = 6,800) 

followed by a 3-7-fold increase after the second immunization (D49: IFNAR/CD46 = 280,000; 

HHD/IFNAR/CD46 = 52,000) (Figs. 4c and d). These titers did not differ significantly to those 

generated by the control MVSchw virus (Figs. 4a and b). These findings confirm that the TERT 

transgene did not impact MV humoral immunogenicity.  

 

Heterologous prime-boost elicited enhanced and multifunctional hTERT responses 

Heterologous prime-boost vaccination can enhance vaccine specific immune responses in 

infectious diseases and cancer [41]. To test this strategy, we vaccinated a group of ten 

IFNAR/CD46 mice with INVAC-1 DNA and boosted six with MV-TERT and four with 

MVSchw 21 days later (Fig. 5). TERT specific CD8 T-cells were monitored by an IFN-γ 

ELISpot assay in PBMCs over time (Fig. 5a) and in splenocytes at each end-point (Fig. 5b). 

Priming with a single shot of INVAC-1 resulted in weak to no hTERT specific CD8 T-cell 
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responses at 14 days post-immunization; only 2/10 mice developed weak responses in blood 

(Fig. 5a). This is not surprising given that DNA priming is known to be poor in IFNAR KO 

mice [42,43]. Animals were boosted with MV constructs 21 days post DNA prime 

immunization. One week later strong hTERT specific CD8 T-cell responses were detected in 

the PBMCs of MV-TERT boosted group in comparison of MVSchw boosted mice (Fig. 5a, 

mean #spots: 118.5; n=6). In the spleen, significant numbers of hTERT specific CD8 T-cells 

were detected after boosting with MV-TERT compared to controls (Fig. 5b, mean #spots: 453.7 

(DNA+MV-TERT; n=6) versus 0.7 (DNA; n=6) or 22.5 (DNA+MVSchw; n=4); p=0.0022 and 

0.0095) and compared to only one MV-TERT injection (Fig. 5b, mean #spots: 453.7 

(DNA+MV-TERT; n=6) versus 160.4 (MV-TERT; n=13); p=0.0047). A significant difference 

in MV specific T-cell responses was observed between a MV-TERT prime and 

DNA+MV-TERT boost as expected from the immunization strategy. In keeping with this, no 

difference in MV specific T-cell responses between DNA+MVSchw or DNA+MV-TERT boost 

were found (Fig. 5b). 

 

In order to demonstrate the functionality of the hTERT and MV specific T-cells after 

heterologous prime-boost vaccination, secreted cytokines were assessed using CBA with 

overnight stimulation supernatant. Significant concentrations of IL-6, IFN-γ and TNF were 

secreted by hTERT specific CD8 T-cells induced by MV-TERT compared to MVSchw, (Fig. 

5c). MV specific T-cells secreted the same cytokine, IL-2, IL-6, IL-10, IFN-γ and TNF, whether 

boosted by MV-TERT or MVSchw (Fig. 5d). Taken together, these results demonstrated that 

priming with INVAC-1 DNA and boosting by MV-TERT elicit a powerful TERT specific Th1 

response while a more mixed polarized response was induced to MV. 

 

Discussion 

With a heterologous prime-boost strategy in mind, we developed a recombinant MV vaccine 

vector expressing the modified ubiquitin-hTERT fusion protein, to increase the magnitude of 

hTERT specific immune responses. This choice reflects promising vector properties of the MV 

vaccine that is characterized by long standing safety and efficacy with immunity persisting for 

up to 25-30 years [8,14]. As MV targets the human CD46 receptor, it allows hTERT antigen 

production directly within macrophages, DCs and lymphocytes [8]. The recombinant MV-

vectored Ubi-hTERT-Flu-V5 fusion protein was efficiently expressed and presented a similar 

degradation profile compared to native INVAC-1 reflecting ubiquitin-fusion [44]. As the 

construct carried a deletion in the catalytic site resulting in complete activation, there was no 
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risk of cellular transformation. This is further compounded by the fact that MV infection is lytic 

while infected cells are marked out for destruction by viral antigen presentation. 

Bioluminescence imaging data demonstrated efficient vector replication two days after 

immunization and its partial clearance six days later by the ramping up of MV specific immune 

response in Tg IFNAR/CD46 mice, confirming the transitory nature of MV transgene delivery 

in vivo.  

 

The MV-TERT construct induced high levels of MV and hTERT specific CD8 and CD4 T-cells 

seven and fourteen days after a low dose (104-105 TCID50) immunization. The hTERT specific 

CD8 T-cells were able to recognize and lyse specific target cells in vivo, which is crucial to the 

induction of antitumor immunity. An important consideration in this study for the recombinant 

MV kinetics is the choice of IFNAR KO mice model that allows powerful and rapid viral 

replication in the absence of IFN type I context and subsequently the induction of specific 

immune response within seven days [45]. Similar experiments using a recombinant wild-type 

MV-EGFP in macaques have demonstrated that the levels of MV-infected lymphocytes 

increase exponentially during the first 7–9 days due to viral replication but decrease rapidly 

during the subsequent week with the appearance of MV specific T-cells [46]. 

 

The primary goal of the present study was to test a heterologous INVAC-1 DNA prime – MV-

TERT boost strategy to expand hTERT specific immune responses. As expected for IFNAR 

KO mice, the present findings reiterate the observation that DNA vaccination is weak in this 

background [42,43] compared to our previous work with INVAC-1 DNA on syngeneic or HLA 

Tg mice only [23]. It also should be noted that hTERT specific CD8 T-cell response induced 

by heterologous prime-boost was 2-3 fold higher than the response after one MV-TERT 

immunization (Fig. 5b vs. Fig. 2a). This suggests that INVAC-1 DNA vaccination in 

IFNAR/CD46 mice induced hTERT specific CD8 T-cell repertoires but did not enable their 

expansion, in contrast to MV-TERT immunization. Indeed, low dose of DNA and its adjuvant 

properties are generally efficient to initiate and expand primary immune responses but they are 

less relevant to raise the level of secondary memory responses in contrast of live attenuated 

viral vectors [47]. 

 

This, along with our results, shows that INVAC-1 DNA prime and MV-TERT boost elicit 

hTERT specific and effective CD8 T-cells with Th1 polarization in a mixed response to MV 

[48]. In addition, differences in MV specific T-cell responses observed between a MV-TERT 
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prime and DNA+MV-TERT prime-boost but not observed between MVSchw or MV-TERT 

boost confirm a DNA-activated-immune context. These results open the way to undertaking a 

phase I combination DNA prime, MV boost clinical trial. 
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α/βR-/- mice which lack the type I IFN receptor (gift from M. Aguet, Swiss Institute for 

Experimental Cancer Research, Epalinges, Switzerland). 
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Cell line authentication 

HEK-293-T7-MV cell line was produced, provided and patented by Frédéric Tangy and the 

Institut Pasteur. Vero cells were provided by the American Type Culture Collection (ATCC®) 

under reference number CCL-81™. 

 

Figure legends 

Fig. 1 Recombinant MV-TERT construction and expression 

(a) Schematic maps of the pTM-MV-TERT plasmid. The MV orfs are: N, nucleoprotein; P, 

phosphoprotein including C and V proteins; M, matrix; F, fusion; H, hemagglutinin; L, 

polymerase. T7, T7 RNA polymerase promoter; hh, hammerhead ribozyme; h∂v, hepatitis delta 

virus ribozyme; T7t, T7 RNA polymerase terminator. (b) Western blot of hTERT transgene 

and MV nucleoproteins. -Actin served as loading control. 

 

Fig. 2 Induction of hTERT specific CD8 and CD4 T-cells 
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(a) MV and hTERT CD8 specific T-cell responses were evaluated seven or fourteen days post-

immunization (MVSchw n=4/day; MV-TERT n=6/day) by IFN-γ ELISpot assay with MV or a 

pool of H2-K/Db restricted hTERT specific peptides. (b) IFN-γ ELISpot assay was performed 

using a mix of hTERT specific peptides restricted to HLA-A*0201 on HHD/IFNAR/CD46 

mice seven days post-immunization (MVSchw n=4; MV-TERT n=6) after one week of in vitro 

stimulation with the same peptides. (c) Seven days post-immunization (n=3 mice/group), MV, 

hTERT CD8 and CD4 specific T-cell responses were evaluated using MV, pool of H2-K/Db 

restricted hTERT peptides or individual H2-IAb restricted hTERT peptides. (a, b, c) MV 

stimulation was used as immunization control. Data are represented as mean±SD. Mann 

Whitney non-parametric test against mice control (MVSchw), **p<0.01. (d) Kinetics of 

recombinant MV-Luc replication cycle on IFNAR/CD46 mice (MVSchw n=1; MV-TERT n=5, 

data shown 2/5 mice). 

 

Fig. 3 MV-TERT induces hTERT specific cytotoxic T-cells in vivo 

(a) The disappearance of naive peptide-pulsed-splenocyte in spleens of IFNAR/CD46 mice 

immunized once with PBS, MVSchw or MV-TERT was analyzed by flow cytometry (mean 

data shown per group). Gating was based on FSC/SSC parameters with doublet discrimination. 

Viable single stained cells were analyzed with FITC channel corresponding to CFSE 

fluorescence. (b) Percent killing for p660 (black bars) and p1021 (hatched bars) was calculated 

using cytometry data and was presented as mean±SD (MVSchw n=3; MV—TERT n=5). Mann 

Whitney non-parametric test against mice control (MVSchw), *p<0.05.  

 

Fig. 4 Antibody responses following MV-TERT immunization 

(a, b) Detection of anti-hTERT antibody after MV-TERT prime-boost immunization (before 

immunization (D0) and one month after last immunization (D28 and D49)). Results are 

expressed as mean ratio (R)±SD. Mann Whitney non-parametric test against MVSchw control 

was performed for each day. (c, d) Anti-MV antibody titers detected according the same 

schedule. Results are expressed as mean values±SD determined in serial dilutions of sera. Mann 

Whitney non-parametric test against MVSchw control was performed. (a, c) Data on 

IFNAR/CD46 mice (MVSchw n=3; MV-TERT n=5) and (b, d) on HHD/IFNAR/CD46 

(MVSchw n=4; MV-TERT n=6). 
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Fig. 5 Heterologous DNA prime / MV-TERT boost induced multiple patterns of T-cell 

responses 

(a) Individual hTERT CD8 specific T-cell response at days 0, 7, 14 and 21 post-priming and at 

day 7 post-boost (D28) on PBMCs stimulated with pool of hTERT specific peptides restricted 

to H2-K/Db. Black arrows indicate vaccination. (b) At day 28, MV specific T-cells and hTERT 

specific CD8 T-cells were detected on ficoll-purified splenocytes with MV or pool of hTERT 

specific peptides restricted to H2-K/Db. Data for prime with PBS (n=4), INVAC-1 (n=6) or 

MV-TERT (3 experiments, n=13) (hatched bars) and prime-boost with INVAC-1 + MVSchw 

(n=4) or MV-TERT (n=6) (grey bars) are represented as mean±SD. MV specific T-cell 

stimulation was used as immunization control. Mann Whitney non-parametric test between 

INVAC-1+MV-TERT and INVAC-1 DNA or MV-TERT alone, **p<0.01. (c) At day 28, 

concentration of different cytokines secreted by hTERT specific CD8 T-cells and (d) by MV 

specific T-cells was evaluated using CBA assay. Cytokine concentrations in pg/mL are 

represented as mean±SD. Mann Whitney non-parametric test against mice control (MVSchw), 

*p<0.05; **p<0.01. 
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Tables 

Table 1. hTERT peptides  

 

Following H2 restricted Ubi-hTERT peptides have been predicted in silico; HLA-A*0201 

restricted hTERT peptides were previously described [37,38]. Peptides were used either in 

ELISpot assay, CBA or in vivo cytotoxicity assay according to the strains of mouse. 

 

 

Peptide  Numbered to Sequence MHC Mouse Strain 

429 

Ubi-hTERT 

HAQCPYGVL  
H2-Kb 

IFNAR/CD46 
1034 QAYRFHACVL  

660 RPIVNMDYV 
H2-Db 

1021 QTVCTNIYKI  

85 VCVPWDARPPPAAPS 

H2-IAb IFNAR/CD46 

86 CVPWDARPPPAAPSF 

87 VPWDARPPPAAPSFR 

329 GRQHHAGPPSTSRPP 

1080 MSLGAKGAAGPLPSE 

1082 LGAKGAAGPLPSEAV 

1137 TLTALEAAANPALPS 

1138 LTALEAAANPALPSD 

540 
[37] 

hTERT 

ILAKFLHWL  

HLA-

A*0201 

 

HHD/IFNAR/

CD46 

Y572 
[37] 

YLFFYRKSV  

Y988 YLQVNSLQTV  

UCP2.1 
[38] 

SVWSKLQSI  

UCP4.1 
[38] 

SLCYSILKA  
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