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Volant et al., 2016; Mesa et al., 2017). Heterotrophs feed-
ing on organic compounds may help keep organic levels
low by removing lysates and exudates that can be toxic to
primary producers (Clark and Norris, 1996; Bacelar-
Nicolau and Johnson, 1999; Baker et al., 2004; Xiao
et al., 2013). The AMD prokaryotic communities involved
in key biogeochemical transformations may also be
affected by the presence of protists able to graze on acido-
philic bacteria (McGinness and Johnson, 1992; Johnson
and Rang, 1993; Baker et al., 2004; Volant et al., 2016).
Although AMDs are oligotrophic environments (Dodds
et al., 1998), the abundance of fungi suggests an active
decomposition of organic matter (Amils et al., 2007; Das
et al., 2009; Volant et al., 2016). The identification of genes
coding for a cellulase and an α-amylase in the CARN6 bin
of Carnoulès metagenome further suggests that the
corresponding strain was able to metabolize complex car-
bohydrates (Bertin et al., 2011). Those complex polysac-
charides may originate from components of cell wall and
biofilm but also from potential extraneous sources of
organic matter like dead leaves, plant debris, decaying
wood or bat guano (Bruneel et al., 2011; Johnson, 2012;
Volant et al., 2016). The importance of leaf litter as a
source of energy in woodland streams is well known
indeed (Fisher and Likens, 1973; Iversen et al., 1982;
Siefert and Mutz, 2001) and, in the absence of shredding
invertebrates, fungi are expected to play a major role as
decomposers of complex organic matter (Das et al., 2009).
In this study, we present a comparative analysis of

metatranscriptomic data from two different sampling sta-
tions (Conf and Gal) of the Reigous creek, in the Car-
noulès AMD and from a third station (Ams) situated
downstream in the nearby Amous River (Fig. 1). Our ana-
lyses focus on processes involved in primary production
and litter decomposition, aiming at the identification of
broad trophic patterns and food web relative activities at
each station.

Results and discussion

The first factorial plane of the correspondence analysis
(Fig. 2) represented 89.7% of the total variation of the
data, indicating that the variation across samples of
the relative abundance of orders could be accurately
represented on the first two axes. The first axis, account-
ing for 69.7% of the total variation separated Gal1, Gal2
and Ams1 from all other samples (all Conf samples,
Gal3, Ams2 and Ams3) according to the abundance of
Tremellales reads. Samples from the contaminated Gal
station and from the non-contaminated Amous River
(Ams) were found on both sides of the origin, suggesting
some heterogeneity of the corresponding factor within
the sampling stations independently of their level of
contamination. This heterogeneity of Tremellales read

abundance across samples from the same station may
reflect heterogeneous input of allochtonous organic mat-
ter, dead leaves and plant debris, from the riparian vege-
tation (Fisher and Likens, 1973; Wallace et al., 1999;
Volant et al., 2016). In this study indeed, Tremellales
were essentially represented by the Cryptococcus
genus which includes cellulolytic and ligninolytic primary
decomposers dwelling on dead leaves, decaying wood
and in freshwater (Nakase et al., 1996; Fell et al., 2011;
Prakash et al., 2018). Metatranscript assembly followed
by coding sequence (CDS) prediction and annotation
allowed the identification of laccase, cellulase, chitinase
and α-amylase enzymes belonging to the Cryptococcus
genus. In addition, the taxonomic classification by Kaiju
of reads mapping to the predicted glycoside hydrolase
CDSs (Fig. 3) suggested that Tremellales were the main
decomposers of lignin, cellulose and other glucans. The
degradation of recalcitrant polysaccharides by

Fig 1. Map of the Carnoulès acid mine drainage area. Tailings that
were accumulated during the exploitation of the now abandoned
Pb/Zn mine of Carnoulès are drained by the Reigous creek which
parallels the former mining site before joining the Amous River in the
Fabrègues hamlet. Medium grey-dotted areas represent woodlands
and dense vegetation. Light grey areas represent open land. The
location of the sampling stations in this study – Gal, Conf and Ams –

are represented by a labelled grey disk. The Gal station, situated on
the Reigous closest to the tailings stockpiles, is surrounded by wood-
land. The Conf station is located in open land in the small hamlet of
Fabrègues just before the confluence with the Amous River. The
Ams station is 1200 m downstream the confluence on the Amous
River.



Tremellales would increase the availability of decaying
organic matter as a source of carbon and energy for sec-
ondary decomposers and other heterotrophs. Those
food chains based on detritus decomposition are den-
oted by the term ‘brown food web’, in opposition to the
‘green food web’ driven by primary production
(Allison, 2006; Butler et al., 2008; Zou et al., 2016).
Thus, in areas receiving plant debris, the microbial com-
munities would not be limited by the amount of organic
carbon but by mineral nutrient availability instead, a con-
dition where active cycling of mineral nutrients within the
brown food web would favour decomposers and have a
limiting effect on primary producers (Zou et al., 2016). As
a matter of fact, Fig. 3 shows that the expression of
genes related to photosynthesis and carbon fixation is
lower in samples where the expression of cellulose and
lignin degradation genes by Tremellales is higher com-
pared with other samples of the same station (Gal1 and
Gal2 vs. Gal3, Ams1 vs. Ams2 and Ams3), suggesting
some competition between brown and green food webs
in those samples.

The second axis, representing 20.0% of the total varia-
tion of data distinguished the non-contaminated samples
taken in the Amous River from the contaminated
samples of the Reigous creek, reflecting the influence of
AMD conditions on Conf and Gal microbial communities
in comparison with Ams station. Previous studies have
shown that low-pH conditions constitute the main factor
affecting diversity of microbial communities in AMDs,
although temperature, ionic composition, total organic
carbon, and dissolved oxygen may also have a signifi-
cant influence (Volant et al., 2014; Méndez-García
et al., 2015). In this study, the C:N:P stoichiometry of the
Reigous sediments (Table 1) further suggested an
absence of deficiency of N and P (Hecky et al., 1993). It
is thus expected that primary producers were not in com-
petition with decomposers for mineral nutrients, except in
Gal1 and Gal2 samples where an input of allochtonous
organic matter might have strongly boosted the activity of
Tremellales as suggested above. In Gal3 and Conf sam-
ples where no expression was observed for lignin degra-
dation genes, suggesting they did not undergo any input

Fig 2. Correspondence analysis of taxonomic classification data by Kaiju (Menzel et al., 2016) at the order level, using only orders representing
at least 0.1% of all reads in a sample. The first two dimensions account for 89.7% of the total variance in the data. Gal1, Gal2 and Ams1 are
related to the saprophytic fungi Tremellales (brown food web) along the first axis. Conf samples, as well as Gal3, are associated with a combina-
tion of phyla representative of both green and brown food webs: decomposers (Bacillales, Actinobacteria, etc.) and primary producers such as
Chlorophyta and chemolithotrophic bacteria (Burkholderiales, Nitrosomonadales, etc.). The green food web is strongly represented in Ams2 and
Ams3 samples by photosynthetic orders of the Cyanobacteria phylum or diatoms.



of plant debris, primary production (photosystems and
carbon fixation) is more active indeed than in Gal1
and Gal2 (Fig. 3). The bioavailability of metals and the
very low organic carbon content of sediments would
favour chemolithotrophs able to use metals for energy
production like Burkholderiales, Nitrosomonadales and
other Betaproteobacteria and Gammaproteobacteria.
Photosynthetic organisms like Chlorophyta, Stra-
menopiles, Euglenales and to a lesser extent Cyano-
bacteria and other photosynthetic bacteria were also
active in the Reigous. The primary production of organic
matter would benefit C-limited decomposers whose activ-
ity of organic matter mineralization would in turn profit

primary producers in a synergistic relationship between
the green and brown food webs (Daufresne and
Loreau, 2001; Zou et al., 2016).

The Reigous AMD brown food web was represented
not only by fungi but also by orders of the Bacteroidetes,
Actinobacteria and Firmicutes phyla. Only the order of
Tremellales though was consistently expressing all the
genes coding for glucan degradation enzymes examined
in this study. Bacterial orders of decomposers showed
more specialization towards a few types of glucans only
(Fig. 3). Sphingobacterales and Nitrosomonadales in
Conf1, Pseudonocardiales in Gal1 and Gal2 were all
expressing genes encoding α-glucosidases. However,

Fig 3. Expression values in transcripts by million (TPM) for functional groups of genes by order in each sample created with the rioja 0.8–5 pack-
age in R 3.6.3 (R Core Team, 2020). The colour of squares indicate the sampling station (green = Ams, blue = Conf, brown = Gal) and their size
is proportional to the log10 of the corresponding expression value in TPM. The complete figure is available as Supporting Information Fig. S1.
After merging using the BBMerge program from the BBTools suite, reads were assembled with rnaSpades 3.13.0 (Bushmanova et al., 2019) sep-
arately in one batch per sample. CDSs longer than 240 bases were predicted and translated using TransDecoder 5.5.0 (https://github.com/Trans
Decoder/TransDecoder) and the 128 506 predicted proteins were annotated with Interproscan 5.35–74.0 (Jones et al., 2014) and dbCAN2
version 2.0.1 (Zhang et al., 2018) with the CaZy database (Lombard et al., 2014) as of the 31th of July 2019. The CaZy GH numbers and Interpro
entries used to define the functional groups are given in Supporting Information Table S3. Transcript quantification was performed with Salmon
1.1.0 (Patro et al., 2017) in quasi mapping mode using quality-filtered read pairs from each replicate of each sample separately. Reads mapping
CDSs were kept for each functional group and sample prior to their taxonomic classification by orders with Kaiju. TPM values of each functional
group in every sample were computed for each order as: TPMi,j,k = TPMi,j � fi,j,k, where TPMi,j,k is the TPM value for group i, sample j and order
k, TPMi,j is the TPM value computed by Salmon for group i and sample j, and fi,j,k is the proportion of reads from sample j mapping to CDSs in
group i that were classified as order k by Kaiju.
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the expression of α-glucosidase genes by Cyanobacteria
might be related to the biosynthesis or degradation of
their own storage polymer glycogen instead of decompo-
sition (Shinde et al., 2020). In addition to Tremellales, chi-
tinase genes were expressed in Conf1 by
Streptomycetales, Streptosporangiales and Tissierellales.
Since chitin is an essential compound of the fungal cell
wall, this observation would suggest that Actinobacteria
(Streptomycetales, Streptosporangiales) and Firmicutes
were playing an active role as decomposers of dead fun-
gal cells or as predators of fungi (Chet et al., 1971;
Kumbhar and Watve, 2013; Lacombe-Harvey
et al., 2018; Starke et al., 2020). It is probable as well that
the chitin degradation by Tremellales at all stations may
correspond to the recycling of dead fungal biomass or to
the reorganization of their own cell wall during growth.
Expression of sugar-transport genes could be detected

only for fungi except in Conf1 where it was observed also
for Sphaeropleales, Chlamydomonadales and other Chlo-
rophyta whose order could not be predicted, suggesting
a mixotrophic lifestyle. Sphaeropleales,
Chlamydomonadales and other green algae like
Coccomyxa have been shown indeed to be capable of
heterotrophic or mixotrophic growth with a better yield
than autotrophy when a source of carbon is available
(Laliberté and de la Noüe, 1993; Casal et al., 2010;
Suzuki et al., 2018). Those Chlorophyta may thus have
taken advantage of decomposers’ activity in Conf1 to
enhance their growth and as such would have partici-
pated in both green and brown food webs.
The impact of pollution from the Reigous AMD on the

Amous River was considerably attenuated at the Ams
station, 1.2 km downstream from confluence (Table 1).
The C:N:P stoichiometry of the Amous River sediments
was quite typical of a primary stream and suggested a
moderate limitation of phytoplankton by N and P (Hecky
et al., 1993). This limitation by mineral nutrients would
imply a competition between the green and brown food
webs with an outcome depending upon various factors
that could not be addressed in this study, like predation
rate or nutrient release (Zou et al., 2016). Expression of
photosystem genes was very active in the Amous River
samples for a wide range of microorganisms: Cyano-
bacteria, Stramenopiles, Rhizaria, Rhodophyta, Chlo-
rophyta, Glaucocystophyceae, Haptophyceae,
Euglenales (Fig. 3). Along with the larger proportion of
photosystem-related CDSs assembled from Ams sam-
ples compared with Conf and Gal (Supporting Information
Table S4), this would suggest dominance of the green
food web in the Amous River.
Fish, like the common roach or the perch, are known

to have a beneficial effect on primary producers, directly
by providing mineral nutrients through their excretions
and indirectly through predation on grazing

microcrustaceans (Carpenter and Kitchell, 1993; Brett
and Goldman, 1996; Attayde and Hansson, 2001; Dan-
ger et al., 2012; Zou et al., 2016). Conditions encoun-
tered in the Amous River allowed for the presence of fish
(Casiot et al., 2009) and the green food web may thus
benefit from their presence. This sharply contrasted with
Gal1 and Gal2 where the brown food web outcompeted
the green food web. Fish are absent from Gal station due
to the low pH, and the presence of metals like iron, man-
ganese, aluminium and arsenic, zinc, lead, copper. In
particular, aluminium concentrations in the Reigous AMD
are largely superior to those shown to cause death of fish
with a high probability (Witters, 1986; Gagen et al., 1993;
Baldigo and Murdoch, 1997; Baldigo et al., 2020).
Bacterivorous protozoa like Ciliophora, Amoebozoa,
Choanoflagellida and Kinetoplastida – identified by Kaiju
in larger proportions in Ams than in Conf and Gal
(Supporting Information Fig. S2) – may also have a posi-
tive effect on phytoplankton growth by reducing the
amount of mineral nutrients trapped in the brown food
web (Caron et al., 1988; Ferrier and
Rassoulzadegan, 1991; Saleem et al., 2016; Zou
et al., 2016).

Although all photosynthetic phyla were represented in
both the Amous River and Reigous AMD, the second
dimension of the correspondence analysis clearly indi-
cated that microbial photosynthetic activities were char-
acterized by Cyanobacteria at Ams and Chlorophyta at
Conf (Fig. 2). It is probable that this difference could not
be strictly attributed to the higher arsenic contamination
at Conf since cyanobacterial photosynthetic activity was
observed in all Reigous samples. The C:N ratios of 9.0 at
Ams and 4.5 at Conf indicated that phytoplankton might
be moderately limited by nitrogen in the Amous River but
not at Conf (Hecky et al., 1993). The expression of nitro-
genase nifH gene by Nostocales and other bacteria
observed at Ams (Fig. 3) further suggested that nitrogen
fixation might have contributed to the relative success of
Cyanobacteria in the Amous River by allowing them to
use dinitrogen, a source of nitrogen that Chlorophyta are
unable to tap.

We have performed here a metatranscriptomic analysis
on sediments from the Carnoulès AMD and the nearby
Amous River, focussing on processes related to primary
production, litter decomposition and trophic interactions.
Both green and brown food chains comprise several tro-
phic levels from primary producers or decomposers up to
top predators. Although nutrient cycling can occur
actively within a food chain (Caron et al., 1988; Attayde
and Hansson, 2001; Leroux and Loreau, 2010; Berdjeb
et al., 2011), green and brown food webs are coupled by
nutrient fluxes (Polis and Strong, 1996; Rooney
et al., 2006; Boit et al., 2012; Cherif and Loreau, 2013;
Mougi, 2020). The activity of one food web may generate



cascading effects that can influence the activity and pro-
duction of trophic levels in the other one (Carpenter
et al., 1985; Carpenter and Kitchell, 1993; Leroux and
Loreau, 2010; Zou et al., 2016). Bacterivorous protists for
instance may reduce the amount of mineral nutrients
trapped in the brown food web, making those
nutrients more available to phytoplankton (Caron
et al., 1988; Ferrier and Rassoulzadegan, 1991; Saleem
et al., 2016; Zou et al., 2016). Thus, depending upon
resource availability and community structure, the direct
and indirect interactions between decomposers and pri-
mary producers will result in either synergy or competition
(Caron et al., 1988; Daufresne and Loreau, 2001;
Daufresne et al., 2008). Originally developed to describe
macroecosystems, these notions have since been
extended to microorganisms, which play a major role in
detritus decomposition and primary production (Steffan
and Dharampal, 2019). In this study, the C-limited
Reigous AMD microbial community generally achieved a
synergistic relationship between the green and brown
food webs. Competition for mineral nutrients would occur
though if the resource balance was disturbed by
allochtonous input of organic matter, strongly favouring
decomposers. In the uncontaminated Amous River, the
translocation of organic matter by metazoa would extend
the carbon cycle well beyond the microbial community in
comparison with the Reigous AMD, with a different out-
come to the competition for mineral nutrients in favour of
the green food web. In this regard, microbial communities
might be significantly affected by their surroundings.
Extending the scope of the study beyond the mere sam-
pling points would integrate microorganisms into a more
complete network of interdependence within a meta-
ecosystemic point of view. Interactions between microor-
ganisms and macroorganisms play an important role in
natural ecosystems and the disruption or disturbance of
these interactions in anthropized contaminated environ-
ments may have dramatic effects on the structure and
activity of microbial communities. We thus suggest that
the interpretation of metatranscriptomic data should con-
sider information about the surroundings of the studied
ecosystem in order to gain a better insight of microbial
communities’ activity. In our time of global warming and
biological diversity crisis, this may be of crucial impor-
tance for a better understanding and management of the
effects that anthropic perturbations of the Earth micro-
biota may have, directly or not, on soil fertility and water
quality.
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