
HAL Id: pasteur-03220556
https://pasteur.hal.science/pasteur-03220556

Submitted on 7 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International
License

Paradiseo: From a Modular Framework for Evolutionary
Computation to the Automated Design of

Metaheuristics
Johann Dreo, Arnaud Liefooghe, Sébastien Verel, Marc Schoenauer, Juan J.

Merelo, Alexandre Quemy, Benjamin Bouvier, Jan Gmys

To cite this version:
Johann Dreo, Arnaud Liefooghe, Sébastien Verel, Marc Schoenauer, Juan J. Merelo, et al.. Paradiseo:
From a Modular Framework for Evolutionary Computation to the Automated Design of Metaheuris-
tics: 22 Years of Paradiseo. GECCO 2021 - Genetic and Evolutionary Computation Conference,
ACM Sigevo, Jul 2021, Lille / Virtual, France. pp.1522-1530, �10.1145/3449726.3463276�. �pasteur-
03220556�

https://pasteur.hal.science/pasteur-03220556
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://hal.archives-ouvertes.fr

Paradiseo: From a Modular Framework for Evolutionary

Computation to the Automated Design of Metaheuristics

—22 Years of Paradiseo—

Johann Dreo1, Arnaud Liefooghe2, Sébastien Verel3, Marc Schoenauer4, Juan J. Merelo5,
Alexandre Quemy6, Benjamin Bouvier7, and Jan Gmys8

1Systems Biology Group, Depepartment of Computational Biology, USR 3756, Institut Pasteur and CNRS, Paris,
France. johann@dreo.fr —Corresponding author.

2Univ. Lille, CNRS, Inria, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille. arnaud.liefooghe@univ-lille.fr
3 Univ. Littoral Côte d’Opale, Calais, France. verel@univ-littoral.fr

4TAU, Inria, CNRS & UPSaclay, LISN, Saclay, France. marc.schoenauer@Inria.fr
5University of Granada, Granada, Spain. jjmerelo@gmail.com

6Poznan University of Technology, Poznan, Poland. alexandre.quemy@gmail.com
7public@benj.me

8Inria, Lille, France. jan.gmys@inria.fr

Abstract

The success of metaheuristic optimization methods
has led to the development of a large variety of al-
gorithm paradigms. However, no algorithm clearly
dominates all its competitors on all problems. In-
stead, the underlying variety of landscapes of opti-
mization problems calls for a variety of algorithms to
solve them efficiently. It is thus of prior importance
to have access to mature and flexible software frame-
works which allow for an efficient exploration of the
algorithm design space. Such frameworks should be
flexible enough to accommodate any kind of meta-
heuristics, and open enough to connect with higher-
level optimization, monitoring and evaluation soft-
wares. This article summarizes the features of the
Paradiseo framework, a comprehensive C++ free soft-
ware which targets the development of modular meta-
heuristics. Paradiseo provides a highly modular archi-
tecture, a large set of components, speed of execution
and automated algorithm design features, which are
key to modern approaches to metaheuristics develop-
ment.

1 Introduction

In the research domain of metaheuristics for black-
box optimization, a very large variety of algorithms
has been developed since the first Evolution Strategies
appeared in 1965 [31]. Starting from nature-inspired
computing methods and following recent mathemat-

ical approaches, numerous applications have shown
the efficiency of those randomized search heuristics.
However, following Wagner et al. [33], we observe that
the metaheuristic research domain lacks mature soft-
ware, while it is crippled with short-lived research
prototypes on over-specific features sets. We believe
this state hinders the adoption of those technologies
in the industrial world and is an obstacle to break-
through innovations. Therefore, the development of a
full-featured and mature metaheuristic optimization
framework is of prior importance, for both the scien-
tific and the applied communities. In this article, we
summarize our efforts towards this goal, in the guise
of the Paradiseo project.

The Paradiseo framework is a 22 years old effort
which aims at developing a flexible architecture for
the generic design of metaheuristics for hard opti-
mization problems. It is implemented in C++, a very
mature object-oriented programming language,which
is probably one of the fastest, if not the fastest,
object-oriented programming platforms on the mar-
ket [19, 30, 28]. It is also highly portable and ben-
efits from very extensive tooling as well as an active
community. Paradiseo is released as a free and open-
source software, under the LGPL-v2 and CeCILL li-
censes (depending on the module). Its development
is open and the source code is freely available on the
Inria1 and Github2 code repositories.

1https://gitlab.inria.fr/paradiseo/paradiseo
2https://github.com/jdreo/paradiseo

1

https://gitlab.inria.fr/paradiseo/paradiseo
https://github.com/jdreo/paradiseo

1.1 History

The “Evolving Objects” (EOlib, then simply EO)
framework was started in 1999 by the Geneura team
at the University of Granada, headed by Juan Julián
Merelo. The development team was then reinforced
by Maarten Keijzer, who designed the current mod-
ular architecture, and Marc Schoenauer [21]. Later
came Jeroen Eggermont, who, among other things,
did a lot of work on genetic programming, Olivier
König, who did a lot of useful additions and cleaning
of the code, and Jochen Küpper.

The Inria Dolphin team, headed by El-Ghazali
Talbi, did a lot of contributions starting from around
2003, on their own module collection called Paradiseo.
Thomas Legrand worked on particle swarm optimiza-
tion, the regretted Sébastien Cahon and Nouredine
Melab worked on parallelization modules [7, 6, 4, 5].
Arnaud Liefooghe and Jérémie Humeau worked a lot
on the multi-objective module [24] and on the local
search one along with Sébastien Verel [18]. In the
same team, C. FC.3 and Jean-Charles Boisson made
significant contributions.

The (then) EO project was taken over by Johann
Dreo, who worked with the help of Caner Candan on
adding the EDO module. Johann and Benjamin Bou-
vier have also designed a MPI parallelization module,
while Alexandre Quemy also worked on paralleliza-
tion code.

In 2012, the two projects (EO and Paradiseo) were
merged into a single one by Johann Dreo, Sébastien
Verel and Arnaud Liefooghe, who have been acting
as maintainers ever since.

In 2020, automated algorithm selection design and
binding toward the IOHprofiler validation tool were
added by Johann Dreo.

Along the life of the project, several spin-off soft-
ware have been developed, among which a port of
the EO module in Java [1], another one in ActiveX4;
GUIDE, a graphical user interface for assembling al-
gorithms [10]5, and EASEA, a high-level declarative
language for evolutionary algorithm specification [9],
which later became independent [26] of the specific
library.

1.2 Related Frameworks

The 1998’s version of the hitch-hiker’s guide to evo-
lutionary computation (frequently asked question in
the comp.ai.genetic Usenet newsgroup6) already

3Redacted by author’s demand.
4http://geneura.ugr.es/~jmerelo/DegaX/
5Which also supported ECJ.
6Discussion forum which was popular before the World

Wide Web and social networks. http://coast.cs.purdue.

Table 1: Main software frameworks for evolutionary
computation and metaheuristics. Fastest languages
are figured in green and slowest in red, copyleft li-
censes are in red. “kloc” stands for “thousands of
lines of code”.

N
am

e

L
an

g
u

ag
e

U
p

d
at

e

L
ic

en
se

C
o

n
tr

ib
u

to
rs

kl
o

c

E
vo

l.

E
D

A
s

P
S

O

L
o

ca
l

S
ea

rc
h

C
lu

st
er

M
u

lt
ic

o
re

G
P

G
P

U

M
u

lt
io

b
je

ct
iv

e

L
an

d
sc

ap
es

S
ta

te
s

A
u

to
.

D
es

ig
n

ParadisEO C++ 2021 LGPLv2 33 82 Y Y Y Y Y Y ~ Y Y Y Y
jMetal Java 2021MIT 29 60 Y N Y N Y N N Y N ? N
ECF C++ 2017MIT 19 15 Y N Y N Y N N N N Y N
ECJ Java 2021AFLv3 33 54 Y Y Y N Y Y Y Y N Y N
DEAP Python 2020 LGPLv3 45 9 Y N N N Y Y N Y N Y N
CIlib Scala 2021Apachev2 17 4 Y N N N N N N N N ? N
HeuristicLab C# 2021GPLv3 20 150 Y N Y Y Y Y N Y ~ Y N
Clojush Clojure 2020EPLv1 17 19 Y N N N N N N N N N N

lists 57 software packages related to the implementa-
tion of evolutionary algorithms (among which EOlib,
the ancestor of Paradiseo).

Most of those software are now unmaintained or
impossible to find. There has been, however, a con-
stant flow of new frameworks, library or solvers every
year, for decades. We were able to find at least 47
of them readily available on the web7. Among those
projects, only 8 met all the following criteria:

1. open-source framework aiming at designing algo-
rithms8,

2. being active since 2015,

3. having more than 15 contributors.

The features of those main frameworks are compared
in Table 1, where the number of lines of code was com-
puted with the cloc tool9. Note that for HeuristicLab,
the code for the GUI modules was excluded from the
count. The GPGPU module of Paradiseo [27] is not
counted either, as it is not maintained anymore. The
number of contributors has been retrieved from the
code repository’s commit histories, which underes-
timates the number of people involved in the case
of Paradiseo; the extracted number is however kept,
for fairness in comparison with the other frameworks,
that might face a similar bias.

Among the software close in features to Paradiseo,
ECF has not been updated in 4 years. ECJ, jMetal

edu/pub/doc/EC/FAQ/www/Q20.htm
7Paradiseo, jMetal, ECF, OpenBeagle, Jenetics, ECJ,

DEAP, CIlib, GP.NET, DGPF, JGAP, Watchmaker, Gen-
Pro, GAlib, HeuristicLab, PyBrain, JCLEC, GPE, JGAlib,
pycma, PyEvolve, GPLAB, Clojush, µGP, pySTEP, Pyvolu-
tion, PISA, EvoJ, Galapagos, branecloud, JAGA, PMDGP,
GPC++, PonyGE, Platypus, DCTG-GP, Desdeo, PonyGE2,
EvoGrad, HyperSpark, Nevergrad, Pagmo2, LEAP, Operon,
EMILI, pso-de-framework, MOACO.

8Libraries of solvers, like Pagmo2 or Nevergrad, do not
match this criterion.

9version 1.82 of https://github.com/AlDanial/cloc

2

http://geneura.ugr.es/~jmerelo/DegaX/
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
http://coast.cs.purdue.edu/pub/doc/EC/FAQ/www/Q20.htm
https://github.com/AlDanial/cloc

are close competitors, albeit programmed in Java,
which is expected to run near 2.6 times slower than
programs in C++10, a key drawback for automated
algorithm design (see Section 4.3). HeuristicLab suf-
fers from the same drawback, but provides a graphi-
cal user interface for the run and analysis of solvers.
Paradiseo does not provide such a GUI, but relies on
dedicated third-party tools for this kind of function-
ality (see [10] and Section 4.3). The other frameworks
do not provide the same level of features and use lan-
guages that are generally slower than C++ [28].

2 Architecture

From its inception [29], Paradiseo opted for an original
architecture design, exemplified by its name, “Evolv-
ing object”, as opposed to a procedural or functional
view of the algorithm. In this section, we expose first
the main concepts used in its architecture, to focus
next on the design patterns that have been used in it,
giving it room for evolution and improvement along
the years.

2.1 Main Concepts

The core of Paradiseo is formed by the EO module,
which has been designed for general evolutionary al-
gorithms. Most of its core concepts are used across
the other modules and are named after its vocabu-
lary:

Encoding: The data structure modelling a solution
to the optimization problem (which type is gen-
erally denoted EOT).

Evaluation: The process of associating a value to a
solution, thanks to an objective function.

Fitness: The value of a solution as seen by the ob-
jective function.

Operator: A function which reads and/or alters a
(set of) solutions.

Population: A set of solutions.

2.2 Main Design Patterns

Paradiseo is a framework, providing a large set of com-
ponents that the user can assemble to implement a
solver. To facilitate and enforce the design and use of
components, Paradiseo is based on four main design

10Following the ”n-body” setup of the ”Computer Lan-
guage Benchmarks Game”, which is the closest problem to
our setting: https://benchmarksgame-team.pages.debian.

net/benchmarksgame/performance/nbody.html

patterns: Functor, Strategy, Generic Type and Fac-
tory. Figure 1 shows a high-level view of the global
design pattern.

Interface
+operator()(args…)

encoding:EOT

OperatorSemantic
+operator()(args…)

:EOT

Operator
+parameters…

+operator()(args…)
{manipulates any EOT}

:EOT

OperatorAggregate
+parameters…
+operator: OperatorSemantic&

+operator()(args…)

:EOT

Figure 1: UML diagram of a high-level view of the
main design pattern used in the Paradiseo framework.

Functor: In Paradiseo, most of the operators are
functions (exposing the operator() interface)
holding a state between calls [32, 21]. Member
variables of the functors are either parameters
or references to other functors, involved in the
computation.

Strategy: Operators can be composed to form an-
other one. For instance, an eoAlgo is essentially
an operator holding a loop which calls other
operators. These operators must then honor
an interface, which provides the semantic of
the underlying operation [14]. For instance, an
eoSelectOne exposes the interface to pick a solu-
tion within a population: const EOT& operator()(

const eoPop<EOT>&).

Generic type: Almost all the operators in Paradiseo
are defined over a EOT template holding the en-
coding of a solution to the optimization prob-
lem. This allows for two crucial features: (i) the
user can provide her own data structure, without
major redesign, and (ii) any operator deep in the
call tree may have access to any specific interface
of the encoding [32]. This was one of the earli-
est decisions taken, and was already presented in
[21].

Factory: As many operators are abstracted through
their interfaces, Paradiseo provides ways to man-
age them as collections or high-level aggregates,
so that the user does not have to manage the
details. For instance, Paradiseo provides clas-
sical stopping criterion collections or on-the-fly
instantiation (see also Section 4.3).

With this approach, Paradiseo is enforcing the use of
composition of objects, limiting the use of inheritance

3

https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/nbody.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/performance/nbody.html

to interfaces (generally of abstract classes). One of
the main goals of the framework is to be able to eas-
ily compose new algorithms, by (i) reusing existing
common features (logging, parallelization, state seri-
alization, etc.) and (ii) assembling existing algorith-
mic operators, for instance by hybridizing algorithms.

Figure 2 shows an example of the core concepts
which a user may see: the EO class, from which a
solution to the optimization problem will inherit the
interface necessary to be used across the operators,
and a set of operator interfaces and implementations,
which define an algorithm.

3 Modules

Paradiseo targets modular algorithms and is thus or-
ganized in several modules: Evolving Objects (EO)
for population-based algorithms such as evolutionary
algorithms and particle swarm optimization, Moving
Objects (MO) for local search algorithms and land-
scape analysis, Estimation of Distribution Objects
(EDO) for estimation of distribution algorithms, and
Multi-Objective Evolving Objects (MOEO) for multi-
objective optimization. Each module brings its own
specific concepts and features, on top of the common
core features provided in the EO module. The follow-
ing sections summarize this organization.

3.1 Evolutionary and Particle Swarm
Algorithms — EO

The EO module defines a number of common opera-
tors which are used across all the framework:

Evaluation of populations: Operators which call
the objective function for a set of solution. With
several parallelization options [7, 6, 4, 5].

Initialization: Operators which generate solutions,
out of the optimization loop (generally at ran-
dom).

Continue: A stopping criterion which returns false

if the iteration loop of an algorithm is to be
stopped.

Checkpoints: A generic operator which is called at
each iteration (for instance to collect statistics).

Updater: A generic operator which can update a
parameter.

State: A serialization of a state of an algorithm.

Wrappers: Operators which transform a (set of) op-
erators as another one.

Generic encodings: Some solution representations
which are often used when solving optimization
problems, like numerical vectors, binary vectors,
trees, permutations.

Parameters: An abstraction of parameters, which
can be used for command line interfaces, state
management and dynamic algorithms.

Those features are generally used by the following
modules.

The EO module holds the following necessary
classes to implement evolutionary algorithms, as il-
lustrated in Figure 3 (lower part):

Selection: Operators which pick (a set of) solu-
tions within a population. Two levels are avail-
able: operators which pick a single solution
(eoSelectOne interface), and operators which se-
lect more than one solution (eoSelect).

Variation: Operators which generate new solutions
by altering existing ones. They are generally
called “mutations”, when they alter a single so-
lution, and “crossover” when they alter two or
more solutions at once. Both types return a
boolean which is true if an alteration has actually
been done.

Replacement: Operators which merge two popula-
tions, typically “parents” with “offsprings” (pro-
duced by the alteration of parents with variation
operators).

Algorithms: High-level operators which manipu-
late a population generated at initialization, and
iteratively apply a set of operators until a stop-
ping condition is satisfied.

More information on the design of evolutionary algo-
rithms within Paradiseo-EO can be found in [21].

EO also defines classes which target particle swarm
optimization algorithms:

Particle: An interface on top of the EO class, which
defines a freely moving particle.

Velocity: Operators which control the speed at
which a particle is moving.

Flight: Operators which control the next position at
which the particle will be.

3.2 Local Search and Landscape Anal-
ysis — MO

The MO module adds an interface which can manage
single solutions instead of populations, mainly provid-
ing a fine-grained level of abstraction, following the

4

eo[Bin|Mon|Quad]Op
:EOT

EO
+fitness: F

+fitness(): F
+fitness(fitness:F)
+invalidate()
+invalid(): bool
+operator<(other:EO<F>): bool

fitness:F

eoObject
+className(): string

eoPersistent
+readFrom(input:istream)

eoPrintable
+printOn(output:ostream)

eoScalarFitness
+operator<(other:T): bool

scalar:T
comp:CMP

eoDualFitness
+operator<(other:T): bool

scalar:T
comp:CMP

eo[U|B]F
+operator()(args…:EOT): bool

encoding…:EOT…
returns:bool

eoAlgo
:EOT

eoFastGA
+_crossover: eoQuadOp
+_mutation: eoMonOp
+_select_cross: eoselectOne
+_select_aftercross: eoSelectOne
+_select_mut: eoSelectOne
+_replace: eoReplacement
+_continue: eoContinue
+_pop_eval: eoPopEvalFunc
+_rate_crossover: double
+_rate_mutation: double
+_offspring_size: double

+operator()(pop:eoPop<EOT>)

:EOT

eoSelectOne
+operator()(pop:eoPop&): EOT&

:EOT

eoReplacement
+operator()(par:eoPop&,off:eoPop&)

:EOT

eoContinue
+operator()(pop:eoPop&): bool

:EOT

eoPopEvalFunc
+operator()(eoPop&,eoPop&): bool

:EOT

Figure 2: General overview of the main classes involved in assembling one of the Paradiseo-EO algorithms.
Concrete class implementations manipulated by the user are shown in dark gray. Interfaces which define
generic behavior are figured in white. Low-level convenience classes provided by the framework are figured
in light gray.

same components as the EO module. It also adds the
important concept of incremental evaluation, to allow
the design of objective functions which compute the
value of a solution based on the application of a move
to an already evaluated solution. The objective func-
tion can thus take into account only the sub-parts of
the solutions that have been altered, effectively im-
proving the computation time. Those operators are
tightly coupled with neighborhoods, which are varia-
tion operators applied to single solutions.

The MO module additionally provides components
to sample the search space and estimate statistics for
characterizing the fitness landscape of the problem
in terms of features, such as the density of states,
the fitness distance correlation, the autocorrelation
function, the length of adaptive walks, the landscape
neutrality, or the fitness cloud [17, 11]. More infor-
mation about local search and landscape analysis in
Paradiseo-MO can be found in [18].

3.3 Multi-Objective Optimization —
MOEO

The MOEO module adds the necessary features to
handle multi-objective optimization [8, 35]:

Fitness assignment: Large set of operators which
convert raw objective values into ranks or fitness
values used for selection and replacement. They
include state-of-the-art scalarizing-, dominance-
and indicator-based approaches.

Diversity preservation: Operators which main-

tain diversity in the population, seeking for well-
spread and uniformly-distributed solutions in the
objective space.

Selection: Operators which combine the ones above
in order to guide the population towards Pareto-
optimal solutions.

Archive: Secondary population which maintains
non-dominated solutions.

Performance metrics: Quality indicators com-
puted over populations or archives to measure
solution quality in multi-objective optimization.

More information about the Paradiseo-MOEO mod-
ule, and how to design multi-objective local search
and evolutionary algorithms in Paradiseo are detailed
in [24].

3.4 Estimation of Distribution —
EDO

The EDO module encompasses the features to man-
age population-based algorithms which have an ex-
plicit state from which the population is derived at
each iteration.

Distribution: A template, wrapping the encoding
EOT and holding the data structure representing
a probability distribution.

Estimator: Operators which compute distribution
parameters from a given population.

5

populationEstimator

Distrib

po
pu

latio
n

Sampler

Repairer

Stop. criteria?

Modifier

Best solution

Best solution

Evaluation

Selection

Stop. criteria?

Replacement

Best solution

Parents

Genitors

O
ffs

pr
in

gs
Initialization

Estimator

Sampler Distrib
Stop. criteria?

Figure 3: Modular estimation of distribution algo-
rithm as seen from Paradiseo-EDO. The lower part of
the diagram is the modular evolutionary algorithm
loop. EDO adds a set of operators to replace “im-
plicit” variation operator by “explicit” ones. The
operators managing the probability distribution are
shown in orange.

Sampler: Operators which compute a population
from a given distribution.

Several other operators allow to manipulate and com-
bine those objects and to plug them within EO evo-
lutionary algorithm’s variation operator, as shown on
Figure 3.

4 Key Features

4.1 Modular Algorithms

The main feature of Paradiseo is to provide a large
set of modular algorithms, which are assembled from
a large variety of operators. This is motivated by the
fact that there exists a large diversity of optimization
problems, which would be more efficiently solved by
specific algorithms rather than generic ones.

It is thus of prior importance to be able to easily ex-
plore the design space of algorithms, in order to find
the best one for a given problem. Having a large set of
reusable components is key to allow the practitioner
to quickly try new algorithm variants, which may not
have been tested yet. New ideas can also be experi-
mented with minimum effort, by allowing the user to
focus on a single (new) component. Figure 4 shows
a simple example of a modular genetic algorithm (in-
spired from [12]), which allows for the instantiation of
1 630 475 different algorithm instances. In that case,
an algorithm instance is a combination of parameter-
ized operators, with varying functions and/or param-
eters11. Of course, considering the whole footprint of
Paradiseo would allow for far larger design space.

It is also worth noting that the hybridization of two
algorithms in Paradiseo is as simple as encapsulating
operators with a similar interface. For instance, it is
straightforward to use a local search algorithm imple-
mented with MO as a variation operator of an evolu-
tionary algorithm implemented with EO, then ending
up with a so-called memetic algorithm.

Moreover, this modular architecture facilitates a
fair comparison of algorithms in practical use cases,
where wall-clock performance is of prior importance;
e.g., for applications involving interactions with a hu-
man. In such a case, having a common code base
helps conducting more unbiased studies.

4.2 Fast Computations

Paradiseo is one of the few optimization frameworks
written in C++, a compiled programming language
known for its runtime speed. Moreover, its design is

11Generally numerical or integer parameters, sometimes
boolean or categorical ones.

6

Replacement

Selection

<<Bits>>
Mutations

<<FixedLength>>
Crossovers

eoFastGA
+rate_crossover: double
+rate_mutation: double
+crossover: eoQuadOp
+select_aftercross: eoSelectOne
+select_cross: eoSelectOne
+select_mut: eoSelectOne
+mutation: eoMonOp
+replace: eoReplacement

eoRandomSelect

eoSequentialSelect

eoDetTournamentSelect
+tour_size = [2,6,… 11[

eoStochTournamentSelect
+tour_rate = 0.5

eoProportionalSelect

eo1PtBitXover

eoUBitXover
+preference = [0.1, 0.3,… 1[

5

eoNPtsBitXover
+num_points = [1,3,… 10[

11

5

eoDetSingleBitFlip
+num_bits = [1,2,…11[

[0, 0.2, 0.4,…1]

5
5

5

eoUniformBitMutation
+rate = 1

eoStandardBitMutation
+rate = 1

eoConditionalBitMutation
+rate = 1

eoShiftedBitMutation
+rate = 1

eoNormalBitMutation
+rate = 1

eoFastBitMutation
+rate = 1

11

5

3

7
1

7

eoPlusReplacementeoCommaReplacement

eoSSGAWorseReplacement

eoSSGAStochTournamentReplacement
+tour_rate = [0.51,0.71,0.91]

eoSSGADetTournamentReplacement
+tour_rate = [2,4,…11[

3

11

5

Figure 4: Example of relationships between an algorithm template (eoFastGA) and its related operators. Each
package box groups alternative operators which may be used for the corresponding step of the algorithm.

thought to directly plug components at compile time
rather than relying exclusively on dynamically-run
conditional expressions.

A typical rationale in black-box optimization is to
state that the efficiency of the algorithm computa-
tions is not a concern, because in real cases the ob-
jective function dominates the runtime. While this is
true in essence, this argument forgets that, during the
design phase of algorithms, practitioners most often
do not use complex objective functions, but synthetic
ones, which are very fast to compute. In that case,
fast computation means fast design iterations.

For example, a CMA-ES algorithm imple-
mented with Paradiseo is 10 times faster than its
heavily optimized counterpart implemented with
Python/Numpy, when solving a standard synthetic
benchmark. Those measures are obtained using the
reference implementation of CMA-ES available in
the pycma package12, solving the Black-Box Opti-
mization Benchmark (BBOB [15]) of the COmpar-
ing Continuous Optimizers (COCO13) platform [16].
The Paradiseo implementation14 used the indepen-
dent implementation of BBOB available on the
IOHexperimenter15 platform [13]. Both benchmarks
are implemented in C/C++. Running algorithms
on the whole benchmark, on a single Intel Core
i5-7300HQ at 2.50GHz with a Crucial P1 solid-

12Version 3.0.0 of https://github.com/CMA-ES/pycma
13Version 2.3.2 of https://github.com/numbbo/coco
14Version 640fa31 of https://github.com/nojhan/

paradiseo
15Version 2395af4 of https://github.com/nojhan/

IOHexperimenter

state disk, takes approximately 10 minutes with
pycma/COCO, and only 1 minute with the Par-
adiseo/IOH implementation.

In addition, the Symmetric Multiprocessing mod-
ule (SMP) allows to wrap any operator called within
a loop transparently to fully make use of CPU cores.
The master-worker model has been shown to scale
(near) linearly with the number of cores, while having
a low communication overhead. SMP also provides a
parallel island model [34] that speeds up algorithm
convergence while maintaining diversity.

At last, we argue that fast computations of the al-
gorithm and objective function are necessary features
to facilitate automated algorithm design, where an al-
gorithm is itself in charge of finding the most appro-
priate variant of an algorithm [22], learn what is the
best algorithm for a given benchmark [20], or even a
given problem fitness landscape [23, 3, 11]. In that
case, running an assembled algorithm on a bench-
mark is the objective function of the design prob-
lem, and its computation time determines the scale
at which the experiment can be conducted. This fea-
ture is discussed in more detail below.

4.3 Automated Algorithm Design

Automated algorithm design features are recent addi-
tions to Paradiseo. They target the ability to assemble
algorithms at runtime without loss of performance,
and easy bindings with benchmarking and algorithm
selection tools. Figure 5 shows the global setting,
which is detailed in this section.

7

https://github.com/CMA-ES/pycma
https://github.com/numbbo/coco
https://github.com/nojhan/paradiseo/commit/640fa31fb510d620cc0aef069dce2c615aee2a80
https://github.com/nojhan/paradiseo
https://github.com/nojhan/paradiseo
https://github.com/nojhan/IOHexperimenter/commit/2395af46ca23273b800978c41dde0196039fe16e
https://github.com/nojhan/IOHexperimenter
https://github.com/nojhan/IOHexperimenter

IOHexperimenter

ParadisEO

<<Bits>>

eoAlgoFoundryFastGA
+crossover_rates: {double}
+crossover_selectors: {eoSelectOne}
+crossovers: {eoQuadOp}
+aftercross_selector: eoSelectOne
+mutation_rates: {double}
+mutation_selectors: {eoSelectOne}
+mutations: {eoMonOp}
+replacements: {eoReplacement}
+offspring_sizes: {size_t}
+eval: eoEvalFunc<Bits>

+select(encoded_algo:vector<int>)
+operator()(pop:eoPop<Bits>)

IOH_ecdf_logger
+target_range: RangeLinear
+budget_range: RangeLinear

+data(): IOH_AttainSuite

IOH_csv_logger

IOH_observer_combine
+vector<IOH_logger>

IOH_logger

+do_log(problem_info)

<<Bits>>

eoEvalIOHproblem
+pb: IOH_problem
+log: IOH_observer

+operator()(sol:Bits)

<<Bits>>

IOH_problem

W_Model_OneMax
+epistasis: int
+neutrality: int
+ruggedness: int
+max_target: int
+dimension: int

+operator()(sol:Bits): double

IOH_ecdf_sum

+operator()(ecdf:IOH_AttainSuite): double

After run

<<Bits>>

eoEvalFunc

fastga

+run(--problem:int,
 --pop-size:size_t,
 --crossover-rate:int,
 --cross-selector:int,
 --crossover:int,
 --aftercross-selector:int,
 --mutation-rate:int,
 --mut-selector:int,
 --mutation:int,
 --replacement:int,
 --offspring-size:size_t)

Select, Run

irace

+run()

Figure 5: Flow of information involved in automated algorithm design, starting with irace calling an exe-
cutable interface (white box), to instantiate and run a Paradiseo algorithm (red boxes), which will call an
IOHexperimenter problem (blue boxes) while being observed by a logger (green boxes). The final performance
is computed (cyan box) and returned to irace.

On-the-fly Operator Instantiation with
Foundries Foundries are “Factory” classes which
allow to instantiate a parameterized operator, chosen
among a set of operators having the same interface.
The user can indicate which classes and parameters
should be managed and a foundry is responsible
for instantiating when it is called with the index
of the operator to be instantiated. This allows for
simple numerical interfaces with algorithm selection
solvers (i.e. generic hyper-parameters tuning). An
algorithm foundry is thus a generic meta-algorithm,
which can instantiate and call an actual algorithm
class. It follows the same interface as an algorithm,
but models the operators of this algorithm as
operator foundries rather than references to operator
instances. Those operator foundries are responsible
for instantiating the operator when asked to do so.
Figure 6 shows the classes involved.

An end-user willing to find the best algorithm vari-
ant for her needs would need to select a subset of pa-
rameterized operators of interest and add them to the
foundry. Then, it is sufficient to indicate (potentially
at runtime) which algorithm should be instantiated
and run. Let us illustrate this with an example in
Listing 1.

1 // Cons ider ing the FastGA modular algor ithm
,

2 // s o l v i n g a problem with f i x ed
i n i t i a l i z a t i o n .

3 auto& foundry = store.pack <

eoAlgoFoundry
+select(algo_encoding:vector<int>)

:EOT

eoMyFoundry
+selectors: eoOperatorFoundry<eoselectOne<EOT>>
(at 0th index, no_cache)

+operator()(eoPop<EOT>&)
{Instanciate and run an eoMyAlgo}

:EOT

eoAlgo
+operator()(eoPop<EOT>&)

:EOT

eoOperatorFoundry
+_index: int

:EOT

eoForgeVector
+_no_cache: bool

+<<Op…, Args…>> add(args:Args…)
{Store a parametrized
eoForgeOperator<Itf,Op,Args…>.}

interface:Itf

vector
:eoForgeInterface<Itf>

eoForgeOperator
+parameters: tuple<Args…>
+instantiated: Itf*

+instantiate(no_cache:bool): Itf&

interface:Itf
operator:Op
parameters:Args…

eoForgeInterface
+instantiate(no_cache:bool): Itf&

interface:Itf

Figure 6: Classes involved in a meta-algorithm in-
stantiation. The eoMyFoundry class is to be designed
by the practitioner, who has to know the interfaces
presented with a white background. Classes with a
grey background are the underlying framework ma-
chinery.

8

eoAlgoFoundryFastGA <Bits > >(

4 init , problem , max_eval_nb , /∗
max re s ta r t s=∗/1);

5 // Consider d i f f e r e n t c r o s s ov e r ope ra to r s .
6 for(double i=0.1; i<1.0; i+=0.2) {

7 foundry.crossovers.add < eoUBitXover <Bits >

>(i);

8 foundry.crossovers.add < eoNPtsBitXover <

Bits > >(i*10);

9 }

10 // And d i f f e r e n t v a r i a t i o n r a t e s .
11 for(double i=0.0; i<1.0; i+=0.2) {

12 foundry.crossover_rates.add <double >(i);

13 foundry.mutation_rates.add <double >(i);

14 }

15 // e tc .
16 // Decide which ope ra to r s to use .
17 Ints encoded_algo(foundry.size());

18 encoded_algo[foundry.crossovers .index

()] = 2;

19 encoded_algo[foundry.crossover_rates.index

()] = 1;

20 encoded_algo[foundry.mutation_rates .index

()] = 3;

21 // e tc .
22 // I n s t a n t i a t e the operators , or use cached

ob j e c t s .
23 foundry.select(encoded_algo);

24 // Run the s e l e c t e d a lgor i thm .
25 eoPop <Bits > pop; // [. . .]
26 foundry(pop);

Listing 1: Excerpt of the use of an algorithm foundry.

Binding with IOH for Fast Benchmarking One
of the key features when doing automated algorithm
design is the ability to run the assembled algorithm
against a whole benchmark, and to measure perfor-
mance on this experiment. Paradiseo is not intended
to host benchmarks, apart for a few examples,
but provides an interface to the IOHexperimenter
benchmarking platforms. IOHexperimenter provides
a set of benchmarks, along with a standardized
logging system, which can log both calls to the
objective function and parameters status. Paradiseo
provides several entry points to IOHexperimenter
problems, in the form of sub-classes of the eoEvalFunc

interface, which can be plugged into any Paradiseo
algorithm. IOHexperimenter also provides a way to
extract performance measures from the runs’ logging
outputs, with statistics computed on aggregated
in-memory discrete empirical cumulative density
functions. Those distributions are defined on both
the computation time and the quality of solutions
axes and can thus produce many different perfor-
mance metrics. This allows for a fast logging and
performance assessment system, which is ideal for
automated algorithm design. Listing 2 shows an
example of use of the Paradiseo/IOH binding when
solving a particular problem.

1 // In−memory l ogg e r .
2 IOHprofiler_RangeLinear <size_t >

3 target_range (0, max_target , buckets),

4 budget_range (0, max_evals , buckets);

5 IOHprofiler_ecdf_logger <int ,int ,int >

ecdf_logger(

6 target_range , budget_range);

7 // Benchmark problem .
8 W_Model_OneMax w_model_om;

9 ecdf_logger.track_problem(w_model_om);

10 // The ac tua l Paradiseo /IOH i n t e r f a c e :
11 eoEvalIOHproblem <Bits > pb(w_model_om ,

ecdf_logger);

12 // [‘ pb ‘ i s plugged in to an algor i thm and
ran . . .]

13 // The performance o f the run i s recovered :
14 IOHprofiler_ecdf_sum ecdf_sum;

15 long perf = ecdf_sum(ecdf_logger.data());

Listing 2: Excerpt of the use of the IOH binding.

It is worth noting that the same approach can be
used with the IOH’s file logger, which allows for a
fine-grained analysis of the algorithm behavior within
the IOHanalyzer graphical user interface. Although
the runtime is longer because of the involved I/O ac-
cesses, this can be useful for the post-validation of
the algorithm instance showing the best performance,
without having to change the code.

Interface with irace for Automated Algorithm
Configuration With the approach described pre-
viously, the performance of an algorithm instance can
be computed on a given benchmark with the use of
a single binary, without much computation time or
memory overhead. Thanks to the utility features pro-
vided by Paradiseo, it is straightforward to expose the
meta-algorithm and the problem interfaces as param-
eters to the executable (either as parameter files or
as command line arguments). This allows for an easy
binding with most automated algorithm configura-
tion tools.

Several automated algorithm configuration tools
have been developed in the last decade, among which
one of the most used is irace [25]. Paradiseo provides
a way to easily expose a foundry interface as an irace
configuration file, as shown in Listing 3.

1 // Using Paradiseo parameters :
2 eoParser parser(argc , argv , "interface for

irace");

3 auto crossover_p = parser.getORcreateParam <

size_t >(

4 /∗ de f au l t=∗/0, "crossover",

5 /∗ help=∗/"The crossover operator", /∗ f l a g
=∗/’c’,

6 /∗ help s e c t i o n=∗/"Operator Choice", /∗
r equ i r ed=∗/true);

7 // [. . .] assemble a foundry [. . .]
8 // Pr int the i r a c e ’ s c on f i g u r a t i on f i l e f o r

t h i s b inary :

9

9 std::cout << "# name\t switch\t type\t

range\n";

10 // We only need the parameter (s) and the
foundry i t s e l f :

11 print_irace(mutation_rate_p , foundry.

mutation_rates ,

12 std::cout);

13 print_irace(crossover_p , foundry.

crossovers ,

14 std::cout);

15 // Any other operator with in the foundry
[. . .]

16 /∗ This w i l l output something l i k e :
17 # name switch type range
18 mutat ionrate ”−−mutation−r a t e=” i (0 , 4)
19 c r o s s ov e r ”−−c r o s s ov e r=” c

(0 , 1 , 2 , 3 , 4 , 5 , 6 , 7)
20 [e t c .] ∗/

Listing 3: Excerpt of code for exposing a Paradiseo
interface to irace.

With this setting, it has been possible to conduct
a large scale algorithm design study [2] , involving
irace configuring a FastGA algorithm family (cf. Fig-
ure 4) solving a W-model problem, using a budget of
approximately 1 billion function evaluations, in ap-
proximately 3 hours on a single core of a laptop (same
setup than Sec. 4.2).

5 Conclusions

This article provides a high-level overview of the Par-
adiseo framework, a C++ free software which tar-
gets the development of modular metaheuristics. The
main feature of Paradiseo is its ability to help practi-
tioners to focus on creating solvers while thinking at
a higher level of abstraction, thanks to:

Utility features: Paradiseo provides a large set of
engineering features, which very often lack in proof-
of-concept frameworks: several fine-grained paral-
lelization options, convenient interface features (com-
mand line argument parsing, state management, use-
ful logs, etc.). Having robust implementation of such
features is often overlooked by users focusing on the
algorithmic part.

Component-based architecture: The concept
of operator is at the core of the design of Paradiseo.
It allows for the composition of algorithms, with-
out the overhead of a dynamically loading plugins
or the rigidity of a monolithic structure. Solvers be-
ing assembled as a selection of components are also
lightweight, as it is not necessary to build and carry
all the framework’s code within the executable bina-
ries.

Modular algorithm models: Paradiseo pro-
vides several modules targeting different algorithm
paradigms —probably one of the largest footprints

among active frameworks. Practitioners can easily
design new algorithms which differ in some opera-
tors, hybridize algorithms, or even add new algorithm
templates using existing operators.

Algorithm design: Paradiseo focuses on provid-
ing a very large design space to the practitioner.
Thanks to its fast computations, large-scale design
experiments can be addressed. Combined with its
features dedicated to automation, Paradiseo algo-
rithm designers who want to test a new operator can
easily focus on small code changes and rapidly check
their efficiency and how they interact with other op-
erators in a given paradigm. Problem solvers can sort
out algorithm instances that work best.

As future works, we plan to improve the algorithm
design automation features, merge more state-of-the-
art modular designs, and enhance the overall user
experience.

One of the main impediments to a more widespread
use of the framework is that the learning curve for
getting started is too steep. Solving this problem
is the main objective of PyParadiseo, a module cur-
rently under development, that will expose interfaces
to Paradiseo in Python, to facilitate the interoperabil-
ity with external solvers, statistics program or ma-
chine learning frameworks.

Acknowledgments

During 22 years, Paradiseo has been developed by
more than 50 people, with the support of the fol-
lowing institutions: Inria, University of Lille, Univer-
sity of the Littoral Opal Coast, Thales, École Poly-
technique, University of Granada, Vrije Universiteit
Amsterdam, Leiden University, French National Cen-
tre for Scientific Research (CNRS), French National
Agency for Research (ANR), Fritz Haber Institute
of the Max Planck Society, Center for Free-Electron
Laser Science, University of Angers, French National
Institute of Applied Sciences, Free University of Brus-
sels, Pasteur Institute.

References

[1] Maribel Garćıa Arenas, Brad Dolin, Juan
Julián Merelo Guervós, Pedro Ángel Castillo
Valdivieso, Ignacio Fernández De Viana, and
Marc Schoenauer. Jeo: Java evolving objects.
In GECCO, volume 2, pages 991–994, 2002.

[2] Amine Aziz-Alaoui, Carola Doerr, and Johann
Dreo. Towards Large Scale Automated Algo-
rithm Design by Integrating Modular Bench-

10

marking Frameworks. In Proceedings Companion
of the Annual Conference on Genetic and Evo-
lutionary Computation, GECCO’21. to appear,
2021.

[3] Nacim Belkhir, Johann Dreo, Pierre Savéant,
and Marc Schoenauer. Per instance algorithm
configuration of cma-es with limited budget.
In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 681–688, 2017.

[4] Sébastien Cahon, Nordine Melab, and E.-G.
Talbi. Building with paradiseo reusable parallel
and distributed evolutionary algorithms. Paral-
lel Computing, 30(5–6):677–697, 2004.

[5] Sébastien Cahon, Nordine Melab, and E-G
Talbi. Paradiseo: A framework for the reusable
design of parallel and distributed metaheuristics.
Journal of heuristics, 10(3):357–380, 2004.

[6] Sébastien Cahon, Nordine Melab, E-G Talbi,
and Marc Schoenauer. Paradiseo-based design of
parallel and distributed evolutionary algorithms.
In International Conference on Artificial Evo-
lution (Evolution Artificielle), pages 216–228.
Springer, 2003.

[7] Sébastien Cahon, E-G Talbi, and Nordine
Melab. Paradiseo: a framework for paral-
lel and distributed biologically inspired heuris-
tics. In Proceedings International Parallel and
Distributed Processing Symposium, pages 9–pp.
IEEE, 2003.

[8] C. A. Coello Coello, G. B. Lamont, and
D. A. Van Veldhuizen. Evolutionary Algorithms
for Solving Multi-Objective Problems. Genetic
and Evolutionary Computation Series. Springer,
New York, USA, second edition, 2007.

[9] Pierre Collet, Evelyne Lutton, Marc Schoe-
nauer, and Jean Louchet. Take It EASEA.
In Marc Schoenauer, Kalyanmoy Deb, Günther
Rudolph, Xin Yao, Evelyne Lutton, Juan Julian
Merelo, and Hans-Paul Schwefel, editors, Paral-
lel Problem Solving from Nature PPSN VI, Lec-
ture Notes in Computer Science, pages 891–901.
Springer.

[10] Pierre Collet and Marc Schoenauer. GUIDE:
Unifying Evolutionary Engines through a
Graphical User Interface. In Pierre Liardet,
Pierre Collet, Cyril Fonlupt, Evelyne Lutton,
and Marc Schoenauer, editors, Artificial Evolu-
tion, Lecture Notes in Computer Science, pages
203–215. Springer.

[11] Bilel Derbel and Sébastien Verel. Fitness
landscape analysis to understand and predict
algorithm performance for single- and multi-
objective optimization. In Carlos Artemio Coello
Coello, editor, GECCO ’20: Genetic and Evo-
lutionary Computation Conference, Companion
Volume, Cancún, Mexico, July 8-12, 2020, pages
993–1042. ACM, 2020.

[12] Benjamin Doerr, Carola Doerr, and Franziska
Ebel. Lessons from the black-box: Fast
crossover-based genetic algorithms. In Proceed-
ings of the 15th annual conference on Genetic
and evolutionary computation, pages 781–788,
2013.

[13] Carola Doerr, Hao Wang, Furong Ye, Sander van
Rijn, and Thomas Bäck. IOHprofiler: A Bench-
marking and Profiling Tool for Iterative Opti-
mization Heuristics. arXiv: 1810.05281.

[14] Erich Gamma, Richard Helm, Ralph E. Johnson,
and John Vlissides. Design patterns: elements
of reusable object-oriented software. Addison-
Wesley, 1995.

[15] Nikolaus Hansen, Anne Auger, Raymond Ros,
Steffen Finck, and Petr Poš́ık. Comparing results
of 31 algorithms from the black-box optimiza-
tion benchmarking bbob-2009. In Proceedings of
the 12th Annual Conference Companion on Ge-
netic and Evolutionary Computation, GECCO
’10, page 1689–1696, New York, NY, USA, 2010.
Association for Computing Machinery.

[16] Nikolaus Hansen, Anne Auger, Raymond Ros,
Olaf Mersmann, Tea Tušar, and Dimo Brockhoff.
COCO: a platform for comparing continuous op-
timizers in a black-box setting. 36(1):114–144.

[17] H. Hoos and T. Stützle. Stochastic Local Search:
Foundations and Applications. Morgan Kauf-
mann, San Francisco, CA, USA, 2004.

[18] Jérémie Humeau, Arnaud Liefooghe, E-G Talbi,
and Sébastien Verel. Paradiseo-mo: From fitness
landscape analysis to efficient local search al-
gorithms. Journal of Heuristics, 19(6):881–915,
2013.

[19] Robert Hundt. Loop Recognition in
C++/Java/Go/Scala. In Proceedings of
Scala Days 2011.

[20] Frank Hutter, Youssef Hamadi, Holger H. Hoos,
and Kevin Leyton-Brown. Performance Pre-
diction and Automated Tuning of Randomized

11

and Parametric Algorithms. In Frédéric Ben-
hamou, editor, Principles and Practice of Con-
straint Programming - CP 2006, Lecture Notes
in Computer Science, pages 213–228. Springer.

[21] Maarten Keijzer, Juan J Merelo, Gustavo
Romero, and Marc Schoenauer. Evolving ob-
jects: A general purpose evolutionary computa-
tion library. In International Conference on Ar-
tificial Evolution (Evolution Artificielle), pages
231–242. Springer, 2001.

[22] Pascal Kerschke, Holger H. Hoos, Frank Neu-
mann, and Heike Trautmann. Automated Al-
gorithm Selection: Survey and Perspectives.
27(1):3–45.

[23] Kevin Leyton-Brown, Eugene Nudelman, and
Yoav Shoham. Learning the Empirical Hardness
of Optimization Problems: The Case of Combi-
natorial Auctions. In Pascal Van Hentenryck, ed-
itor, Principles and Practice of Constraint Pro-
gramming - CP 2002, Lecture Notes in Com-
puter Science, pages 556–572. Springer.

[24] Arnaud Liefooghe, Laetitia Jourdan, and El-
Ghazali Talbi. A software framework based
on a conceptual unified model for evolution-
ary multiobjective optimization: Paradiseo-
moeo. European Journal of Operational Re-
search, 209(2):104–112, 2011.

[25] Manuel López-Ibáñez, Jérémie Dubois-Lacoste,
Leslie Pérez Cáceres, Mauro Birattari, and
Thomas Stützle. The irace package: Iterated
racing for automatic algorithm configuration.
Operations Research Perspectives, 3:43–58, 2016.

[26] Ogier Maitre, Frédéric Krüger, Stéphane Querry,
Nicolas Lachiche, and Pierre Collet. EASEA:
specification and execution of evolutionary algo-
rithms on GPGPU. 16(2):261–279.

[27] Nouredine Melab, Thé Van Luong, Karima Bou-
faras, and El-Ghazali Talbi. Paradiseo-mo-gpu:
a framework for parallel gpu-based local search
metaheuristics. In Proceedings of the 15th annual
conference on Genetic and evolutionary compu-
tation, pages 1189–1196, 2013.

[28] Juan-Julián Merelo-Guervós, Israel Blancas-
Álvarez, Pedro A Castillo, Gustavo Romero,
Pablo Garćıa-Sánchez, Vı́ctor M Rivas, Mario
Garćıa-Valdez, Amaury Hernández-Águila, and
Mario Román. Ranking programming languages

for evolutionary algorithm operations. In Euro-
pean Conference on the Applications of Evolu-
tionary Computation, pages 689–704. Springer,
2017.

[29] Juan-Julián Merelo-Guervós, M. G. Arenas,
J. Carpio, P. Castillo, V. M. Rivas, G. Romero,
and M. Schoenauer. Evolving objects. In P. P.
Wang, editor, Proc. JCIS 2000 (Joint Confer-
ence on Information Sciences), volume I, pages
1083–1086, 2000. ISBN: 0-9643456-9-2.

[30] Sergio Nesmachnow, Francisco Luna, and En-
rique Alba. An empirical time analysis of evo-
lutionary algorithms as c programs. Software:
Practice and Experience, 45(1):111–142, 2015.

[31] I. Rechenberg. Cybernetic Solution Path of an
Experimental Problem.

[32] David Vandevoorde and Nicolai M. Josuttis.
C++ template: the complete guide. Addison-
Wesley.

[33] S. Wagner, G. Kronberger, A. Beham, M. Kom-
menda, A. Scheibenpflug, E. Pitzer, S. Vonolfen,
M. Kofler, S. Winkler, V. Dorfer, and M. Affen-
zeller. Architecture and Design of the Heuris-
ticLab Optimization Environment. Topics in
Intelligent Engineering and Informatics, pages
197–261. Springer International Publishing.

[34] Darrell Whitley, Soraya Rana, and Robert B
Heckendorn. The island model genetic algo-
rithm: On separability, population size and con-
vergence. Journal of computing and information
technology, 7(1):33–47, 1999.

[35] E. Zitzler, M. Laumanns, and S. Bleuler. A tuto-
rial on evolutionary multiobjective optimization.
chapter 1, pages 3–38. Springer Science & Busi-
ness Media.

12

	Introduction
	History
	Related Frameworks

	Architecture
	Main Concepts
	Main Design Patterns

	Modules
	Evolutionary and Particle Swarm Algorithms — EO
	Local Search and Landscape Analysis — MO
	Multi-Objective Optimization — MOEO
	Estimation of Distribution — EDO

	Key Features
	Modular Algorithms
	Fast Computations
	Automated Algorithm Design

	Conclusions

