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In the regulation of gene expression, information of relevance to the
organism is represented by the concentrations of transcription factor
molecules. In order to extract this information the cell must effectively
“measure” these concentrations, but there are physical limits to the
precision of these measurements. We use the gap gene network
in the early fly embryo as an example of the tradeoff between the
precision of concentration measurements and the transmission of
relevant information. For thresholded measurements we find that
lower thresholds are more important, and fine tuning is not required
for near–optimal information transmission. We then consider general
sensors, constrained only by a limit on their information capacity, and
find that thresholded sensors can approach true information theoretic
optima. The information theoretic approach allows us to identify the
optimal sensor for the entire gap gene network, and to argue that the
physical limitations of sensing necessitate the observed multiplicity
of enhancer elements, with sensitivities to combinations rather than
single transcription factors.
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Cells control the concentrations of proteins in part by1

controlling the transcription of corresponding genes into2

messenger RNA. This control is effected by the binding of3

transcription factor (TF) proteins to specific sites along the4

genome. Transcription factors can thus regulate the synthesis5

of other TFs, forming a genetic network. Regulatory mech-6

anisms internal to the network must be precise enough to7

generate reliable relationships between the concentration of8

input signals and the levels of gene expression downstream.9

What must the cell do in order to extract and make efficient10

use of the information provided by variations in TF concen-11

trations?12

We usually think of transcription factors as controlling the13

level of gene expression, but we can also view the expression14

level as being the cell’s measurement of the TF concentration15

(1, 2). As outside observers of the cell, we can measure the con-16

centration of transcription factors with considerable accuracy17

(3). However the cell’s “measurement” of TF concentration18

is based on the arrival of these molecules at their binding19

sites, and this is a noisy process, because TF concentrations20

are low, in the nanoMolar range (4–8). Physical limits to the21

measurement of such low concentrations were first explored22

in the context of bacterial chemotaxis (9), but have proven23

to be much more general (1, 10–12). What will be important24

for our discussion is not the precise values of these limits, but25

rather that the limits exist and are significant on the scale of26

biological function.27

We focus on the example of the gap genes (more precisely,28

the transcription factor proteins expressed from them) that are29

crucial in the early events of embryonic development in fruit30

flies (13, 14). These four proteins form a network with inputs31

from primary maternal morphogen molecules, and outputs32

in the striped patterns of pair-rule gene expression. These 33

stripes are positioned with an accuracy of ±1% along the long 34

(anterior–posterior) axis of the embryo, and this is the accuracy 35

of subsequent developmental events such as the formation of 36

the cephalic furrow (16, 17). The local concentrations of the 37

gap proteins provide just enough information to support this 38

level of precision (16). The algorithm that achieves optimal 39

readout of this positional information predicts, quantitatively, 40

the distortions of the pair-rule stripes in mutant flies where 41

individual maternal inputs are deleted (18). 42

The gap gene network offers us the chance to ask how ac- 43

curately the transcription factor concentrations need to be 44

measured and to infer features of the regulatory architecture 45

responsible for these measurements. The information that the 46

gap genes convey about position along the anterior–posterior 47

axis is what allows nuclei to make distinct cell fate decisions 48

required for development; we investigate here how this can be 49

seen as a sensing or signal processing problem (Fig 1A). We 50

start with a more traditional view of how information is repre- 51

sented in the concentration of a single TF, through thresholds 52

or expression domains, and then argue for a more abstract 53

formulation of the problem as selective data compression. In 54

this abstract view, aspects of the transcriptional regulatory 55

mechanisms can be seen as solutions to an information theo- 56

retic optimization problem. We apply this approach to analyze 57

the information conveyed by the concentrations of all four gap 58

proteins, and find that some of the complexities in how these 59

molecules function as transcription factors emerge naturally 60

from solutions to the relevant optimization problem. 61

Thresholds 62

The classical view of the gap genes is that they are expressed 63

in domains (14). Implicitly this suggests that fine scale varia- 64

tions in the concentration of these molecules are not important; 65

rather all that matters whether expression is on or off. The 66

Significance Statement

Many cellular processes depend on a quantitative response to
the concentration of transcription factor molecules. A plethora
of different mechanisms that contribute to this concentration
sensing: multiple enhancers with a combination of binding sites
regulate genes together based on spatially heterogeneous tran-
scription factors. Using the early fly embryo as an example, we
investigate abstract sensors with limited capacity due to noise,
and optimize so that the sensors capture as much information
as possible about a cell’s position in the embryo. The resulting
optimal sensors have important features in common with the
known mechanisms of enhancer function.
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Fig. 1. Optimizing the flow of information provided through four transcription factors in the early fly embryo, here through thresholded sensing elements. (A) The four gap gene
expression patterns (Krupel, Knirps ,Giant and Hunchback, in color, details in the text and later) provide information about distinguishable nuclear cell fates along the embryo’s
anterior-posterior axis (x), which needs to be identifiable after the fly’s transcriptional apparatus measures or senses the TFs: here we investigate an abstract sensor to learn
what features of the gap expression profiles a sensor should concentrate on to optimize this information transfer. Biologically, this sensing is done by the regulatory elements.
(B) Hb expression level vs position along the anterior–posterior axis embryo. Mean (line)± one standard deviation (shading) across Nem = 38 embryos in a five minute
window (40 – 44 min) in nuclear cycle 14 (18). (C) Positional information vs threshold, from Eq (4). (D) Positional information with two thresholds, Iθ1θ2 (σ1, σ2; x) (bits). (E)
Positional information captured with i = 1, . . . , K thresholds, as a function of the number of resolvable levels K + 1. Error bars (red) are mean± one standard error of our
estimate of the maximum. Circles (grey) are 300 values of I({σi}; x) at random settings of the K thresholds {θi}. The black dashed line indicates the positional information
I(g; x), available from the expression levels if measured precisely, and gray dashed lines are± one standard error in our estimate of this information. (F) Eigenvalues {λi} of
the Hessian matrix χ, from Eq (10). The number of eigenvalues is the number of thresholds, one less than the number of resolvable expression levels. Shaded bands are±
one standard error in our estimates.

quantitative version of this idea is that subsequent events are67

sensitive to whether expression levels are above or below a68

threshold, corresponding to whether a cell is inside or outside69

an expression domain. We know that such simple threshold-70

ing loses a lot of the information that gap gene expression71

levels carry about position along the anterior-posterior axis72

(16). Still, we will look at this thresholding approach to gene73

regulation more precisely, using the expression profile for a74

single gap TF protein, Hb, as an example. While a single75

thresholding operation throws away more than half of the76

available information, we will see that this information could77

be recovered by multiple parallel thresholding mechanisms,78

or equivalently by a single mechanism that could distinguish79

multiple “quantized” levels of expression. Importantly, in80

either case these thresholds do not need to be finely tuned,81

suggesting that there are plausible pathways for evolution to82

find mechanisms with close to optimal performance. This83

concrete discussion of thresholding also is meant to provide84

some foundation for the more abstract view of optimal sensing85

and compression that we introduce in the next section.86

In Figure 1B-E we use the gap protein hunchback (Hb) to87

illustrate the information loss associated with thresholding.88

At each point x there is an expression level g (Fig. 1B), drawn89

from a probability distribution P (g|x); looking at many em-90

bryos we have samples out of this distribution. Experimental91

data are from Ref (18), where immunostaining was used to92

obtain expression profiles of the gap proteins. We focus on a93

time window of 40 − 44 min into nuclear cycle 14, the final94

cycle before blastoderm stage, during which the gap gene ex-95

pression determine crucially the cell fates of nuclei along the96

embryo’s anterior-posterior axis through pair-rule, segment97

polarity, and hox gene expression. 98

If cells are only sensitive to whether expression levels are 99

above or below a threshold θ, then the variable which matters 100

is 101

σ = H(g − θ), [1] 102

where H is the Heaviside step function, H(y > 0) = 1 and 103

H(y < 0) = 0. Then we can estimate the θ (threshold)- 104

dependent distribution Pθ(σ|x), 105

Pθ(σ = 1|x) =
∫
dg H(g − θ)P (g|x) [2] 106

Pθ(σ = 0|x) = 1− Pθ(σ = 1|x). [3] 107

Finally we compute the amount of (mutual) information that 108

the discrete variable σ provides about different possible nuclear 109

cell fates, quantified by the cell’s position along the anterior- 110

posterior axis, 111

Iθ(σ;x) =
∑
σ

∫
dxP (x)Pθ(σ|x) log2

[
Pθ(σ|x)
Pθ(σ)

]
bits, [4] 112

where P (x) = 1/L, as a priori all positions along the length 113

of the embryo are equally likely, and 114

Pθ(σ) =
∫
dxP (x)Pθ(σ|x). [5] 115

It is important that in exploring the impact of thresholding 116

we allow for the best possible choice of the threshold θ, which 117

in this example proves to be at θ∗ ∼ 1/3 of the maximal mean 118

expression level (see Fig. 1 C). 119
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If the expression level is represented only by the on/off or120

binary variable σ, then it can provide at most one bit of infor-121

mation (about anything). We see that the mutual information122

about position obtained by a thresholded measurement comes123

close to this bound, with Imax(σ;x) = 0.92 ± 0.01 bits. But124

this is less than one half of the information that is carried by125

the Hb expression levels, ∗
126

I(g;x) ≡
∫
dg

∫
dxP (x)P (g|x) log2

[
P (g|x)
P (g)

]
[6]127

= 2.09± 0.06 bits. [7]128

Following Appendix A8 of Ref (19) we analyze subsets of the129

data to correct for effects of finite sample size and estimate130

errors.131

One path to recovering the information that was lost by the132

thresholded measurement is to imagine that the cell can resolve133

more details, perhaps distinguishing reliably among three or134

four different expression levels rather than just two. This is135

equivalent to the cell having multiple readout mechanisms,136

each of which can only distinguish on/off, but with different137

on/off switches having different thresholds, in the spirit of138

the “French flag” model (15). Because we can always put the139

thresholds in order, having K binary switches is the same140

as distinguishing K + 1 different expression levels. It can141

be useful to think of thresholding as being implemented at142

individual binding sites for the TFs, or perhaps at cooperative143

arrays of binding sites in enhancers, but our arguments are144

independent of these microscopic details.145

If we have two different elements, each of which reports146

on whether the expression level is above or below a threshold,147

then the relevant variables are148

σ1 = H(g − θ1) [8]149

σ2 = H(g − θ2). [9]150

We see in Fig 1D that there is a broad optimum in151

the positional information that these variables capture,152

Iθ1θ2 ({σ1, σ2};x), when the two thresholds are quite differ-153

ent from one another, θ∗1 = 0.1 and θ∗2 = 0.58; these bracket154

the optimal single threshold θ = 0.34. The maximum infor-155

mation now is Imax({σ1, σ2};x) = 1.4± 0.015 bits, noticeably156

more than in the case with one threshold but still far from157

capturing all the available information.158

We can generalize this idea to multiple thresholding ele-159

ments, which are described by a set of variables {σi}, with160

each σi = H(g−θi), for i = 1, 2, · · · , K; the relevant quantity161

now is I({σi};x). This positional information depends on162

all the thresholds {θi}, and we perform a multidimensional163

optimization to find the maximum of I({σi};x). Figure 1E164

shows that for cells to extract all the positional information165

available from the Hb concentration, they must distinguish166

eight or nine different expression levels, representing g with167

∼ log2 8 = 3 bits of precision.168

Distinguishing eight levels in this simple threshold picture169

requires the cell to set seven thresholds. It might seem as170

though this necessitates setting each threshold to its optimal171

value, a form of fine tuning. To explore this we choose thresh-172

olds at random, uniformly in the relevant interval 0 < θ < 1.173

As shown in Fig 1E, typical random choices are far below the174

optimum, as expected. But Figures 1C and D show that there175

∗ Integrals are evaluated with a bin size of ∆g ∼ 0.03 and ∆x = 0.005.

is a broad plateau in information vs one or two thresholds, 176

which suggests that multiple threshold choices could yield 177

good results. Indeed, even with eight thresholds we find that 178

more than 1 in 1000 of our random choices in in Fig 1E come 179

within error bars of the optimum. 180

Another way of looking at the issue of fine tuning is to 181

examine the behavior of the information in the neighborhood 182

of the optimum, 183

I({θi}) = Imax(K) + 1
2

K∑
i,j=1

(θi − θ∗i )χij(θj − θ∗j ) + · · · , [10] 184

estimating the Hessian matrix χ numerically from the data. 185

The matrix χ has units of bits, as we chose the thresholds 186

to be dimensionless. The eigenvectors of χ determine the 187

combinations of thresholds that have independent effects on 188

the information, and the eigenvalues {λi} of χ (also in bits) 189

determine the sensitivity along these independent directions. 190

As the number of thresholds increases we find a broad spread 191

of eigenvalues (see Fig 1F), as in a wide class of “sloppy models” 192

(20, 21). This means that some combinations of thresholds 193

are two orders of magnitude more important than others. 194

In more detail, we find that the eigenvector with the largest 195

eigenvalue is concentrated on the lowest thresholds. For exam- 196

ple, with three thresholds, the eigenvector associated with the 197

largest eigenvalue is (−0.99, 0.08, 0.06). As more thresholds 198

are added, the eigenvectors of the largest two eigenvalues are 199

combinations of the lowest two thresholds or correspond to one 200

of them directly, while the smaller eigenvalues more loosely 201

correspond to linear combinations of higher thresholds. 202

Although we should be cautious about overly detailed molec- 203

ular interpretations, it is natural to think of the mapping 204

g → {σi} as being implemented by binding of the transcrip- 205

tion factor to specific sites along the genome, so that thresholds 206

are set by the binding constants or affinities of the TF for 207

these sites. The spectrum of χ and the fact that the lowest 208

threshold corresponds to the largest eigenvalue tells us that the 209

affinity at the strongest binding site (for low concentrations) 210

must be set carefully, but the weaker binding sites can be 211

scattered more freely across the available dynamic range of 212

concentrations. A near optimal array of thresholds thus could 213

evolve by duplication of a strong binding binding site, followed 214

by sequence drift to weaker binding, and then selection for 215

the more complex and reproducible patterns that result from 216

capturing more positional information (22). 217

Beyond thresholds 218

The idea that cells are sensitive only to whether the concentra- 219

tion of a transcription factor is above or below a threshold is 220

used quite widely, if informally (23–27). This picture embodies 221

the intuition that arbitrarily small changes in TF concentration 222

can’t generate reliable responses. But if we take thresholding 223

seriously, it involves a perfect, noise-free distinction between 224

concentrations that are just above and just below threshold. 225

We would like to have a more realistic description while avoid- 226

ing an explosion of parameters. 227

Transcription factors are thought to influence transcription 228

only through their binding to target sites. These targets are 229

defined by the presence of specific DNA sequences, termed reg- 230

ulatory elements or enhancers. In this broad class of molecular 231

mechanisms, the cell does not have direct access to the TF 232
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concentration g, but only to the occupancy of the binding sites,233

perhaps averaged over time (28–31). A detailed model would234

include many components: there can be multiple interacting235

binding sites; these sites and the bound TF molecules can236

interact with a host of other molecules, perhaps condensed237

into a phase–separated droplet surrounding the site of active238

transcription (32, 33); and there can be many molecular steps239

through which TF binding actually influences the initiation240

of transcription. A full model including all these complexities241

would have many parameters, and would lose much of its242

predictive power.243

What is essential is that binding of TF molecules to their244

target sites is a noisy process, for fundamental physical reasons245

(1, 9–12). If we abstract away from the details, transcription is246

controlled not by the TF concentration directly, but by some247

intermediate variable, such as the occupancy of the relevant248

binding sites. We can think of this intermediate variable as249

a sensor of the TF concentration, and because the sensing250

mechanisms are noisy it can provide only a limited amount of251

information about the actual concentration.252

Rather than trying to make a detailed model within which253

we can calculate the levels of noise and the resulting limits254

to information, we want to understand the consequences of255

these limits. We assume, generally, that the TF concentration256

g is being mapped into some other variable by the sensor, and257

we can call this variable C. This (noisy) mapping g → C258

can be expressed in a probability distribution P (C|g), which259

describes the sensor. Since we do not know which of the260

molecular mechanisms the cell uses to measure, and thus261

how precision is limited, we want to assume the most general262

or unbiased version of limited precision. Thus, we describe263

limited precision by limiting the mutual information,264

I(C; g) =
∑
C

∫
dg P (C, g) log2

[
P (C|g)
P (C)

]
, [11]265

that is transmitted from the TF concentration variable g to the266

sensor’s encoding C. Different molecular mechanisms generate267

different mappings g → C, but in all mechanisms the low268

concentrations of the relevant molecules limit the information269

that is transmitted. Thus, a biological sensor, corresponding to270

a regulatory element or enhancer with biologically reasonable271

arrival statistics of TF molecules, necessarily experiences a272

limitation on its information capacity I(C; g); this is a more273

general as well as realistic constraint than thresholding.274

Information bottleneck and the optimal sensor275

We now want to find the mapping g → C which conveys the276

highest biologically relevant positional information, I(C;x),277

for a range of limited capacities I(C; g). We refer to these278

mappings as optimal sensors. For comparison, the thresholded279

sensors discussed in the previous section correspond to deter-280

ministic mappings [all P (C|g) ∈ {0, 1}] with a small number281

of discrete states or levels ||C|| in the variable C.282

Instead of restricting to thresholds, we want to search over283

all mappings g → C with a fixed I(C; g), and maximize284

I(C;x). This can be expressed as an optimization problem,285

max
P (C|g)

[I(C;x)− TI(C; g)] , [12]286

where T is a Lagrange multiplier that allows us to modulate287

the constraint on sensor capacity I(C; g). This problem of288

Fig. 2. The information bottleneck for positional information carried by Hb expression
levels. We map expression into some compressed description, g → C, and find
the maximum I(C; x) at fixed I(C; g), from Eq (12), shown as the solid line with
different greyshades indicating different numbers of states ||C||. Solid red points with
error bars are the I(θi; g)– I(θi; x) pairs from the optimal discretization by multiple
thresholds in Fig 1E, and match with the T → 0 limit of the bottleneck solutions with
fixed ||C||. The light points are from an explicitly deterministic formulation of the bot-
tleneck problem (39). Upper panel shows snapshots probability distributions P (C|g)
at different information capacities I(C; g) along the bottleneck curve; intermediate
levels of g ∈ [0.05, 0.8] are progressively better resolved as the capacity increases.

optimizing P (C|g) is known as the “information bottleneck” 289

problem (34). Its solution gives an iterative algorithm which 290

finds P (C|g). This problem and algorithm have implications 291

for machine learning (35, 36) or finding efficient encodings 292

in neuronal systems (37); in these fields, the optimal P (C|g) 293

is often described as a compression of g. Qualitatively, the 294

algorithm identifies (potentially noisy) sets of values of g that 295

are most informative about x, and focuses P (C|g) to make 296

maximum use of those values. 297

We solve the optimization problem in Eq (12) numerically, 298

considering C to be a variable with a discrete set of values or 299

states and varying the number of these states, ||C||. At fixed 300

||C||, decreasing T allows I(C; g) to be larger, and pushes the 301

noisy mapping P (C|g) toward being deterministic. Results of 302

the bottleneck analysis for Hb are shown in Fig 2 as trajectories 303

(solid grey and black lines) in the plane I(C;x) vs I(C; g). Only 304

the region below the dashed diagonal and horizontal lines is 305

theoretically accessible due to the data processing inequality 306

[I(C;x) ≤ I(C; g) and I(C;x) ≤ I(g;x)], which implies that 307

even an optimal sensor cannot know more about positional 308

information or nuclear cell fates than is provided by the protein 309

expression itself. Often, for example for neuronal systems (37), 310

the bounding curve for the optimal sensor at large ||C|| (solid 311

black line) is further away from the data processing bound 312

than here. This optimal bounding curve that emerges from 313

the information bottleneck analysis separates the plane into a 314

physically possible region (below the curve) and an impossible 315

region (above the curve). As I(C; g) becomes large, the curve 316
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plateaus at the available positional information I(g;x).317

The optimal thresholding sensors from Fig 1 correspond to318

the endpoints of the bottleneck solutions with ||C|| equal to319

the number of resolvable expression levels. We see that these320

thresholded sensors, or deterministic endpoints of bottleneck321

solutions with finite ||C||, are almost on the optimal bounding322

curve. This is unusual for general compression problems, where323

the optimal thresholded sensor falls below the optimal curve.324

Thus, although the picture of multiple noiseless thresholds is325

physically wrong, it does correspond, almost quantitatively,326

to an information theoretic optimization of positional infor-327

mation with the constraint of limited information capacity328

I(C; g) in the sensor. This is important, because it suggests329

that the intuition behind the French flag model or the biologi-330

cal importance of the gap expression boundaries corresponds331

more closely than expected to a true information theoretic332

optimization.333

We can understand more about the structure of the opti-334

mal mappings g → C by looking at the distributions P (C|g),335

shown in the top panels of Fig 2. These P (C|g) correspond to336

the three I(C; g), marked by the arrows, of the black IB curve,337

where we have used ||C|| = 70 numerically but normalized338

to 1 to emphasize the almost continuous character of C. At339

small I(C; g) whole ranges of g are mapped uniformly into340

ranges of C, while at larger I(C; g) we see the emergence of341

a reliably graded mapping, especially in the range bracketing342

half–maximal expression. In all panels, the optimal sensor343

focuses on the low expression levels of Hb, which are biologi-344

cally the most precise expression levels (see Fig 1 A). That the345

optimal sensor resolves these levels more than noisily expressed346

levels in order to receive the most information about the sys-347

tem is expected from intuition for optimal sensor arrangements348

in neurons, in the spirit of Ref. (38).349

The light crosses in Fig 2 correspond to a greedy, determin-350

istic approximation to the full optimization problem in the way351

of Ref. (39, 40); we provide more details on this calculation in352

the SI. This approximation generates thresholded sensors, but353

as we add more thresholds one cannot go back to readjust the354

existing thresholds. Despite this restriction, the results are355

very close to the true optimum, so that there is a hierarchical356

evolutionary path to nearly optimal performance.357

A detailed discussion of how the optimal sensor corresponds358

to models of sensing that involve binding site occupation359

(41, 42) would go beyond the scope of this paper. Qualita-360

tively, however, we note that the top panels in Fig 2 could361

be compared such sensors, with the steep change is C vs362

g corresponding to highly cooperative binding; interestingly363

the predicted degree of cooperativity depends on the sensor364

capacity I(C; g).365

Multiple regulatory elements for Hb366

We see from Fig 2 that capturing all the positional information367

encoded by Hb requires measuring the expression level with368

a sensor capacity of I(C; g) ∼ 3 bits of precision. This is369

consistent with our conclusions from the analysis of thresholded370

sensors, where the optimal sensors with 7-9 thresholds also371

have a capacity of I(C; g) ∼ 3 bits. We have done the same372

analysis for the other gap TF proteins (krupel Kr, giant Gt,373

and knirps Kni), and also find that ∼ 3 bits of capacity is374

required in each case.375

How does this information capacity compare with the in-376

formation capacity of biological regulatory elements, such as 377

enhancers? Estimates based both on direct measurements 378

and on more detailed models indicate that the capacity of a 379

regulatory element is in the range of 1−3 bits (2, 43). These es- 380

timates depends on the absolute concentrations of the relevant 381

molecules, on the time available for reading out the infor- 382

mation, the length of the regulatory elements, and on other 383

details of the different noise sources in the system (2, 43). At 384

one extreme, if the capacity of a biological regulatory element 385

is three bits, then a single regulatory element is sufficient to 386

capture the full positional information; in this case, it should 387

have been possible for the fly’s transcriptional apparatus to 388

extract all the available positional information using only one 389

regulatory element or enhancer, but this requires that this 390

element operates close to the physical limits to information 391

capacity. But if the capacity of a single element is only one bit, 392

then we need multiple regulatory elements even in response to 393

a single transcription factor. It is clear from Fig 2 that there 394

is a very big difference between a capacity of 1 bit and 3 bits. 395

Optimal sensor for all the gap proteins 396

One might argue that the fly does not need to extract this much 397

positional information about cell fates from Hb, as the other 398

gap proteins provide information as well. Indeed, we know that 399

biologically all four gap TF proteins (Kr, Kni, Gt and Hb), are 400

important for nuclei to take their correct cell fates. Practically, 401

the temporal changes in the expression patterns could also be 402

important (44, 45), but in the first instance we again focus 403

on a sensor that measure the expression profiles 40 − 44min 404

into cycle 14, as it has been shown that these are sufficient to 405

predict the positions of pair-rule stripes (18). Thus, we need to 406

find the optimal sensor for the joint gap expression profiles in 407

order to draw biologically relevant lessons from our approach. 408

Rather than considering, as above, the mapping gHb → C, we 409

can consider mappings from combinations of expression levels 410

of multiple gap TFs (Fig 3A) into C, corresponding to a single 411

optimal sensing element; i.e. {gi} ≡ {gKr, gKni, gGt, gHb} → C. 412

The analog of Eq (12) is the optimization problem 413

max
P (C|{gi})

[I(C;x)− TI(C; {gi})] . [13] 414

We apply the information bottleneck scheme to find the opti- 415

mal sensor, and see that we can capture a significant fraction 416

of the information provided by all gap TFs by keeping only 417

four bits of information about their expression levels, or just 418

one bit per gene (Fig 3B), but four bits still captures less than 419

90% of the available information. 420

We can visualize what is being gained as the sensor capacity 421

I(C; {gi}) increases using the decoding maps introduced in 422

Ref (18). The decoding map at the top of Fig 3C is the best 423

possible decoding map given the expression levels that we 424

observe experimentally. The map show the distribution of 425

positions x′ consistent with the gap gene expression levels seen 426

in nuclei at the true position x, 427

P (x′|x) = P (x′|{gi})
∣∣∣∣
{gi=gi(x)}

; [14] 428

for simplicity we show this averaged over all the expression 429

levels found at x. Using all the available information, P (x′|x) 430

forms a narrow band around x′ = x, with width σx/L ∼ 0.01 431

(18). In the lower panels we imagine that inference is based 432
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I(C; {gi})

Fig. 3. The information bottleneck for positional information carried by all four gap
gene expression levels. (A) Expression vs position along the anterior–posterior axis for
Hb (red), Kr (blue), Kni (green), and Gt (mustard). Mean (solid) and standard deviation
(shading) across Nem = 38 embryos in a five minute window (40–44 min) in nuclear
cycle 14 (18). (B) Information bottleneck results, as in Fig 2. Optimal solutions
with ||C|| = 8, 100 and 800 (shades of grey), and solutions with independent
compression of each gene expression level (blue). (C) Decoding maps P (x′|x)
based on compressed representations of the expression levels. No compression (top),
I(C; {gi}) = 4 bits (middle), and I(C; {gi}) = 2 bits (bottom).

not on the actual expression levels but on the compressed433

version C,434

P (x′|x) =
∑
C

P (x′|C)P (C|{gi})
∣∣∣∣
{gi(x)}

, [15]435

as explained in more detail in the SI; we do this for the436

optimal compressions with I(C; {gi}) = 2, and 4 bits. We see437

that as the compression becomes more severe, the inference438

becomes more uncertain (larger σx) and genuinely ambiguous.439

This more noisy inference has biological consequences: sensors440

with capacity of much less than 4 bits do not capture enough441

information to predict the patterns of pair-rule expression442

stripes in mutants, following the analysis in Ref (18).443

To extract all the available positional information requires444

mechanisms that preserve eight or more bits of information445

about the combined expression levels of the four gap genes.446

The greyscale indicates that a ||C|| of at least 30–50 levels447

would be required. Again, if we think that a single sensor448

can implement one threshold, this means that more than one449

sensor would be required, even in the best possible case where450

information-theoretically optimal sensing is possible. We know451

that there are several dozen enhancer sites that respond to452

the gap gene TFs, and we see that this degree of complexity453

may be required by information theoretic constraints, even if454

these sensors make optimal use of the available information.455

We end with a final note regarding the splitting of the456

optimal sensor into multiple sensors. We investigate the joint457

sensing of four sensors Ci (i ∈ {1, 4}), where each sensor can458

only respond to a single one of the four gap transcription459

factors. Mathematically, this corresponds to demanding that460

the compressed variables be constructed from individual gene461

expression levels, so that gHb → C1, gKr → C2, etc, but all the 462

states of the compressed variable C = {C1, C2, C3, C4} can 463

provide positional information. More precisely, we optimize 464

all of the individual distributions Pi(Ci|gi), and the objective 465

function is 466

F = I({Ci};x)− T
4∑

i=1

I(Ci; gi). [16] 467

We find that such a set of four sensors always is substantially 468

worse than a single optimal sensor, as indicated by the blue 469

line in Fig 3, even with same total information capacity (for 470

more details see SI). This indicates the importance of having 471

regulatory mechanisms that are sensitive to combinations 472

of transcription factors. In fact, the readout of positional 473

information encoded in the gap proteins is implemented by 474

the array of enhancers controlling pair rule gene expression, 475

and these enhancers are prototypical instances of regulatory 476

elements that respond to combinations of transcription factors 477

(29, 32, 49, 50). While there is some distance between our 478

abstract formulation and the molecular details, it is attractive 479

to see that this mechanistic complexity is required as a response 480

to basic physical and information theoretic limitations. 481

Conclusion 482

To summarize, individual regulatory mechanisms have limited 483

information capacity, and our central result is that this ca- 484

pacity in turn sets strict limits on the amount of positional 485

information that can be extracted from the gap gene expres- 486

sion levels. In this paper, we see the measurement of the 487

transcription factors as a problem of efficient sensing or com- 488

pression, and use the information bottleneck algorithm to 489

identify an optimal sensor for this network. Precise compari- 490

son with ideas about thresholded reading of the gap TF Hb 491

shows that the thresholds do not need to be fine tuned and 492

exhibit a hierarchy of sensitivities. Crucially, we find that it 493

almost certainly is not possible to read out enough positional 494

information with a single enhancer element. In order for the 495

nuclei to obtain at least 90% of the information provided by 496

the gap TF network, a large number of thresholds (30-50) or a 497

high capacity in the optimal sensor is required, and this must 498

be realized by multiple enhancers. Further, if each enhancer 499

responds to a single TF, there is a dramatic loss of efficiency. 500

The information theoretic optimization principle we have ex- 501

plored here thus predicts that expression levels must be read 502

by multiple enhancers, each sensitive to combinations of the 503

gap TFs. This complex enhancer logic indeed is how gap gene 504

expression levels drive downstream events in the fly embryo. 505
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