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There is increasing evidence that protein binding to specific sites along DNA can activate the
reading out of genetic information without coming into direct physical contact with the gene. There
also is evidence that these distant but interacting sites are embedded in a liquid droplet of proteins
which condenses out of the surrounding solution. We argue that droplet–mediated interactions can
account for crucial features of gene regulation only if the droplet is poised at a non–generic point in
its phase diagram. We explore a minimal model that embodies this idea, show that this model has
a natural mechanism for self–tuning, and suggest direct experimental tests.

In multicellular organisms, the transcription of genes
into messenger RNA is controlled by the binding of tran-
scription factor proteins to “enhancer” sites that can be
separated from the gene by tens of thousands of base
pairs along the DNA sequence [1–6]. Close approach of
enhancers to their target promoters has been inferred
from cross–linking experiments [7], and there is direct
evidence that the action of the enhancer requires physi-
cal proximity to the promoter site where transcription is
initiated [8]. But proximity is not contact: the most re-
cent measurements indicate that the enhancers and their
target promoters remain separated by 150−350 nm even
during active transcription [8–12].

How is the apparent action at a distance possible? In-
teractions between the enhancer and promoter could be
transmitted along the length of the DNA molecule, but it
seems more plausible that this interaction is transmitted
across the shorter three dimensional distance [13]. Re-
cent observations indicate that there is a medium for this
transmission, a condensed droplet of the protein “medi-
ator” which surrounds the promoter [14]; these droplets
also contain high concentrations of RNA polymerase [15],
are associated with foci of active transcription [16], can
form in vitro [17], and contain other co–activating fac-
tors [18]. We propose that the droplet acts as a larger
scale version of an allosteric protein [19–21]: in the same
way that the protein structure allows binding of small
molecules at one site to influence binding or enzymatic
activity at a distant site, the droplet would allow binding
of transcription factors (TFs) at an enhancer site to in-
fluence activity at the distant promoter site (Fig 1). We
will argue that this is possible only if the droplet is at
a non–generic point in its phase diagram, and that the
collective interactions among the enhancer sites can drive
the system toward such points.

Two facts will be crucial to our discussion. First, to
the extent that the mediator droplets are similar to other
examples of intracellular phase separation [22], they will

be liquid–like [23], and thus in general will not transmit
structural changes across hundreds of nanometers. Sec-
ond, gene expression can be controlled in a quantitative,
graded fashion in response to changing concentrations of
transcription factors [24–27].

If we did not have the constraint of graded responses,
we could imagine that binding of TFs to enhancer sites
triggers droplet condensation, and that this is the es-
sential mechanism of regulation, as proposed for “super–
enhancers” [18, 28]. But this is an all–or–none mecha-
nism, and it is difficult to harness the triggering of phase
separation to generate a quantitatively graded response
to changes in TF concentration. The existence of droplets
by itself does not solve the problem.

FIG. 1: The DNA strand (black) surrounds a condensed
droplet (orange). Promoter site is marked by an arrow (red),
enhancer sites as blocks (green) with transcription factors
(magenta and blue) both bound to these sites and freely dif-
fusing.
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Even if transcription requires droplet condensation,
there are pathways for regulation once the droplet has
formed. In eukaryotes transcription involves a very large
number of different proteins, and it is plausible that many
of these components condense into the droplet. With
multiple components the phase diagram is more com-
plicated than just two phases [29, 30], so droplets can
condense and still have additional degrees of freedom re-
lated to the addition or expulsion of different molecular
species. Let us summarize these variables by an order
parameter φ(~r), which can vary with position ~r inside
the droplet. These are the degrees of freedom that can

propagate interactions through the droplet.
The simplest model envisions a set of K identical bind-

ing sites for a single class of transcription factors (at po-
sitions ~ri), plus one promoter site (at ~ra), all embedded
in a droplet. These binding sites typically will be ar-
rayed across multiple enhancers, all of which can con-
tribute to regulating transcription. The relevant vari-
ables are σi = ±1 for empty and occupied binding sites,
and A = {0, 1} for the inactive and active states of the
promoter. All of these variables couple to the order pa-
rameter, and it is important that these couplings are spa-
tially local. The free energy is then

F [φ(~r); {σi}, A] = F0 [φ(~r)] + E0A−
kBT

2
ln(c/c0)

K∑
i=1

σi +

K∑
i=1

giσiφ(~ri) + gaAφ(~ra), (1)

where gi is the interaction between the order parameter
and binding of TFs to the enhancers, ga is the interaction
between the order parameter and the active vs inactive
state of the promoter, E0 is the free energy difference
between the two states of the promoter in the absence of
TFs, c is the concentration of these factors, and c0 is the
“bare” binding constant of the TF to the enhancer sites.

Let’s assume that, as in conventional models of al-
lostery, the transmission of information can be described
as an equilibrium thermodynamic effect [31–33]. Hence,
we define an effective free energy by integrating out the
fluctuations of the order parameter,

e−Feff ({σi}, A)/kBT =

∫
Dφ exp

(
−F [φ(~x); {σi}, A]

kBT

)
,

(2)
where Dφ is the measure for integration over φ(~r). Feff

is composed of independent and interacting parts, Feff =
F0 + Fint, and to leading order in the couplings we have

F0 = E0A−
kBT

2
ln(c/c0)

K∑
i=1

σi (3)

Fint = −
K∑

i, j=1

gigj

2kBT
C(rij)σiσj −

K∑
i=1

gagi

kBT
C(ria)σiA,

(4)

where we choose coordinates so that the average order
parameter is zero in the Boltzmann distribution defined
by F0, and C(r) is the correlation function of the order
parameter fluctuations in this distribution,

〈φ(~ri)φ(~rj)〉 ≡ C(rij), (5)

with rij = |~ri − ~rj|. The question of whether the droplet
transmits information from the enhancer to the promoter

becomes the question of whether fluctuations in the order
parameter are correlated over these long distances [34].

In liquids at generic parameter values, density fluctu-
ations have a short correlation length ξ, so that C(r) '
e−r/ξ, with ξ on the nanometer scale, and thus these
modes cannot support action at a distance. There can be
additional degrees of freedom associated with the orienta-
tional ordering of molecules in the droplet, or with con-
formational changes of these molecules, but again with
generic parameters we expect to find small ξ. The al-
ternative is that the parameters describing the droplet
are at a non–generic point in the phase diagram, where
the correlation length can become long, and this is the
“critical droplet” scenario we explore here.

Close to a first–order phase transition the free energy
F0 has two nearly degenerate minima [34]. In a suffi-
ciently small droplet, fluctuations in the order parameter
are dominated by flickering between these minima, and
there is an effective surface tension that keeps the en-
tire droplet in one minimum, so that C(r) becomes only
weakly dependent on distance [35]. Close to a second–
order phase transition the correlation length diverges,
and C(r) decays very slowly, as power of distance. Ei-
ther of these scenarios seems to require some tuning of
the droplet parameters, to which we return below.

If all the transcription factor binding sites couple to
the droplet in the same way, then we should have all the
gi = g. We can capture the essential predictions of this
model if all the distances rij and ra are roughly equal to
a typical R, in which case we can simplify to

Fint = −J
2

K∑
i, j=1

σiσj − Ja
K∑

i=1

σiA, (6)

with two parameters J = (g2/kBT )C(R) and Ja =
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FIG. 2: Mean promoter activity as function of the TF con-
centration. Results from Eqs (3) and (6) with K = 8 sites,
J = 0.2kBT , Ja = kBT , and E0 = kBT ln(100), compared
with the corresponding MWC model (Ja = 0.2kBT , J = 0).
Note that interaction energies are on the order of kBT or less,
but the droplet generates a very steep response to changing
TF concentrations.

(gga/kBT )C(R). To gain intuition, we note that if J = 0
then Eq (6) becomes identical to the Monod–Wyman–
Changeux (MWC) model for allosteric proteins [20, 32],
with the A = 1/0 switch in promoter activation playing
the role of the R/T conformational transition [20, 21]. A
critical droplet thus generates cooperative interactions
among distant sites that are similar, qualitatively, to
more familiar examples of allostery (Fig 2).

Transcriptional activators become repressors just by
changing the sign of the coupling gi, which describes in-
teraction of the TF with the surrounding droplet, and
is determined by the face of the protein opposite from
the DNA binding domain. A generalization is to imagine
that we have Ka binding sites for activators at concen-
tration ca and Kr sites for repressors at concentration
cr. Then at low repressor concentrations there is coop-
erative activation, but at higher repressor concentration
the system approximates a switch that depends on the
ratio of powers of the concentrations, cKa

a /cKr
r .

A second generalization is to have multiple nearby
binding sites within one enhancer interact more strongly,
perhaps through additional degrees of freedom, and then
let the emergent states of multiple enhancers couple to
the droplet. The system could then approximate logi-
cal operations corresponding to combinations of ANDs
within each enhancer and ORs among enhancers.

An important implication of this model is that tran-
scription is regulated not by the binding of transcription
factors to individual binding sites, but rather by an in-
tegrated signal from multiple binding sites that are dis-

tributed around the droplet of size R. If we think of
the transcriptional output as a “measurement” of the TF
concentration, then the accuracy of this measurement is
limited by the random arrival of molecules [36–38]; the
smallest concentration differences δc to which a system
can respond reliably is given by

δc

c
' 1√

D`cτ
. (7)

where c is the background concentration, D is the diffu-
sion constant, τ is the time over which the system can
average, and ` is the linear size of the sensitive element.
If the response is driven by a single binding site, then
` is the size of that site, but if the system integrates
over many binding sites, then ` can approach the linear
dimensions of the entire array of sites, in our case the
size of the droplet, which is ∼100× larger than individ-
ual binding sites. From Eq (7), responses which would
require hours of integration at a single site thus become
reliable in minutes. Transcription factor concentrations
are so low that this difference can be crucial [37, 39].

Poising a condensed droplet near a critical point seems
to require fine tuning of its parameters. Cells can exert
exquisite control over protein and nucleic acid concentra-
tions [39, 40], but matching the concentrations of crucial
molecules to their critical values still seems difficult. In
our case, however, there is a thermodynamic driving force
that pushes the system toward conditions where correla-
tion lengths are long. To estimate this effect, let’s assume
that the droplet has a critical point when one of its com-
ponents is at concentration x0. The chemical potential of
the surrounding solution holds the concentration close to
some mean concentration x̄, and variations ∆x around
this mean cost a free energy F1 ' (n̄kBT/2)(∆x/x̄)2,
where n̄ ' R3x̄ is the mean number of molecules in the
droplet. But at a concentration x the correlation length
will be ξ = a|x0/(x− x0)|ν [34], where a is a micro-
scopic length scale. Away from criticality, the gain in
free energy from interaction among K binding sites is
F2 ' −(J0/2)K(K − 1)e−R/ξ, and in total we have

2F

n̄kBT
' (∆x/x̄)2 −A exp

[
−R
a

∣∣∣∣ x0

∆x0 + ∆x

∣∣∣∣ν] , (8)

with ∆x0 = x̄− x0 and A = (J0/kBT )K(K − 1)/n̄. The
dominant component of the droplet is present at only
n̄ ∼ 100 [14], so with K ∼ 10 binding sites it is easy to
have A ∼ 1; to be conservative we consider A = 0.25.
We could plausibly have R ∼ 150 nm and the molecular
scale a ∼ 5 nm, but again to be conservative we choose
R/a = 5. Assuming that the chemical potential alone
sets x̄ = 1.5x0, we see that the possibility of mediating
interaction among binding sites creates a sharp minimum
of the free energy at the critical point, sufficient to pull
the system very close to criticality (Fig 3).

Taking this thermodynamic driving force seriously, we
note that when transcription is active, enhancer bind-
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FIG. 3: Free energy as a function of concentration in the
droplet, from Eq (8), with n̄ = 100, ∆x0 = x0/2, A = 0.25,
R/a = 5, and ν = 1/2. Note the weak minimum at the x =
x0 + ∆x0, set by the chemical potential, which is dominated
by the minimum at criticality, x = x0.

ing sites with states that are “aligned” to this activa-
tion have a free energy that is lower by Ja ∝ C(R),
and since C(R) decreases with r this generates a small
force pulling the enhancer toward the promoter. In con-
trast, enhancers in states that are not contributing to
activation of transcription have a free energy that is
higher by Ja and a force pushing enhancer and promoter
apart. These small forces are balanced by a stiffness,
which also determines the thermal fluctuations in the
enhancer–promoter distance. The result is that aligned
vs anti–aligned enhancers should be at different mean
distances from the promoter site, and this displacement
is ∆R/R ∼ (Ja/kBT )(δR/R)2, where δR is the stan-
dard deviation of the distance R, and we assume that
d lnC(R)/d lnR ∼ 1. These displacements should be di-
rectly observable, for example by measuring the positions
of different enhancers for the pair-rule genes in the early
fly embryo [41]. More generally this suggests that single–
molecule observations of enhancer motions could be con-
nected, quantitatively, to the energetics of cooperative
transcriptional activation.

To summarize, a large number of transcription fac-
tor binding sites, embedded in a droplet that surrounds
the promoter, will generate cooperative regulation if the
droplet is poised near special points or lines in its phase
diagram where correlation lengths become long. In this
scenario the droplet functions much like an allosteric pro-
tein, but this is possible only because of the proximity to
criticality. This is similar to the long–ranged interactions
between proteins that we expect to see in a membrane
[42] if lipid compositions are close to a critical point, as
observed [43–45]; it has also been suggested that chro-

matin itself is close to a sol/gel phase boundary [46].
There is a much wider range of ideas about how critical-
ity could play a role in biological function [47, 48], but
what is special in our example is that we have identified,
as an intrinsic part of the functional behavior, a mecha-
nism that drives the system toward its critical point, and
perhaps this is more general. Consequences of this ther-
modynamic driving force should be directly observable in
the physical positions of enhancer and promoter sites.
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[48] MA Muñoz, Colloquium: Criticality and dynamical scal-
ing in living systems. Rev Mod Phys 90, 031001 (2018).


	 Acknowledgments
	 References

