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Abstract

Viruses hijack host functions to invade their target cells and spread to new cells. Specifically, viruses 

learned to usurp liquid‒liquid phase separation (LLPS), a newly exploited mechanism, used by the cell 

to concentrate enzymes to accelerate and confine a wide variety of cellular processes. LLPS gives rise 

to actual membraneless organelles (MLOs), which do not only increase reaction rates, but also act as a 

filter to select molecules to be retained or to be excluded from the liquid droplet. This is exactly what 

seems to happen with the condensation of SARS-CoV-2 nucleocapsid protein to favor the packaging of 

intact viral genomes, excluding viral subgenomic or host cellular RNAs. Another older pandemic virus, 

HIV-1, also takes advantage of LLPS in the host cell during the viral cycle. Recent discoveries 

highlighted that HIV-1 RNA genome condensates in nuclear MLOs accompanied by specific host and 

viral proteins, breaking the dogma of retroviruses that limited viral synthesis exclusively to the 

cytoplasmic compartment. Intriguing fundamental properties of viral/host LLPS remain still unclear. 

Future studies will contribute to deeply understanding the role of pathogen-induced MLOs in the 

epidemic invasion of pandemic viruses.
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Introduction

Eukaryotic cells evolved mechanisms to ensure the performance of complex cellular functions in a 

limited space and in a spatiotemporal manner. Macromolecule condensates in cells, typically termed 

liquid-like droplets, are generated by liquid‒liquid phase separation (LLPS). LLPS is based on 

multivalent interactions among intrinsically disordered regions (IDRs) and/or modular interacting 

domains of some components (Bergeron-Sandoval et al., 2016; Banani et al., 2017; Shin and 

Brangwynne, 2017). IDRs do not have a well-defined structural conformation and usually contain 

repeated low-complexity sequences that favor transient intermolecular interactions such as aromatic, 

polar, and charge-charge (Bergeron-Sandoval et al., 2016; Banani et al., 2017; Shin and Brangwynne, 

2017). As an example, IDRs characterize many RNA-binding proteins involved in the formation of 

large ribonucleoprotein (RNP) complexes. These proteins can form membraneless organelles (MLOs) 

using different RNA forms, including messenger RNA (mRNA), ribosomal RNA (rRNA), long 

non-coding RNA (lncRNA), small nuclear RNA, and small nucleolar RNA, as molecular scaffold for 

their condensation (Shin and Brangwynne, 2017; Fay and Anderson, 2018). Thus, MLOs are typically 

formed via LLPS, generated by an equilibrium between particular molecules concentrated in a 

liquid-like compartment and the surrounding liquid milieu (Banani et al., 2017; Shin and Brangwynne, 

2017). This cellular organization allows a range of distinct cellular functions in a confined space 

(Boeynaems et al., 2018). MLOs have aroused the interest of many scientists from different disciplines, 

because they are critical for many biological phenomena. Some studies suggest an old origin of MLOs; 

indeed, they can be composed of simple heterogeneous polymer systems similarly to synthetic products 

from early Earth (Yoshizawa et al., 2020). 

MLOs include biomolecular condensates, such as processing bodies (PBs), stress granules (SGs), 

nuclear pore complexes (NPCs), paraspeckles, speckles, promyelocytic leukemia nuclear bodies (PML 

NBs), the nucleolus, DNA damage foci, transcription factories, and germline granules. It has been 

observed that the composition of MLOs can be responsible for their distinct biological functions and 

their dynamic state (Alberti and Hyman, 2016; Kaganovich, 2017). In fact, condensates can play 

divergent biological roles (Roden and Gladfelter, 2020): (i) triggering the interaction between factors 

by bringing them closer to each other (Seydoux and Braun, 2006; Lee et al., 2013; Wang and Seydoux, 

2014; Lee et al., 2015; Langdon and Gladfelter, 2018), (ii) serving as sink for chemical reactions (Lu et 

al., 2018), (iii) enhancing enzymatic rates (Hnisz et al., 2017; Cho et al., 2018), and (iv) acting as stress 

sensors (Riback et al., 2017; Du and Chen, 2018). Phase separation plays also a role in cargo 

trafficking pathways, such as docking cargos to mediate their transport across membranes and shuttling 

cargos through the NPC. Importantly, membrane-bound and membraneless organelles orchestrate 
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actions to guarantee spatiotemporal control of multiple cellular functions. In fact, LLPS plays broad 

roles with membrane-associated structures, such as post synaptic density (PSD) in neurons and T cell 

signaling. Phase separation-mediated PSD assembly can determine the physiological functions of 

synapses (Dustin and Choudhuri, 2016; Dustin and Kam, 2016; Zeng et al., 2016; Courtney et al., 

2018). New evidences show that membrane-bound organelles and membraneless condensates closely 

interact, regulating various functions of both types of organelles that can be usurped by viruses for their 

replication (Zhao and Zhang, 2020). Study based on advanced electron microscopy revealed that 

positive-sense RNA viruses, such as picornaviruses, hepatitis C virus, noroviruses, and coronaviruses 

usurp host membranes to generate viral replication organelles (ROs), inducing encapsulated spherules 

or double-membrane vesicles (DMVs) for viral RNA (vRNA) synthesis (Knoops et al., 2008; Maier et 

al., 2013; Zhang et al., 2018; Snijder et al., 2020; Wolff et al., 2020). However, it is still unclear how 

critical DMVs are for effective viral spread, which is a vital notion for the design of broad-acting 

antivirals. Phase separation plays a key role in genome organization and gene expression; in fact, the 

nucleus optimizes its intricate function through its own compartmentalization. For instance, the 

genomic 3D organization is pivotal not only for the packaging of several Mb of DNA in the small 

nuclear volume, but also for short- and long-range interactions between regulatory sequences and 

genes. Nuclear architecture is dynamically coordinated by DNA-interacting proteins, which cleverly 

cluster the chromatin for the best purpose. The assembly of a large amount of specific nuclear factors, 

which transiently or permanently interact with DNA and/or RNA, generate well-defined nuclear 

domains (nuclear bodies). Even though biomolecular condensates miss an actual barrier from the 

surrounding environment, they represent actual independent ‘factories’. Overall, it is extremely 

advantageous for the cell exploiting these structures to quickly respond to different environmental 

inputs and/or to cellular perturbations, such as viral invasion. Indeed, viruses evolved multiple 

mechanisms to adapt and co-exist with the host to be able to release their new progeny. For example, 

DNA and RNA viruses learned to build or restructure MLOs to replicate.

This review focuses on the interplay between MLOs and two pandemic viruses: HIV-1 and 

SARS-CoV-2. HIV-1 virions carry two copies of RNA genome that should be retrotranscribed to allow 

viral integration into the host chromosomal DNA. Thus, HIV-1 replicates in the nucleus of the host 

cell. Contrary to HIV-1, SARS-CoV-2, which has a genome formed by single stranded positive-sense 

RNA, replicates in the host cytoplasm (Zhou et al., 2020). This is also the case of SARS-CoV and 

SARS-related bat coronaviruses. Despite the differences in the cell cycle of those two categories of 

viruses, HIV-1 and SARS-CoV-2, recent studies highlight that both benefit from MLOs to replicate 

(Cubuk et al., 2020; Iserman et al., 2020; Perdikari et al., 2020; Rensen et al., 2020; Savastano et al., 
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2020; Scoca et al., 2020). This review aims to discuss the most important strategies evolved by these 

two pandemic viruses to interact with MLO components for an efficient sabotage of the cellular 

compartments to their own benefit. 

HIV-1 and SARS-CoV-2 interplay with the host MLOs.

SGs

Phase separation dictates the principles of cell organization, governing cell function and survival 

(Uversky, 2017), for instance, generating SGs in response to environmental and stress factors 

(Franzmann and Alberti, 2019). Of note, SGs can be induced by cellular stress, specifically triggered 

by translational silencing, causing accumulation of cellular mRNA. In most of the cases, the block of 

translation is due to the phosphorylation of the translation eukaryotic initiation factor 2 (eIF2) 

(Protter and Parker, 2016). Different eIF2α kinases can sense environmental stress, like protein kinase 

RNA-dependent (PKR) in response to viral double-stranded RNA (dsRNA) sensing (Bou-Nader et al., 

2019) and PERK/PEK (PKR-like ER kinase) in response to hypoxia and misfolded proteins in the 

endoplasmic reticulum (Harding et al., 2000). 

Numerous viruses, however, inhibit SG assembly to evade the antiviral response (Poblete-Duran 

et al., 2016). An example is HIV-1 that evolved multiple mechanisms to block the assembly of SGs 

through the interplay between the viral structural precursor polyprotein (pr55Gag) and several host 

factors such as eEF2, G3BP1, CypA, and eIF4E (Cinti et al., 2016).  Interestingly, it has been 

proposed that during HIV-1 replication, an equilibrium exists between SG assembly and disassembly 

(Rao et al., 2018). More recently, it has been identified that a prion-like IDR conserved among 

retrovirus Gag proteins regulates their zinc-dependent LLPS. This LLPS drives nucleocapsid-stress 

granule (NC-SG) formation and, in the presence of vRNA, viral RNP assembly. The chelation of the 

Zn2+ blocks the development of these MLOs and induces a relocalization of nucleocapsid and viral 

genomic RNA (NC-vRNA). The infection outcome seems to be based on the NC-vRNA/NC-SGs 

balance, which is due to the ordered Zn2+ LLPS of NC proteins that contributes to viral assembly, while 

the NC-SGs avoid an excessive accumulation, as NC proteins have a tendency to multimerize (Table 1; 

Monette et al., 2020).

Apart from HIV-1, several studies have been performed on the interplay of SARS-CoV with SGs. 

The infection, as for many other viruses, activates PKR and PERK kinases inducing SG assembly, but 

viral replication is not affected by eIF2 hyperphosphorylation, meaning that the viral expression is 

optimized in other ways, overcoming the induced cellular stress (Krahling et al., 2009). It has been 
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observed that the host cell translation is hampered by mechanisms involving nonstructural protein 

1(nsp1) in SARS-CoV-infected cells (Kamitani et al., 2006; Narayanan et al., 2008; Kamitani et al., 

2009; Lokugamage et al., 2012), which leads to stress-induced RNA accumulation (Anderson and 

Kedersha, 2008). In vitro, it has been observed that the nucleocapsid protein of SARS-CoV 

(SARS-CoV N protein) is recruited to SGs via its SR-domain that can be phosphorylated at multiple 

sites by SRPK1 (Peng et al., 2008), the mammalian homolog of a yeast SR-kinase that regulates SGs 

(Shattuck et al., 2019). Of note, the protein N can interact with the granule-associated protein 

hnRNPA1 (Luo et al., 2005) and other SG and phase-separating proteins (Molliex et al., 2015). 

With COVID-19 outbreak, new research lines opened in the field of SARS-CoV-2 cellular stress. 

Similarly to the HIV-1 NC protein, the SARS-CoV-2 N protein undergoes phase separation with RNA 

in vitro (Perdikari et al., 2020). It has been hypothesized that this process facilitates SARS-CoV-2 

replication by recruiting the excess of cytoplasmic proteins induced by the viral stress, like 

heterogeneous nuclear RNPs (hnRNPs), as hubs to assemble dense N protein-viral genomic RNA 

(N-vRNA) phases to promote viral replication (Table 1; Perdikari et al., 2020). Importantly, proteomic 

studies performed on a putative SARS-CoV-2 protein interaction map identified some RNA processing 

factors and SG regulation factors, such as G3BP1/2, to be the epicenter of the N interactome (Gordon 

et al., 2020). In fact, G3BP1 and G3BP2, which drive the formation of SGs (Guillen-Boixet et al., 

2020; Sanders et al., 2020; Yang et al., 2020), co-precipitate with the N protein (Gordon et al., 2020). 

Taking into account studies on SARS-CoV, several models can be foreseen to explain the N 

protein role in SARS-CoV and SARS-CoV-2 life cycle: (i) N protein is passively recruited by SGs 

exercising no effect on them or it can actively play a role in turning down the host translation in favor 

of viral replication (Peng et al., 2008; Krahling et al., 2009) ; (ii) non-canonical SGs can be restructured 

and built during infection for viral replication or viral mRNA translation (Piotrowska et al., 2010; 

Scholte et al., 2015; Hou et al., 2017; Hosmillo et al., 2019; Brocard et al., 2020; Burke et al., 2020); 

and (iii) N protein may inhibit the formation of SGs via the sequestration of critical SG components, 

such as G3BP1, G3BP2, and hnRNPA1 (Cascarina and Ross, 2020). The relevance of the role of N 

protein for SARS-CoV-2 viral life cycle shed light on potential treatments that can be foreseen to target 

the interaction between N protein and host cell kinases or virus-induced MLOs to combat 

SARS-CoV-2 infection. 

NPC

The NPC regulates the exchange of components between the cytoplasm and the nucleus and represents 

the first barrier that viruses encounter to pass through the nuclear membrane. It is composed by ~30 
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nucleoporins (Nups) (D'Angelo and Hetzer, 2008), which cover several functions, from the static 

scaffolding to the dynamic shuttling of cargos (Rabut et al., 2004) through the inner channel of ~ 39 nm 

(Pante and Kann, 2002). One third of Nups contain phenylalanine‒glycine (FG) repeats (Raices and 

D'Angelo, 2012), which represent low-complexity IDRs. Most IDRs have a relatively low 

hydrophobicity and high net charge (Uversky et al., 2000), preventing the collapse into water insoluble 

aggregates, allowing the maintenance of their unfolded state in solution under physiological conditions 

(Monsellier and Chiti, 2007). A recent manuscript (Celetti et al., 2020) demonstrated that FG-Nups can 

undergo LLPS and form liquid droplets that mimic permeability barrier properties of intact NPCs. 

Thus, the authors evaluated whether the liquid Nup droplets have NPC-like permeability barrier 

properties, similarly to their solid counterparts. Liquid FG-Nup drops were rapidly penetrated by 

cargo–nuclear transport receptor (NTR) complexes, but only in the presence of the correct nuclear 

localization signal (NLS) and cognate NTR. Interestingly, this behavior was also observed for much 

larger cargo model, the recombinant capsid from MS2 bacteriophage; when surrounded by NLSs and 

importin α/β, this gigantic cargo was able to accumulate in FG-Nup drops (Celetti et al., 2020). 

Nups are responsible for the static scaffolding of the NPC, as well as its dynamic transporter 

aspect. The dynamic and flexible nature of the NPC regulates the nuclear passage of viral complexes, 

such as for HIV-1 (Di Nunzio, 2013). The viral capsid is the determinant for HIV-1 nuclear import. 

Indeed, it has been demonstrated that the viral capsid directly docks at the NPC by engaging 

Nup358/RanBP2, located in the cytoplasmic side of the complex, by interacting with its Cyp-like 

domain (Di Nunzio et al., 2012). HIV-1 capsid also interacts with Nup153 (Table 1; Di Nunzio et al., 

2013; Lelek et al., 2015), which is the most dynamic Nup, located in the nuclear side of the nuclear 

basket (D'Angelo and Hetzer, 2008). Interestingly, all Nups carrying FG domains can bind to HIV-1 

capsid, probably helping the efficiency of viral nuclear entry and, likely, post-nuclear entry steps 

(Buffone et al., 2018). Thus, HIV-1 capsid penetrates the liquid Nup droplets, likely formed by Nup153 

(Celetti et al., 2020).  

If on one side, HIV-1 exploits the NPC for its pre-integration complex import in the nucleus, on 

the other, SARS-CoV-2 influences the functionality of the nuclear pore in a direct or indirect way. 

Nsp1 of SARS-CoV-2 is able to disrupt Nup93 localization around the nuclear envelope without 

triggering its proteolytic degradation or perturbation of the nuclear lamina. However, being the 

nuclear‒cytoplasmic exchange altered probably due to Nup93 impairment, a redistribution of the RNA 

binding protein nucleolin was observed (Gomez et al., 2019). Another recent study reported that ORF6 

of SARS-CoV and SARS-CoV-2 inhibits STAT1 nuclear translocation to impede IFN signaling. 

Importantly, ORF6 localizes at the NPC where it directly interacts to the Nup98‒Rae1 complex to 
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target the nuclear import pathway to overcome the antiviral action of IFN (Table 1; Miorin et al., 

2020). Additional research might address more details on how SARS-CoV-2 can alter host nuclear 

import/export, through interaction with the NPC.

Nucleolus 

The nucleolus exemplifies the nucleolar MLO per excellence, which is further structured in three 

function-specific compartments, fibrillar centers (FCs), dense fibrillar component (DFC), and granular 

component (GC), all involved in different steps of rRNA biogenesis (Scheer and Hock, 1999). The 

nucleolar factors are condensed around the tandemly repeated ribosomal DNA (rDNA) and at the 

boundary between the FCs. In the DFC, there is a high concentration of Pol I for rDNA transcription; 

on the other hand, fibrillarin and small nucleolar RNPs (snoRNPs) are also enriched in the DFC, ready 

to process pre-rRNAs, which eventually are assembled in the GC (Boisvert et al., 2007). Nucleolar 

RNPs constitute a complex network of functions that several viruses exploit to replicate, especially 

RNA viruses whose cycle mainly occurs in the cytoplasm, but, unexpectedly, many viral components 

import in the nucleus and interact with nucleolar factors (Hiscox, 2007). 

Mostly, the N protein and core proteins appear to exploit their ability to bind to the RNA molecule 

to interact with the nucleolar RNA and specifically localize there. This is the case for the majority of 

coronaviruses (Wurm et al., 2001), whose N protein probably share a so-called nucleolar retention 

signal (NoRS) sequence (Reed et al., 2006). Studies with deletion mutants and complementation assays 

coupled to imaging techniques suggest that the N protein may act as cytoplasm/nucleolus shuttle 

protein (Timani et al., 2005). The relocation of the N protein to the nucleolus seems cell 

cycle-dependent, with a greater accumulation in G2/M phase (Cawood et al., 2007). Not only N protein 

but aslo nsp3b (ORF3b) protein of SARS-CoV was found to colocalize with C23 (nucleolin) and B23 

(nucleophosmin) (Yuan et al., 2005). So far, for the newly discovered SARS-CoV-2, it is still under 

investigation where N proteins may localize to the nucleolus. Of note, Wu et al. (2020), through a 

machine-learning approach, predicted the 5′ and 3′ SARS-CoV-2 genomic untranslated regions to be 

enriched in the host mitochondrial matrix and nucleolus (Table 1). Therefore, the localization of 

SARS-CoV-2 genetic material to the nucleolar body might be essential for viral life cycle, but more 

extensive research is demanded to clarify the interplay between SARS-CoV-2 N protein and the 

nucleolus. 

HIV-1 has, as well, evolved mechanisms that involve the nucleolus; indeed, both Tat and Rev 

proteins have been characterized with a nucleolar localization signal (NoLS) since the end of last 

century (Cochrane et al., 1990; Siomi et al., 1990). Tat constitutive expression in T cells resulted in a 
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specific nucleolar proteomic profile with 49 proteins displaying a significant fold change compared to 

control. The ribosomal proteins and ribosomal biogenesis enzymes were in the top 20 most enriched 

ones, suggesting an HIV-induced upregulation and usurpation of ribosomal cellular machinery (Jarboui 

et al., 2012). On the other hand, since Rev protein is involved in intron-containing vRNA export, it was 

speculated that the nucleolus might be the platform for the assembly of RNP particles containing 

HIV-1 RNA genome and viral/cellular factors, which were then exported to the cytoplasm (Table 1; 

Michienzi et al., 2000). Indeed, upon Rev expression, the relocation of the nucleoporins Nup98 and 

Nup214 was observed, along with the export-aiding protein CRM1 in the nucleolus of HeLa cells 

(Zolotukhin and Felber, 1999). In particular, it was shown in live that Rev multimerizes in the 

nucleolus (Daelemans et al., 2004). Because of the relevance of Tat and Rev in a relatively early stage 

of viral replication, it has been proposed to target their activity for therapeutic purposes. Lastly, in the 

recent years, HIV-1 NC was also found to have a nuclear and nucleolar localization (Yu et al., 2016), 

but while several studies are carried on to determine its functions in the nucleus, little is known about 

the functional characterization of nucleolar nucleocapsid localization. Even if at first sight the 

nucleolus might be only a ‘ribosomal machine’, it seems that viruses have interest to interact with 

nucleolar proteins and accumulate viral components there. 

Overall, the data accumulated so far highlight not only the importance of the impairment and 

reprogramming of cellular protein synthesis for viral life cycle, but also the exploitation of this nuclear 

MLO for genomic and subgenomic storage and/or as RNP assembly platform for nuclear export, 

facilitating vRNA trafficking. 

PML NBs

PML NBs were identified by electron microscopy in several cell types (de et al., 1960) and may vary 

from 0.1 to 1.0 µm in diameter size. These nuclear super-structures are formed by the phase separation 

of multiple cellular proteins, which accumulate to be SUMOylated (Bernardi and Pandolfi, 2007). The 

key proteins of these structures are Sp100, hDaxx, and PML. Because of the importance of 

SUMOylation in the regulation of a variety of cellular functions, PML NBs are involved in 

stress-related as well as homeostatic processes: stress response, oncogenesis, gene regulation, cell 

senescence, DNA damage repair, apoptosis, and antiviral response. In the context of viral infection, it 

has been demonstrated that PML and Sp100 expression is directly induced by IFN treatment (Everett 

and Chelbi-Alix, 2007). Recent studies show how PML NBs may have a role in HIV-1 persistence, 

since silenced HIV-1 proviruses are found in close proximity to PML in T lymphocytes (Table 1; Lusic 

et al., 2013). The HIV-1/PML proximity is lost upon chemical cell-activation or upon inhibition of 
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Class I HDACs. Indeed, HIV-1 activation is induced by PML knockdown and seems very specific and 

related to the loss of PML-associated repressive chromatin modifications, such as H3K9me2. With a 

view to novel therapeutic targets, the importance of oxidative stress and iron metabolism in HIV-1 

infection has been highlighted and PML NBs seem to be the central players (Shytaj et al., 2020). 

Particularly, upon infection, PML proteins are hyper-SUMOylated and degraded with concomitant 

active viral expression; on the contrary, upon antioxidant treatment or iron chelation, HIV-1 

reestablishes a latent phenotype and PML levels are restored (Shytaj et al., 2020). 

Nuclear speckles 

Nuclear speckles (NSs) are highly versatile condensates of about 0.3 to 3 µm. Their characterization 

started with two major discoveries by Ramón and Cajal (‘El nucleo de las celulas piramidales del 

cerebro humano y de algunos mamiferos’, 1910) and independently, later on, by Swift (1959), who 

identified through electron microscopy structures that he named ‘interchromatin granule nuclear 

clusters’ (IGCs). The nowadays term was given by Beck (1961). Anatomy and function of NSs started 

to become clearer when these structures were re-identified through immune-labelling of some 

components of the pre-mRNA splicing machinery, like snoRNPs, spliceosome subunits, and other 

splicing factors, as well as through the highlighting of clusters of polyA+ RNAs (Spector et al., 1991; 

Carter et al., 1993). The functions of NSs are still under investigation, but they oscillate between two 

major processes: the storage and post-translational modification of splicing machinery components, 

which is supported by the presence of several phosphatases and kinases in NSs, and the ability of being 

molecular hubs of transcriptional expression linking different loci to the same RNA-processing factory 

(Sutherland and Bickmore, 2009). Key components of NSs are the protein SC35, the scaffolding 

protein SON (Sharma et al., 2010), and the lncRNA MALAT-1 (Fei et al., 2017); the latter is highly 

enriched in NSs and has a role in the recruitment of splicing factors to nascent transcripts. The splicing 

is an essential step for HIV-1 replication. Indeed, some studies identify a link between speckles factors 

and HIV-1 infection. Two to three-fold increase in the expression of SC35 RNA was detected upon 

infection (Maldarelli et al., 1998), indicating that HIV infection alters speckle factors and probably 

their composition. In fact, in human macrophages, SC35 protein levels were upregulated in the first 

weeks of infection probably favoring the splicing of vRNA, while hnRNPs, which are inhibitory 

factors, were downregulated. In addition, a correlation with Tat expression was observed when SC35 

levels were higher (Dowling et al., 2008), supporting the role of splicing factor levels in HIV-1 

replication–persistence balance.
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Pandemic viruses trigger the formation of condensates as the scaffold for their replication  

Condensation and coalescence of host/viral components can create a favorable environment for viral 

replication. This microenvironment is formed by MLOs created from LLPS enhanced by viral 

infection. Recently, it has been surprisingly found that HIV-1 infection remodels the nuclear 

intra-compartments. In particular, HIV-1 relocates and condensates a paraspeckle factor, CPSF6, in a 

different MLO enriched in speckle factors, such as SC35 (Francis et al., 2020; Rensen et al., 2020; 

Scoca et al., 2020). This viral action most probably turns the host speckles in new hubs for viral 

replication. Despite the fact that the HIV was discovered in 1983 (Barre-Sinoussi et al., 1983), only 

recently, new insights into reverse transcription were tracked down. The reverse transcriptase (RT) 

enzyme was at the basis of HIV discovery, thanks to the detection of RT activity in the supernatant of 

cellular culture, which permitted to understand the nature of the isolated retrovirus, directly from a 

lymph node biopsy of a HIV-infected patient. HIV-1 relies on the retro-transfer of RNA genetic 

information to DNA to be able to integrate into the host genome to ensure viral persistence. Notably, 

the ‘central dogma’ based on the concept that the genetic information could be carried only by the 

DNA was revised. Historically, the discovery of RT (Baltimore, 1970; Temin and Mizutani, 1970) has 

been considered a milestone of molecular biology and biotechnology, enabling scientists to set up new 

tools that heavily influenced cloning, analysis of gene expression, the study of RNA biology, and the 

development of state-of-the-art technologies and the modern medicine. Of note, the RT discovery has 

been recompensed with the Nobel Prize to three scientists: Renato Dulbecco, Howard Temin, and 

David Baltimore. HIV RT has been the most exploited antiviral drug target ever and, to date, 12 

anti-RT drugs have been developed: nucleoside RT inhibitors (NRTIs) and nonnucleoside RT 

inhibitors (NNRTIs). So far, the RT activity has been considered a process that begins and ends in the 

cytoplasmic compartment of the host cell. However, a recent study directly highlights the presence of a 

nuclear RT activity in the nucleus of infected macrophages, revisiting the HIV RT dogma considering 

that retrotranscription can occur exclusively in the cytoplasm of the host infected cell (Rensen et al., 

2020). Of note, in the HIV-1-induced CPSF6-SC35 MLOs, newly synthesized viral DNA (vDNA) was 

found (Rensen et al., 2020; Scoca et al., 2020). These results point out that, at least in macrophages, the 

nuclear reverse transcription can occur, likely ending inside the nucleus, contrary to the current belief. 

Other recent studies (Burdick et al., 2020; Dharan et al., 2020; Selyutina et al., 2020) supported similar 

conclusions on the spatiotemporal action of RT. This surprising discovery of the new cellular 

compartment where retrotranscription can occur has been elucidated only after 37 years from HIV 

discovery (Barre-Sinoussi et al., 1983) and after 50 years from the stunning finding of the 

RNA-dependent DNA polymerase RT (Baltimore, 1970; Temin and Mizutani, 1970). Interestingly, the 
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HIV genomic RNA has been observed in the host nuclei from several groups, suggesting that RT 

completion is dispensable for nuclear entry (Burdick et al., 2013; Burdick et al., 2017; Bejarano et al., 

2019; Burdick et al., 2020; Dharan et al., 2020; Selyutina et al., 2020). However, the physiological role 

of the presence of RNA inside the nucleus of infected cells was obscure. The discovery of the 

formation of RNA genome clusters englobed in nuclear MLOs gave the opportunity to visualize for the 

first time the presence of a nuclear RT activity using cutting-edge imaging technologies (Table 1; 

Rensen et al., 2020). HIV genomes cluster together with host factors, such as CPSF6 and SC35, usually 

located in distinct nuclear locations, paraspeckles and speckles, respectively. This finding supports the 

hypothesis that HIV generates novel MLOs for its own aim or induced by the host to control the fuel of 

infection (Figure 1). Several speculations can be proposed to explain the presence of these viral/host 

nuclear structures: (i) to serve as nuclear microreactors that condensate RT enzymes and host factors to 

promote vDNA synthesis in macrophages; (ii) to serve as microenvironments that include viral and 

host factors required for the generation of new viral progeny and/or to hide the virus from cellular 

defense mechanisms (Schmid et al., 2014; Lahaye et al., 2018); (iii) related to the finding that large 

amounts of unintegrated vDNA cluster in the nucleus, probably forming viral reservoirs, which 

constitute the bottleneck for a cure against HIV; and (iv) HIV-induced MLOs located in the nucleus 

could serve as source of storage of viral genomes ready to be packed to spread as new progeny. HIV 

genome clusters co-localize with condensates formed by SC35, a known speckle factor (Francis et al., 

2020; Rensen et al., 2020). Whether or not speckles have a role in HIV integration and transcription 

still should be clarified, because current technologies used to visualize HIV DNA, such as click 

chemistry based on EdU incorporation during the ongoing RT, interfere with viral transcription and are 

not sufficiently sensitive to visualize an individual viral genome (Rensen et al., 2020). However, this 

technology can successfully label nascent HIV DNA in non-dividing cells. In fact, episomal forms of 

HIV DNA containing EdU have been visualized in MLOs enriched with CPSF6 and SC35 (Rensen et 

al., 2020). On the other hand, more powerful imaging technologies are needed to identify the location 

of viral proviruses, in particular by using live imaging. HIV-1 ANCHOR technology offers good 

potentiality to investigate this important step of viral life cycle, because it allows the visualization of 

single pre-integration complex (Blanco-Rodriguez et al., 2020; Scoca et al., 2020) using live imaging. 

Recent results show that HIV-1 infection induced remodeling of pre-existing MLOs generating HIV-1 

MLOs, thus it is possible that the remodeling of the nucleus by HIV-1 (Table 1; Scoca et al., 2020) 

regulates viral transcription. Future studies will aim to define whether speckles or HIV-induced nuclear 

MLOs are involved in fueling viremia or in the persistence process promoted by HIV to ensure its own 

survival in the host. Additionally, LLPS contributes to the formation of heterochromatin and 
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nucleosomes, which have the intrinsic property to phase separate from the rest of the nuclear 

environment. The phase-separating properties of several chromatin-binding proteins seem to be 

essential for the regulation of chromatin dynamics and transcription (Hnisz et al., 2017; Larson et al., 

2017; Strom et al., 2017; Boehning et al., 2018; Boija et al., 2018; Cho et al., 2018; Sabari et al., 2018; 

Nair et al., 2019; Plys et al., 2019; Zhang et al., 2019). For example, the transcriptional repressor HP1 

mediates the formation of heterochromatin by its ability of phase separating (Larson et al., 2017; Strom 

et al., 2017) as well as CBX2 subunit of Polycomb-repressive complex 1 can phase separate in vitro 

(Plys et al., 2019). In contrast, other chromatin factor, such as the transcriptional coactivator BRD4, a 

well-known marker of euchromatin, is able to induce the formation of liquid-like condensates at 

super-enhancer regions (Sabari et al., 2018). Importantly, it has been reported that HIV-1 recurrently 

targeted host genes (RIGs) are proximal to super-enhancers genomic elements with BRD4 signature. 

Those RIGs cluster in particular spatial locations during the activation of T cells (Lucic et al., 2019). 

Whether euchomatin- or heterochromatin-related nuclear factors can establish condensates that may 

play a role in HIV-1 gene expression is a fascinating new perspective. The interplay between MLOs 

and HIV-1 genome puts forward new frontiers for future research. New results in this field could unveil 

mechanisms related to HIV-1 MLO function and the remodeling to regulate viral latency and viral 

rebound. 

Similar to HIV-1, SARS-CoV-2 seems to use LLPS to spread, but in a different cellular 

compartment. It has been reported that N protein forms condensates in the presence of SARS-CoV-2 

genome. In particular, there are several evidences suggesting that the serine–arginine (SR)-rich 

sequence of N protein serves as a key regulatory hub. Likely, N protein is linked to the function of the 

replication transcription complex (RTC). It has been observed that at early time post infection, SR 

regions of N protein are phosphorylated at multiple sites by cytoplasmic kinases (Cong et al., 2020).  

The phosphorylated N protein associates with the RNA helicase DDX1, which induces RNA structural 

changes required for transcription of subgenomic RNAs (Wu et al., 2014; Carlson et al., 2020). 

Interestingly, a liquid-like matrix composed of phosphorylated N protein, linked to RTC membranes by 

Nsp3, creates a compartment to concentrate and protect the viral replication and transcription 

machinery. Similar mechanisms have been highlighted for negative-sense RNA viruses, where 

replication depends on dynamic biomolecular condensates (Table 1; Cubuk et al., 2020; Iserman et al., 

2020; Perdikari et al., 2020; Savastano et al., 2020). Of note, it has been elegantly shown by the group 

of Gladfelter that genomic RNA carrying 5’ and 3’ ends promotes condensates in the presence of 

nucleocapsid. Contrariwise, host RNA and viral subgenomic RNA are excluded from LLPS (Iserman et 

al., 2020; Figure 1). This is an appealing model for viral replication based on liquid-like droplets as 
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hubs of viral progeny. Future studies will clarify whether this exciting model can be validated in the 

context of a real infection with SARS-CoV-2.

Conclusions 

A role of LLPS in pandemic viruses, such as HIV-1 and SARS-CoV-2, has been highlighted by several 

studies. In particular, the establishments of new condensates during viral infection formed by viral 

factors with or without the host factor contribution seem to be key for viral replication. Interestingly, 

viruses evolved independent strategies to replicate by forming condensates in the host cells. The N 

protein of SARS-CoV-2 condensates in the cytoplasm with the viral genome to favor viral assembly in 

the cytoplasmic compartment (Figure 1). The evolving research on SARS-CoV-2 replication cycle will 

address important mechanisms of establishment of viral MLOs. In contrast to SARS-CoV-2, HIV-1 

replicates in the nuclear compartment inducing new MLOs (Figure 1), containing HIV-1 RNA genome, 

capsid, and integrase from the incoming viral particles together with host nuclear factors. Several 

important functions have been attributed to these viral/host nuclear organelles, such as HIV-1 RNA 

genome sequestration, RT activity, and interaction with host factors, such as splicing components 

(Figure 1). These HIV-induced MLOs locate in SC35-speckle regions to reprogram pre-existing 

organelles to obey to the viral needs. Thus, viral MLOs could represent a new frontier of therapeutic 

targets to block viral replication either at early or late stages of viral life cycle. 
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Figure legend

Figure 1 MLOs induced by HIV-1 and SARS-CoV-2 to replicate. Left: HIV-1 infection prompts the 

formation of nuclear MLOs enriched in host factors, such as CPSF6 and SC35, and in viral 

components, such as vRNA, vDNA, capsid, and integrase. Right: SARS-CoV-2 N protein forms 

condensates in the cytoplasm to recruit exclusively intact vRNA genome against subgenomic vRNAs 

or host RNAs. Cartoon created with BioRender.com.
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Table 1 Role of MLOs in viral infection of pandemic viruses HIV-1 and SARS-CoV-2.

MLOs Viruses: HIV-1 & SARS 
CoV-2

Role of MLOs during 
infection References

HIV-1 Regulation of genomic RNA 
and trafficking

Rao et al., 2018
Monette et al., 2020

SGs
SARS-CoV-2

Role of N protein in 
SARS-CoV-2 viral genome 
packing

Perdikari et al., 2020
Iserman et al., 2020
Cubuk et al., 2020
Savastano et al., 2020

HIV-1 Nuclear import and integration 
site selection

Di Nunzio et al., 2013
Lelek et al., 2015
Buffone et al., 2018
Marini et al., 2015

NPC

SARS-CoV-2 Inhibition of IFN signaling Miorin et al., 2020
HIV-1 Viral RNP assembly platform Michienzi et al., 2000 

Nucleolus
SARS-CoV-2 Untranslated viral genomic 

RNA accumulation Wu et al., 2020

PML NBs HIV-1 Silenced HIV-1 location Lusic et al., 2013
Potential sites of the PIC 
maturation Scoca et al., 2020

NSs HIV-1
Nuclear reverse transcription

Rensen et al., 2020
Burdick et al., 2020
Dharan et al., 2020
Selyutina et al., 2020
Scoca et al., 2020
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SARS-CoV-2 HIV-1 

CPSF6–SC35 
cluster 

Viral genomic RNA 

Viral factor 

Host factor 

Cytoplasm Cytoplasm 

Nucleus Nucleus 

Host RNA 

Viral subgenomic RNA 

N proteins 

Viral genomic RNA 

Packaging of RNA genomes 

Viral–host factors interaction 

Clustering of RNA genomes 

Reverse transcription 

Viral–host factors interaction 

Viral DNA 
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