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Abstract: Klebsiella pneumoniae is a bacterial pathogen of high public health importance. Its
polysaccharide capsule is highly variable but only a few capsular types are associated with emerging
pathogenic sublineages. The aim of this work is to isolate and characterize new lytic bacteriophages
and assess their potential to control infections by the ST23 and ST258 K. pneumoniae sublineages
using a Galleria mellonella larvae model. Three selected bacteriophages, targeting lineages ST258
(bacteriophages vB_KpnP_KL106-ULIP47 and vB_KpnP_KL106-ULIP54) and ST23 (bacteriophage
vB_KpnP_K1-ULIP33), display specificity for capsular types KL106 and K1, respectively. These
podoviruses belong to the Autographivirinae subfamily and their genomes are devoid of lysogeny or
toxin-associated genes. In a G. mellonella larvae model, a mortality rate of 70% was observed upon
infection by K. pneumoniae ST258 and ST23. This number was reduced to 20% upon treatment with
bacteriophages at a multiplicity of infection of 10. This work increases the number of characterized
bacteriophages infecting K. pneumoniae and provides information regarding genome sequence and
efficacy during preclinical phage therapy against two prominent sublineages of this bacterial species.
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Klebsiella pneumoniae, a member of the Enterobacteriaceae family, causes a variety of human and
animal infections including pneumonia, infections of the urinary tract, bacteremia, and liver abscess.

Viruses 2019, 11, 411; doi:10.3390/v11050411 www.mdpi.com/journal/viruses

http://www.mdpi.com/journal/viruses
http://www.mdpi.com
https://orcid.org/0000-0002-5161-7364
https://orcid.org/0000-0001-7826-3378
https://orcid.org/0000-0002-2185-5724
https://orcid.org/0000-0002-3785-550X
https://orcid.org/0000-0002-8436-6602
https://orcid.org/0000-0002-1359-6689
https://orcid.org/0000-0001-6875-5758
https://orcid.org/0000-0001-7377-1314
http://www.mdpi.com/1999-4915/11/5/411?type=check_update&version=1
http://dx.doi.org/10.3390/v11050411
http://www.mdpi.com/journal/viruses


Viruses 2019, 11, 411 2 of 9

K. pneumoniae infections are becoming increasingly difficult, and sometimes impossible [1], to treat
due to the continuous emergence of multidrug-resistant strains [2–4]. Cells of K. pneumoniae are
characteristically surrounded by a thick capsule of variable chemical composition, which translates
into a large number of classically defined capsular serotypes [5] and an even larger number of in
silico-defined wzi, wzc, or KL-types [6,7]. These three molecular classifications denote the diversity of
the capsular polysaccharide synthesis gene cluster and serve as proxies of capsular antigen variation.
K. pneumoniae isolates can be roughly classified into two pathotypes: opportunistic K. pneumoniae,
which are often multidrug-resistant (mdrKp), and hypervirulent K. pneumoniae (hvKp) [8,9], which are
able to infect healthy individuals and cause invasive infections including pyogenic liver abscess. The
majority of clinical mdrKp and hvKp isolates are part of a small number of genetic lineages (also called
clonal groups). Prominent lineages include mdrKpST258, which is frequently associated with specific
carbapenemases (i.e., those of the KPC family) and resistant to multiple other antimicrobials, and
the ST23 lineage, which is the most frequent cause of liver abscess [1] and can also acquire clinically
significant antibiotic resistance genes [10]. Recently, there has been has a sharp increase in the clinical
significance of mdrKp and hvKp infections [4,9,11].

New therapeutic strategies are critically needed against K. pneumoniae infections. Phage therapy is
increasingly recognized as an attractive approach [12]. Previous work has shown that bacteriophages
(phages) against Klebsiella can be readily isolated from diverse sources and are a promising tool against
K. pneumoniae infections in Galleria mellonella models [13,14].

The aim of this study was to contribute to developments of the phage therapy approach against
K. pneumoniae and, more specifically, against its two prominent lineages ST23 and ST258. Specifically,
our objectives were (i) to isolate and characterize phages against bacteria in these lineages and to
sequence the genome of these phages; (ii) to implement an infection model of G. mellonella larvae with
K. pneumoniae strains of interest; and (iii) to test phages against K. pneumoniae in this model.

Two clinical K. pneumoniae strains were selected for phage isolation [6,15,16]. The first was the
2198 (SB4551) strain, a K. pneumoniae carbapenemase-producing isolate from an outbreak in Ireland [15].
This strain, characterized by wzc-921 and wzi-29 alleles, belongs to ST258 clade 1 [17,18] or ST258a [19]
associated with the production of a newly described capsular polysaccharide [20]. It carries blaKPC-2

and blaTEM-1 genes, as well as a chromosomal blaSHV-11 gene; aminoglycoside resistance genes aac6-Ib
and aadA2; mutations in the QRDR region of quinolone targets (ParC-80I, GyrA-83I); genes conferring
resistance to phenicols, sulfonamide, tetracycline, and trimethoprim (catA1, sulI, tetB, dfrA12); and
has no virulence genes. The second strain was SA12 (SB4385), an ST23, K1 capsular-type isolate
from a human liver abscess infection in France [9]. It carried virulence genes for yersiniabactin (ybt
1; ICEKp10), colibactin (clb 2), aerobactin (iuc 1), salmochelin (iro 1), and the regulator of mucoid
phenotype genes rmpA and rmpA2; it has no resistance genes except for the chromosomal gene blaSHV-11.
Phages vB_KpnP_KL106-ULIP47 and vB_KpnP_KL106-ULIP54 were isolated against 2198 and phage
vB_KpnP_K1-ULIP33 was isolated against SA12; all three from wastewater collected in France (Clichy,
Saint-Denis, and Rueil-Malmaison, respectively) in 2015 using standard procedures [21]. Briefly,
the wastewater samples were centrifuged at 4000 rpm for 10 min to remove large particles, then
filtered and sterilized (0.45 µm). A first enrichment step was performed at 37 ◦C for 24 h with gentle
agitation (50 rpm). When a clarification of the medium was observed, it was then centrifuged at
5000 g for 10 min and 20 µL of supernatant was spread on the surface of LB agar and then covered
by a liquid culture of the target bacteria. After incubation for 18 h at 37 ◦C, individual plaques
were selected and purified three times following the same procedure. These three phages produced
large, clear plaques surrounded by a halo zone (Figure S1) reflecting the potential presence of an
exopolysaccharide depolymerase [22]. The pH, temperature, storage stability, and the lysis kinetic
curves were assessed (Figures S2–S5). The host range of the isolated phages was determined using
a set of 23 Klebsiella spp. strains representative of diverse species and capsular serotypes (Table S1).
Based on standard spot assays [23], the three phages showed specificity for the capsular type of their
original bacterial host. vB_KpnP_K1-ULIP33 showed clear lysis specifically against the K1 strains,
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whereas vB_KpnP_KL106-ULIP47 and vB_KpnP_KL106-ULIP54 were specific for the “undefined”
capsular type of their parental strain (KL106, wzi 29) (Table S1). This capsular specificity probably
reflects the need for phages to first adsorb to and depolymerize the thick capsule. The depolymerases
allowing the disruption of the polysaccharide capsule are generally K-type specific in Klebsiella [24–26].

To analyze the genome of these phages, polyethylene glycol (PEG) precipitation was performed,
followed by CsCl density gradient (layers of 1.33, 1.45, 1.50, and 1.70 g/cm3) ultracentrifugation (28,000 g;
3 h; 4 ◦C), dialysis using Slide-A-Lyzer dialysis cassettes G2 (Thermo Fisher Scientific Inc., Merelbeke,
Belgium) and, finally, DNA extraction [27,28]. A sequencing library was obtained using the NEBNext
Ultra DNA kit (New England Biolabs, Ipswich, MA, USA) and sequenced using an Illumina MiSeq
instrument equipped with a nanoFlowcell (Illumina MiSeq Reagent Nano Kit v2, Brussels, Belgium,
paired-end 2*250 bp reads). After correction of reads (Trimmomatic v0.38) [29], assembly (SPAdes
v3.9) [30], and analysis of the genome ends (PhageTerm v1.0.11) [31], the average read coverage depths of
the assemblies were 550×, 423×, and 815× for phages vB_KpnP_K1-ULIP33, vB_KpnP_KL106-ULIP47,
and vB_KpnP_KL106-ULIP54, respectively. Annotation was performed with the RAST server
using the virus domain option [32] followed by manual curation. All genomic data related to
this project, including raw Illumina read and GenBank annotation, are available via the NCBI BioProject
PRJNA488998. GenBank accession numbers are MK380014 (vB_KpnP_K1-ULIP33), MK380015
(vB_KpnP_KL106-ULIP47), and MK380016 (vB_KpnP_KL106-ULIP54). All three phages carry a linear
dsDNA genome with predicted direct repeats, totaling 44,122 bp (vB_KpnP_K1-ULIP33), 41,397 bp
(vB_KpnP_KL106-ULIP47), and 41,109 bp (vB_KpnP_KL106-ULIP54). Phage vB_KpnP_K1-ULIP33 has
direct repeats of length 163 nt, whereas phages vB_KpnP_KL106-ULIP47 and vB_KpnP_KL106-ULIP54
have direct repeats of 180 nt. Comparative genomics of vB_KpnP_K1-ULIP33 with Enterobacteria
phage Sp6, and of vB_KpnP_KL106-ULIP47 and vB_KpnP_KL106-ULIP54 with Klebsiella phage KP32,
illustrate their genetic relatedness to reference phages [33,34] and the conserved genome organization
of the Autographivirinae subfamily (Figure 1a–c). Distinguishing features of this phage subfamily
include a unidirectional and progressive transcriptional scheme, regulated by the presence of a single
subunit RNAP driving the middle/late expression. Analysis of the tailspike proteins with HMMER
and HHPRED suggested the presence of tailspike-associated depolymerases present in phages
vB_KpnP_KL106-ULIP47 (locus D3A56_0040) and vB_KpnP_KL106-ULIP54 (locus D3A57_0040),
consistent with the presence of expanding halos in the plaques [35]. These proteins typically show
a conserved (T7-related, gp17) N-terminal connector (aa1–154 pfam03906) and diverse C-terminal
domains, associated with predicted pectate lyase domains. Pectate lyase domains were previously
shown to have depolymerase activity against Acinetobacter baumannii polysaccharide capsules and
against extracted exopolysaccharides [36,37]. These domains are likely associated with the capsular
specificity of these phages [38,39]. Although vB_KpnP_K1-ULIP33 also induced a halo zone around the
clear region of plaque lysis, suggestive of a putative depolymerase activity, no depolymerase domain
was predicted. However, a tailspike protein (locus D3A55_0041) was found to have a conserved
N-terminal phage_T7 connector domain (aa3–171 pfam03906). No gene related to phage lysogeny
was predicted, suggesting that these phages are strictly lytic, which is an important prerequisite
for phage therapy [40]. The location of the lysis cassette genes in vB_KpnP_KL106-ULIP47 and
vB_KpnP_KL106-ULIP54 suggests a typical T7-related genome organization in which the endolysin
is located among the middle genes, presumably having a secondary function as a regulator of the
phage-encoded RNAP.
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Figure 1. Comparative genomics (nucleic acid sequence) of (a) vB_KpnP_K1-ULIP33 with Enterobacteria
phage Sp6 (Genus Sp6virus, AY288927), (b) vB_KpnP_KL106-ULIP47, vB_KpnP_KL106-ULIP54
with Klebsiella phage Klebsiella pneumoniae 32 (Genus K. pneumoniae 32virus, MH172262); and (c)
vB_KpnP_KL106-ULIP47 with vB_KpnP_KL106-ULIP54.

To assess the potential in vivo efficacy of phages against K. pneumoniae in a preclinical setting
with an emphasis on the prevention of infection, a G. mellonella larvae model was used. This model
allows testing phages within a more complex system than Petri dishes and has interesting features,
including similarities between the systemic cellular and humoral immune responses of these larvae
and the inflammatory responses of the mammalian innate immune system [41]. Previous reports
have found this model to be useful for studies of the virulence of K. pneumoniae and for therapeutic
approaches [14,42–44]. We first determined that the optimal inoculum concentration for K. pneumoniae
infection was 104 CFU/10 µL, as this dose induced a mortality rate of 70–90% in 4 days, both for
strain 2198 and for strain SA12. We confirmed (data not shown) that the mortality of larvae infected
with K. pneumoniae was dose-dependent [43]. We next assessed phage efficacy against K. pneumoniae
infection in two independent experimental setups.

In the first experiment, we assessed the efficacy of phage vB_KpnP_K1-ULIP33 against infection
by strain SA12. A total of 150 larvae were divided into five groups of 10 larvae with technical
triplicates (Table S2a). In a second experiment, we analyzed the individual or combined effect of
phages vB_KpnP_KL106-ULIP47 and vB_KpnP_KL106-ULIP54 on strain 2198. Here, a total of 330
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larvae were divided into five groups and 11 subgroups of 10 larvae in technical triplicates (Table S2b).
In both experiments, phages were administered either 1 h prior to bacterial infection (group A) or 1 h
post-bacterial inoculation (group B). The timing of phage inoculation was selected in order to allow the
spread of bacteria within the larvae but without allowing enough time for the infection to develop.
Groups C, D, and E corresponded to assays of phage toxicity, infectivity control, and injection safety,
respectively. Phages were inoculated with a multiplicity of infection (MOI) close to 10 on the left last
proleg and the bacterial inoculation was performed on the right last proleg. The concentrations of the
inoculated K. pneumoniae SA12 and 2198 were verified and were, respectively, 2 × 104 CFU/10 µL and
7 × 103 CFU/10 µL. The titers of the phage inoculums were also verified after inoculation and were 2 ×
105 PFU/10 µL for vB_KpnP_K1-ULIP33, 2 × 105 PFU/10 µL for vB_KpnP_KL106-ULIP47, and 7 × 104

PFU/10 µl for vB_KpnP_KL106-ULIP54. Data from each independent experiment were pooled and the
protection of the G. mellonella larvae by the phages was assessed with the log-rank test (p-values <

0.005 were considered as statistically significant). The Kaplan–Meier analyses were performed with
the LIFETEST procedure of SAS version 9.4 for Windows and graphs were designed with SAS® ODS
Graphics Editor.

Considering the different technical replicates, the first experiment, which tested the in vivo
efficacy of vB_KpnP_K1-ULIP33 against SA12, showed that only 0–30% of the larvae survived in
the infected groups at 4 days post-inoculation (DPI), whereas the survival rates of prophylactic and
treatment groups ranged from 90% to 100%. In the second experiment, which tested the in vivo efficacy
of vB_KpnP_KL106-ULIP47 and vB_KpnP_KL106-ULIP54 against strain 2198, 0–10% of the larvae
survived in the infected groups at 4 DPI, whereas the survival rates of prophylactic and treatment
groups ranged from 80% to 100%. In both experiments, groups of larvae inoculated with phage (but not
bacteria) showed comparable survival rates as the PBS control groups, ranging from between 70% and
100% (Figure S1a,b). The survival curves are presented in Figure 2; data from the triplicate experiments
were pooled. Protection of the G. mellonella larvae by the phages was found to be statistically significant
(p-values < 0.0001 for each experiment). No significant difference was observed between the cocktail
and the monophage groups. Note that despite their different stabilities (Figures S2–S5), these phages
have high genetic relatedness and similar host ranges, and may therefore not be the best candidates for
a phage cocktail.

These data show that the three studied phages could efficiently prevent a K. pneumoniae infection
induced by their host strains. Both phage only and PBS control groups showed similar survival rates,
demonstrating the safety of the phages in this model. A recent report indicated protection against
K. pneumoniae ST258 infection in G. mellonella with another phage [14]. The present study confirms that
strains belonging to this ST can be targeted by phages and reports, for the first time, on phage efficacy
against ST23 K. pneumoniae in G. mellonella. The very low MOI used in this study allowed for assessment
of the efficacy of the phages while avoiding the phenomenon of “lysis from without”. Overall, this
study confirms that the G. mellonella is a flexible and rapid tool to assess phage efficacy. Indeed, it
accommodates many human pathogenic strains in contrast to rodent models and it allows a quick (less
than 48 h in this study) evaluation of the killing activity of phages in vivo. However, the relevance
of the G. mellonella model to predict the phage efficacy in higher animals including humans, and in
particular, with higher MOIs and timings of phage administration, remains to be determined [44].
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Figure 2. Kaplan–Meier survival curves of the Galleria mellonella larvae inoculated with K. pneumoniae
SA12 (ST23) (a,b) and K. pneumoniae 2198 (ST258) (c–h) with, respectively, phage vB_KpnP_K1-ULIP33
(K1-ULIP33), and phages vB_KpnP_KL106-ULIP47 (KL106-ULIP47) and vB_KpnP_KL106-ULIP54
(KL106-ULIP54), one hour before or one hour after bacterial inoculation.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/11/5/411/s1,
Figure S1: Picture of halo zones of Phages (a) vB_KpnP_K1-ULIP33, (b) vB_KpnP_KL106-ULIP47 and
(c) vB_KpnP_KL106-ULIP54. Figure S2: The temperature stability of phages vB_KpnP_K1-ULIP33 (A),
vB_KpnP_KL106-ULIP47 (B), and vB_KpnP_KL106-ULIP54 (C). Figure S3: The pH stability of phages
vB_KpnP_K1-ULIP33 (A), vB_KpnP_KL106-ULIP47 (B), and vB_KpnP_KL106-ULIP54 (C). Figure S4: The storage
stability of phages vB_KpnP_K1-ULIP33 (A), vB_KpnP_KL106-ULIP47 (B), and vB_KpnP_KL106-ULIP54 (C) at 4
◦C. Figure S5: Lysis kinetic curves of vB_KpnP_K1-ULIP33 lysis on the SB4385 strain (A), vB_KpnP_KL106-ULIP47
(B), and vB_KpnP_KL106-ULIP54 (C) on the SB4551 strain. Table S1: Bacterial strains characteristics and phages
spot assays results. Table S2: Experimental designs of the main Galleria mellonella experiments with (a) K. pneumoniae
SA12 (ST23) and phage vB_KpnP_K1-ULIP33 and (b) K. pneumoniae 2198 (ST258), phage vB_KpnP_KL106-ULIP47,
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and vB_KpnP_KL106-ULIP54. Each group contains 10 larvae and each experiment condition was reproduced in
technical triplicates.
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