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THEBIGGERPICTURE Current research on cellularmotility ismoving toward richer experimental setupswith
the aim of reproducing physiologically relevant conditions. In response to the consequent increase in imag-
ing complexity and data throughput, the quantitative analysis of moving cells is shifting from what has been
long perceived as a supporting role to that of a leading vehicle of discovery that can not only fill in for human
labor without burden but also complement and extend our intuition. In this review, we explain that this role is
not new and that, in fact, bioimage analysis (BIA) has already been instrumental to the discovery of many
multi-factor and non-linear phenomena in biology. We take advantage of this continued interplay between
biology and BIA to organically motivate a wide range of available techniques and conceptual frameworks
that researchers can leverage to tackle their questions on cell motility, both now and in the near future. In
this way, the manuscript doubles as a broad technical reference.
SUMMARY

Bioimage analysis (BIA) has historically helped study how and why cells move; biological experiments
evolved in intimate feedback with the most classical image processing techniques because they contribute
objectivity and reproducibility to an eminently qualitative science. Cell segmentation, tracking, and
morphology descriptors are all discussed here. Using ameboid motility as a case study, these methods
help us illustrate how proper quantification can augment biological data, for example, by choosing mathe-
matical representations that amplify initially subtle differences, by statistically uncovering general laws or
by integrating physical insight. More recently, the non-invasive nature of quantitative imaging is fertilizing
two blooming fields: mechanobiology, where many biophysical measurements remain inaccessible, and mi-
croenvironments, where the quest for physiological relevance has exploded data size. From relief to remedy,
this trend indicates that BIA is to become a main vector of biological discovery as human visual analysis
struggles against ever more complex data.
INTRODUCTION

Movement appears as a recurring advantage to life at any scale.

At the smallest level, cells evolved a myriad of migration modes1

because it helped them thrive through natural selection2: a

longer range of action boosts their potential to colonize re-

sources and cooperate. Whether physiological or pathological,

many biological processes in multicellular organisms also rely

on changes in cell position or location; for example, mounting

an immune response relies on the ability of lymphocytes to circu-

late through blood and tissue to the target antigen,3 whereas in-

fectious agents navigate within the organism to reach their

niche.4 Accordingly, many potential therapeutic treatments aim

at impairing the motility of pathogenic cells while sparing the

host,5 although in some cases, such as the metastasis of cancer

cells or infections by certain ameboid parasites, it can be difficult

to be specific because parts of the protein repertoire regulating
This is an open access article under the CC BY-N
cell migration are conserved across the organisms.2,6 Therefore,

studies on cell motility do not only constitute fundamental

research but are also of use to therapeutic investigation. To

deconstruct the molecular machinery underlying movement in

sufficient detail, research on cell migration profits from the com-

bination of (at least) three approaches: microscopy imaging, bio-

physical measurements, and the engineering of nature-like

microenvironments. We argue that all of them benefit from bio-

image analysis (BIA).

(1) The study of cell motility has been inseparable from micro-

scopy. Advances in optical magnification have allowed resolving

increasingly smaller features; the combination of fluorescence

microscopy and tags has permitted identifying some of the prime

proteins that regulate motion, and other technical improvements

have facilitated high-speed or long-term observations both

in vitro and in vivo7; e.g., newer digital camera sensors such as

charge-coupled device (CCD) or complementary metal oxide
PATTER 2, January 8, 2021 ª 2020 The Author(s). 1
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semiconductor (CMOS) require fewer photons, reducing acqui-

sition time or phototoxicity. A quantitative analysis of image

data has been essential to ensure the objectivity and reproduc-

ibility of the findings, but also to pick up on subtle or complex dif-

ferences invisible to the naked eye. For instance, it was only the

tracking and statistical analysis of fluctuations in speckle micro-

scopy images that led to the realization that two actin networks

coexisted within lamellipodia.8

(2) To study the physical mechanisms driving cell movement, it

is not enough to solely watch the molecules involved.9 Rather,

their action has to be measured to determine whether they are

able to generate the necessary forces and pressures. Physical

measurements were introduced to biology experimentally: the

first myosin forces were probed using an enhanced laser trap10

and wrinkles on deformable substrates were used as indicators

of traction forces,11 but quickly moved into more theoretical and

non-invasive grounds either by way of simulations12 or by inte-

grating image data.13

(3) Recent developments in tissue microfabrication have

helped reproduce in vitro some of the key characteristics of a

cell’s natural environment,14 confirming their profound impact

on cell behavior (including differentiation) and motility.15 An in-

vestment in image analysis is crucial to keep up with the

emerging 3D image acquisition systems required to capture

these more and more complex sceneries.

BIA techniques have evolved in parallel to these three ap-

proaches in order to tackle increasingly challenging image data

by exploiting breakthroughs in algorithmic design and

computing power.16 In this review, we summarize the evolution

of the most commonmethods dedicated to studying cell motility

(namely segmentation, tracking, feature extraction, and me-

chano-imaging methods) and point to related software re-

sources. We will highlight that image quantification does not

only bring logical rigor, but that it is itself a driver of discovery,

notably when complexity increases. The aim is to unravel how

BIA turns image data into biological insight to promote a critical

eye for why and what to quantify.

Diverse Cell Motion Requires Diverse Image
Quantification Strategies: A Few Motivating Examples
Keeping in movement is a relentless task for a cell. While a single

stroke of a whale’s fluke is enough to coast it for meters ahead,17

inertia plays a drastically different role at the cell scale. In fact,

inertia is irrelevant: relatively small size and speed and high kine-

matic viscosity all add up to favor viscous forces over inertia*18

(definitions for terms with an asterisk can be found in Box 1).

This means that past forces matter little, or that a cell needs to

exert forces constantly in order to make its way through the sur-

rounding media. To this end, other than swimming flagellates,

nearly all migrating cells rely on the forces generated by their

actomyosin cytoskeletons.19 This power can be harnessed in

diverse ways, but one expects them all to induce cell shape

changes in a polarized and cyclic way. First, most moving cells

present a marked directional arrangement with two poles: the

cell front, characterized by intense actin polymerization renewal

and adhesion foci; and the cell rear, where actin is more stable,

adhesions disassemble, and myosin gathers to generate

contraction. Second, most moving cells also have three iterant

phases in common: the cell makes a protrusion, it interacts
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with its surroundings (most likely through adhesions), and then

it further translocates its center of mass while retracting its

rear.1 The precisemolecular repertoire of a cell, either as present

constitutively or activated as a response to environmental cues,

determines the mode of cell migration.20,21 In the literature, sin-

gle-cell migration is loosely classified in a range between two

diametric modes: mesenchymal and ameboid.1,22

In mesenchymal cells, the actin-rich cytoskeleton exerts con-

stant forces by physically pushing on the cortex with the growing

barbed end of microfilaments. The Arp2/3 protein complex pro-

motes this process by nucleating new actin filaments as

branches of the existing scaffold, which, braced by microtu-

bules, give rise to very recognizable fan-like (lamellipodia) and

spike-like structures (filopodia) at the leading edge. This way of

crawling requires strong focal adhesions (mediated via integrin

receptors) that provide traction with the extracellular matrix

(ECM) and can also propel the cell forward under retrograde

flows of actin.23 As the accumulation of all these structures

stiffens the morphology of the cell, pericellular proteolysis be-

comes necessary to cleave obstructing fibers, especially in 3D

environments. BIA has been instrumental in building this para-

digm. For instance, tractions are probed non-invasively using im-

age-based traction force microscopy,13 and retrograde flows

would not have been identified were it not for multi-particle

tracking.23 Another example involves Arp2/3: assessing spatio-

temporal correlations was key to understanding its role at the

forefront of lamellipodia in migrating epithelial cells,24 and

measuring the spread of segmented osteosarcoma cells has al-

lowed to reveal its differential functions in 2D and 3D envi-

ronments.25

In ameboid migration, actin dynamics delivers in a different

way: adhesions are weaker and turn over faster; actomyosin

contractility is enhanced, creating localized tensions and, when

properly synchronized, whole-cell hydrostatic pressure gradi-

ents. In this way, cells become much more deformable and the

need of actively lysing the ECM is practically eliminated26 in favor

of squeezing their way through the interstices of the matrix. In

this case, the size of the nucleus becomes a limiting factor27

that has been studied using segmentation28,29 and deformation

models.30,31 Although actin polymerization-driven gliding and

dendrites are possible propulsion mechanisms, so-called blebs

are most emblematic in ameboid cells.32 A bleb is a hemispher-

oidal protrusion that results from an expansion of the plasma

membrane as a cellular hernia is filled by pressure-driven cyto-

plasm; a process so far only measured by image-based inverse

problems.33 The initial breach opens when the cortical cytoskel-

eton breaks or detaches from the membrane as a result of weak-

ened adhesions or stronger tensions.34 Once the pressure stabi-

lizes, the actin cortex repolymerizes and the bleb normally

becomes a pseudopod that will guide the cell onward.

The ameboid and mesenchymal migration modes are neither

mutually exclusive nor necessarily discrete. Some cells can

switch behavior in response to diverse factors such as the

ECM architecture (e.g., density, stiffness, dimension, molecular

composition). In fact, the ability of cancer cells to alternate be-

tween migration strategies during metastasis has encouraged

motility studies,35 especially on the ameboid mode because it

had been less investigated. The transition between modes has

been described as a quasi-continuum of states laying in between



Box 1. Glossary

d Reynolds number: The three parameters diameter, speed and kinematic viscosity can be combined into Reynolds’ number

(Re=d s/v) to characterize the relation between inertia and viscous forces. Cells live in low Re, where viscosity dominates over

inertia.

d Representation: (or feature extraction) reformulating the object of study in a way that highlights the characteristics most rele-

vant to the problem at hand (selectivity), but is blind to those that are irrelevant (invariance). See an example in a change-

of-basis.

d Classification: finding a set of rules to categorize objects into sub-populations given their representation.

d Change of basis: amathematical concept whereby a given vector (e.g. (1,1)) that is usually represented as a sumof elementary

vectors (basis), 1*(1,0) + 1* (0,1), is rewritten as a sum of other elementary vectors (the other basis) 1*(1,1) + 0*(�1,1) that makes

either the representation or the interpretation easier, but still describes the vector unequivocally andwithout redundance (i.e. as

a bijection). For example, separating two red and blue objects of similar intensities is easier in RGB than in HSB. Another: im-

perial vs metric. Many mathematical problems such as classification become much easier when a good basis is chosen.

d Brownianmotion: a continuous, stochastic type of motion whose incremental movements are completely independent of any

previous movement and are normally distributed; for example, that of an immersed particle as it is hit by the thermally agitated

molecules of the surrounding liquid. It is the scaling limit of a discrete random walk.

d Inverse problem: in a forward problem the cause is known and the effects have to be calculated, whereas an inverse problem

consists in guessing the cause from the effects. The latter is more complicated because many causes can lead to the same

effects and thus some additional a priori information is required. Where on earth did that earthquake come from? Given an

epicenter it is much easier to compute the consequences of the tremor on the surface (forward) than it is to find out the source

given the readings of a couple seismographs (inverse). What the hell is the earth’s core made of? Again, simulating wave prop-

agation given the properties of the mantle is much better posed than figuring out the composition of the crust by studying how

seismic waves propagate. Indeed, many combinations of material layers are possible given a limited set of data (the data might

come from earthquakes themselves, which fortunately do not occur all that often).
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these two apical modes,1 where some not-as-canonical hybrids

such as lobopodial migration are especially interesting.36 Cell

segmentation, together with shape and motion descriptors,

have recently started being used to classify and rediscover

migration modes with the help of unbiased statistical analyses.37

BIA not only helps the community understand how cells move,

but also why they move. Most cells can move randomly or in a

specific direction, normally following physical or chemical

cues, such as stiffness (duro-) or molecular (chemotaxis) gradi-

ents.38 However, the distinction between these incentives is

sometimes not straightforward, partly due to the dominance of

viscosity over inertia: another consequence of the low Re*

regime is that cells drag a good part of their surrounding media

with them. Therefore, short displacements, even when random,

are little use to feed: cells have to move a certain distance before

they can outrun nutrient diffusion, turning purposely random

trajectories into zigzags.18 In fact, cells remain considerably

persistent during non-chemotactic migration, possibly follow-

ing intermittent optimal environment-searching strategies39

such as Lévy or gamma walks40 that combine local probing

with long-range exploration41 and can be captured using cell

tracking.42

Entamoeba Histolytica to Exemplify BIA Techniques
We will illustrate the progressive repercussions of BIA on migra-

tion research with a case study: the amebic parasite Entamoeba

histolytica. The reasons are two-fold. First, relevance:

E. histolytica is the causative agent of human amebiasis, an en-

teropathic disease affecting millions worldwide and whose viru-

lence is highly influenced by the parasite’s motility.43,44 Second,

quintessence: this ancient protozoan is an elementary example

of migration as it only mobilizes highly conserved basic cytoskel-

etal elements where actin is central.45 However, the potential of
E. histolytica as a migration model is limited from a biological

standpoint because gene disruption is not yet available via ho-

mologous recombination.

Conveniently, E. histolytica is understood to stay mostly within

the ameboid range of cell migration. To invade human tissue

such as the intestine or the liver, E. histolytica needs to traverse

mucus, epithelia, connective tissue, and eventually blood. A

combination of in vitro (glass) and in vivo (colon explants or liver

tissue) studies have shown that myosin contractility and tran-

sient adhesions are tuned according to the stage of infection.

An initial exploratory stage is characterized by pseudorandom

blebbing;46,47 however, triggered by chemoattractant molecules

such as ECM-derived proteins48 or proinflammatory cyto-

kines,49,50 the ameba soon polarizes, forming a pseudopod at

the cell front and a uropod at the rear.45 Under this form, the

parasite can penetrate into the colonic tissue using the inflam-

matory response of the host as positive feedback and hijacking

human matrix-degrading metalloproteinases to ease their way

in.51 This eagerness for secreted immune factors such as tumor

necrosis factor (TNF) is well backed up by an effective phago-

cytic system and a solid evasion mechanismwhereby the immu-

noglobulins that identify the ameba as a pathogen are packed

into the uropod and ejected52 to (presumably) misdirect the im-

mune response.

This description of the migratory behavior of E. histolytica has

been built in intimate interaction with BIA and thus will serve as a

unifying plot to guide the reader.

DETECTING, CHARACTERIZING, AND FOLLOWING
CELLS IN MICROSCOPY IMAGING

In its full breadth, BIA is a big-data problem that combines

multiple abstraction layers to translate pixels into biological
PATTER 2, January 8, 2021 3



Figure 1. Classic Schematic of a Bioimaging
Workflow
One or more cell conditions (or strains) are to be
compared. Once the image data have been ac-
quired, the first step is pre-processing (e.g., de-
convolution or registration). Next, the cells can be
segmented out using numerousmethods; e.g., pixel
based (here H-clustering) or contour based (here
active contours) (images are 45 mm high). With this
information, the morphology can be analyzed using
descriptors or basis decomposition. The resulting
shape description is used to differentiate cell pop-
ulations (classify) and thus to identify and predict
conditions, or sometimes can be revealed as a
causal agent. If time information is available, the
segmented cells can be tracked (image is 122 mm
high). The time trajectories can explain the reason a
cell is moving based on statistical measures:
randomly, with a clear direction, or interacting with
other cells. Biophysical measurements such as
force estimates also constitute a great source of
information, reporting directly on cell forces. Omics
data can also be integrated in the analysis. All this
input can be combined to uncover any correlations
and (hopefully) any causalities,56 resulting in bio-
logical discoveries.
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classification, be it according to shape, motility, or biophysics

(Figure 1). Precisely, the concatenation of different methods

into a pipeline enables high data throughputs and the analysis

of complex multi-factorial interactions therein. For instance,

the combination of automatic time-lapse imaging, cell seg-

mentation, morphological descriptors, and statistical classifi-

cation allowed identifying the human genes most relevant to

cell division and motility by automatically screening the phe-

notypes of around 20 million HeLa cells.53 Mouse embryogen-

esis has been approached similarly, by converting long-term

fluorescence imaging into tens of thousands of 4D multi-scale

cellular trajectories that draw maps of cell fate and tissue

morphodynamics during development.54 Well aware of this
4 PATTER 2, January 8, 2021
potential, the BIA community has orga-

nized into several software platforms

from where (semi-)automatic workflows

are built by connecting methods without

compatibility issues55 (Table 1).

While pipelining is predominantly a

question of software, the choice of each

individual method in the workflow is

obscured by subtle assumptions underly-

ing the corresponding algorithms. From

the perspective of data science, most al-

gorithms presented here are twofold:

represent* and then classify*; both parts

introduce assumptions. Being more selec-

tive in the representation dilemma allows

for simpler classifiers and results in

methods with fewer adjustable parame-

ters, but at the same time incorporates

bias, limiting the applicability of the

method. Images themselves are a good

example: they can be represented in a va-

riety of ways, enforcing different invari-

ances;60 for instance, wavelets can cap-
ture the multiple scales within an image, making denoising

easier. Other examples arise in methods such as segmentation

or shape analysis. We show how each method alone can extract

information from biological images, how different assumptions

branch these methods out into as many niche algorithms, and

how their combination can tackle big-data problems, completing

the full cycle.

Cell Segmentation
Segmentation is a cornerstone of BIA; it is the initial step of many

other image analysis techniques, such as cell shape description,

cell tracking, or measuring certain biophysical quantities

(Figure 1). The aim of cell segmentation is to partition an image
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into individual cells and background, or, put more abstractly, to

group pixels that share some common characteristic.61–63 To

this end, most segmentation methods in biology use either the

spatial or frequency distribution of the image brightness

(Figure 2).

The most naive approach to cell segmentation is thresholding

the image brightness; i.e., directly associating dark and bright

pixels to the background and the cells (Figure 2; Table 1). The

brightness value that separates these two categories is best

chosen diligently; for example, by bisecting the frequency histo-

gram according to its variance66 or its shape.67 However, this

only works when cells are homogeneous and of similar bright-

ness, and when image noise is low.

More realistically, the brightness values have to be divided

into, not two, but multiple clusters corresponding to cells in

different shades of gray, which ideally show up as distinct peaks

in the histogram68,69 (Figure 2; Table 1). Under this type of clus-

tering algorithms, additional quantitative measures such as co-

lor, position (i.e., spatial distribution), or texture can also be

considered alongside the brightness to define an alternative

‘‘ruler’’ that further evidences the distance between the clusters

of pixels belonging to each cell.

Otherwise, if none of these quantities seem homogeneous

within a given cell, it is advisable to focus instead on the cell con-

tours. Accordingly, edge detection techniques such as Sobel,

Laplacian, or steerable filters70 exploit the spatial derivatives of

the image to look for significant changes in brightness, which

are expected to correlate with a change of physical milieu.71

Cell-cell interaction is another important challenge to seg-

mentation. It is hard to assign a pixel to either of two cells in

contact when their physiognomy is similar. Watershed methods

look for the boundaries between adjacent cells in the ridgelines

of the brightness mountains that cells feature over the darker

background (Table 1).72,73 Alternatively, variational methods

allow readily combining information from the image (similarly

to the methods above, e.g., uniform/non-uniform74 brightness

separation or edge detection) with a priori knowledge (which

can include constraints on cell shape and contour intersec-

tions)75 by customizing a so-called energy that is to be mini-

mized. This flexibility comes at the price of additional burden:

they require a ‘‘seed’’ (an initial prospective contour for each

cell), as well as more complex numerical techniques. For

example, active contours (or level sets) algorithms gradually

deform the initial seed contour by exerting localized forces ac-

cording to the criteria and constraints formulated in the energy.

Their evolution finishes when the forces equilibrate and the

curve is (ideally) fitted around each individual cell with no over-

laps, resulting in a very accurate representation of the cell

shape (Figure 1; Table 1). At the tissue scale, where cells

migrate in crowds, graph-based approaches discriminate

membrane-labeled tissue cells by building networks that con-

nect the walls like a honeycomb.76

Segmentation is resolved likewise at the intracellular scale and

can be complemented with statistical colocalization methods

that examine a protein’s location relative to the also-segmented

cell (e.g., myosin is found at the back of uroid-capping trophozo-

ites),77 or to other proteic structures78,79 (e.g., Arp2/3 colocalizes

with phagocytic macropinosomes)80 in order to investigate po-

tential molecular interactions.81
PATTER 2, January 8, 2021 5



Figure 2. Segmentation Methods from a Represent-and-Classify Perspective
(Column 1) Thresholding separates this epifluorescence image of HeLa cells into cells (without distinction) versus background. There is no need for an alternative
representation because the intensity already characterizes the cells, as seen in the histogram. The simple threshold classifier takes one parameter when set
manually, or zero if set with a thresholding algorithm. (Column 2) In this confocal image of mouse embryonic stem cells, the intensity differences are not so clear-
cut. To identify the two cells in the image, we use a more complicated classifier (k-means) on the original representation. The mix of location and intensity data is
enough to divide the pixels into three groups belonging to two different cells and the background; notice how the cell hole is also associated to the cell. (Column 3)
Texture analysis aims at finding a measure of intensity patterns by considering groups of nearby pixels. In this brightfield image of E. histolytica, standard de-
viation (SD) is enough to characterize the inside of the ameba with respect to its environment. While the SD filter takes one parameter to specify the size of the
neighborhood, the representation is good enough that one only needs a simpler classifier, such as a thresholder. (Column 4) Using the wavelet transform helps
represent the original image in a basis that reflects a mix of spatial scales and frequency. Since the breast cancer cells in the image are all salient and of
approximately the same size, the wavelet coefficients at the chosen scale (one parameter) can identify them. Conversely, the middle structure (smaller) and
bottom (bigger) are fainter; they are present in other scales. In this representation, the classification can be as simple as using a threshold (one or zero pa-
rameters). (Column 5) IML combines several representations (or filters, or features) and learns how to classify from a set of training examples. This is advan-
tageouswhen there is not a single feature that characterizes the cell; for example, these bacterial colonies in phase contrast respond to a combination of intensity,
edge detection, and texture. (Column 6) Deep learning (DL) learns its own feature extraction, in addition to the classification. This involves adjusting many more
parameters with respect to IML, which is done automatically by feeding the algorithmwith many examples of segmented cells. This approach can tackle ‘‘harder’’
problems like the touching E. histolytica cells in this faint brightfield image.64 The adoption of more general methods often requires higher computational power.
While the difference across the first columns is hardly perceptible inside a modern computer, IML and DL are more resource hungry in their quest to adjust to the
training set. In particular, the huge number of parameters required to learn both representation and classification in DL calls for much bigger training sets and for
much higher processing power, which is typically outsourced to graphical processing unit (GPU) farms in external servers. Conversely, if the images are suited for
the assumptions made by a simpler method, a change in representation can be all it takes. Raw image data in columns 1 and 2 (threshold and cluster) were taken
from the database in Ma�ska et al.65 Images in rows 3 and 6 were acquired in-house. Images in rows 4 and 5 are from collaborators (see acknowledgments).
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We have found active contours82 the most convenient when

describing the rapidly varying shape of ameboid cells during

migration, but the approach is only optimal for fluorescence mi-

croscopy images; for example, of cytoplasmic or membrane la-

bels. Opportunely, texture filters like SD translate texture83,84

into intensity and make phase-contrast or brightfield acquisi-

tions more amenable to this fluoro-friendly technique (Figure

2). Conversely, when the aim is to address the interactions within

a sparse (but large) population of amebas, the parasites are

imaged small enough to apply spot-detecting techniques such

as multi-scale wavelets (Figure 2; Table 1).85

In conclusion, cell segmentation is addressed on an ad hoc

basis.61 Each acquisition technique and each tag has its
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exemplar image, but none of the features that set apart cell

from backdrop seem to be general enough: there is a seman-

tic gap between human heuristics and algorithms. This has

given rise to many situational approaches that manage as

many different assumptions; for example, leveraging the mo-

tion of the cell through matrix decomposition86 or imposing

predetermined cell shapes (e.g., rods for bacilli).87 To make

segmentation more automatic, a common solution is to

combine several approaches. A rough seed can be obtained

by one of the simpler thresholding methods and later refined

into a smoother segmentation by a variational contour-based

method. This strategy is especially fruitful if multiple color

channels with different labels are available. For instance,
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the nucleus channel is usually specific enough to serve as a

seed, while the membrane or cytoplasmic signal can

drive the deforming contour from this seed to the cell

boundary.88

Admittedly, our ability to redesign the experiment in anticipa-

tion of image processing might be limited by practical con-

straints: some markers are costly or simply incompatible with

other indispensable protein labels, for example in terms of emis-

sion wavelength; one has to conform to the biological question.

Say calcium imaging or STAT3-GFP, both are essential to the

analysis of cell migration but present several singularities that

complicate cell segmentation. For instance, calcium suffers

from big intensity fluctuations that are tackled by considering

an entire time sequence instead of a single image; in this way,

the video (a 2DxT matrix) can be decomposed into background

and cells, for example via non-negative matrix factorization

(NMF).89 On the other hand, although STAT3-GFP promptly re-

localizes to the cell nucleus, morphological operations such as

dilation can be used to sample the surrounding cytoplasm.90

Label-free imaging such as brightfield or phase-contrast mi-

croscopy is even less invasive but introduces halo-like arti-

facts that hamper segmentation; in fact, no feature by itself

seems characteristic enough of a cell observed under trans-

mitted light.91 Challenges like this have popularized interactive

machine learning (IML) algorithms (Figure 2; Table 1), which

use non-linear classifiers (e.g., random forest) to select the

best combination of features from a pre-set collection of filters

(see above: e.g., edge, texture) by training on user-annotated

data.92,93 On the other hand, rather than working with a pre-

determined set of features like IML, deep learning and artificial

neural networks (ANNs) tailor their own filters to the training

set from a rather general template that includes a range of

non-linear mappings;94 that is, they look for good features

automatically, but, in exchange, the underlying assumptions

are practically inaccessible. In this way, the ad hoc customiza-

tion necessary to segmentation algorithms can be fully dele-

gated to the network if the results are ‘‘known.’’ Because

they learn both representation and classification at a time,

ANNs need bigger training sets that reflect the full heteroge-

neity of the data. The resulting demand in computational re-

sources has kept widespread use at bay for a long time, but

end-user solutions are starting to appear in bioimaging plat-

forms95 (Figure 2; Table 1). Indeed, ANNs are now blooming

in image segmentation;96 they are promising because they

can be extrapolated almost exhaustively to all different imag-

ing modalities and conditions, but they need to be trained

case by case in a (progressively less) laborious process that

assumes collected data can be correctly annotated and are

representative of future data.97,98 This effort has been espe-

cially rewarding to traditionally hard problems, notably to the

segmentation of brightfield images during cell-cell contacts.64

Cell Shape Description
Morphology has historically been regarded as a purely predictive

marker of biological response (think of cell fate or differentiation),

but it has been revisited as part of a complex feedback loop that

integrates mechanical and chemical signals.99 On one hand,

changes in cell shape overlie the constant reorganization of the

actin cytoskeleton as it adapts to specific whole-cell functions
such as division in response to intracellular (IC) or extracellular

(EC) cues. On the other, cell morphology might repercuss in

signaling29,100 and have other consequences stemming purely

from geometric considerations.

In computers, segmented cells are typically represented as

groups of pixels or as vertices of a contour. Even if visually

appealing, the numerical size and conceptual complexity of

these representations complicate the quantification of cell

morphology.101 To establish comparisons between large popu-

lations of cells, it is recommended to simplify the description of

cell boundaries using descriptors or a change of basis* (Figure 1;

Table 1).

Morphology descriptors quantify potentially determinant

shape traits such as cell size or roundness. The choice of de-

scriptors can be purely heuristic (that is, by observing the cells),

or educated with the help of data analysis techniques such as

dimensionality reduction algorithms (e.g., NMF, principal

component analysis [PCA], t-distributed stochastic neighbor

embedding [t-SNE], or uniform manifold approximation and pro-

jection [UMAP]), which simplify visualization on the basis of sta-

tistical or topological principles.102,103 An extensive list of de-

scriptors is available,104,105 starting from very simple features

(e.g., area, elongation) and covering a broad range of applica-

tions; for example, the ramification factor and branching points

are adapted to approximately count filopodia and neuron den-

drites, whereas principal axes have been used to quantify the

relative orientation of dividing neuroblasts106 and growing

bacteria.107

However, shape changes can be too subtle to summarize in

a couple of geometric measures. When descriptors become

too simplistic or too manual, a change of basis is a good

compromise between complexity and interpretability. Just

like a color can be decomposed in a basis of red + green +

blue or hue + saturation + brightness components, shapes

can be mathematically described as a sum of deviations

from the circle (2D) or the sphere (3D) (Figure 1). These devi-

ations can be expressed in different bases that ease different

interpretations of the boundaries. For example, Fourier series

(2D) and spherical harmonics (SH; 3D) are better at capturing

global cell shape because the periodic basis functions are ro-

tationally invariant, whereas wavelets (2D) and spherical wave-

lets (SW; 3D) are best at localizing surface protrusions

because of their smaller function support.108 Alternatively, de-

compositions can be applied on the motion of the cell con-

tours to tackle shape changes directly; e.g., the Hilbert-Huang

transform has been used to relate local movement profiles

with different subcellular signaling regimes in fibroblasts,109

while the transported square-root vector field representation

decomposes the evolution of the entire cell contour.110

In the study of E. histolytica, we have used SW to automat-

ically screen the position and number of blebs,111 a strong

physiological indicator and a key driver of ameboid migration.

Conversely, SH have allowed recognizing different migration

patterns in the temporal deformation profile of the trophozo-

ites,112 as well as inspecting whole-cell shape differences be-

tween populations; for example, when the adhesive properties

of the parasite are reduced by signaling blockage of the Gal/

GalNac lectin protein complex,113 the cells shrink and their

surface coarsens/wrinkles significantly (high-frequency SH
PATTER 2, January 8, 2021 7
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components are depleted/enhanced), which is consistent with

membrane tension considerations. This strain can still navigate

the ECM but can no longer cross the hepatic barrier,114,115 de-

laying the inflammatory response.

Unfortunately, even when complexity is reduced through de-

scriptors or changes of basis, it is common that results still

lack human-ready interpretability.108 Unsupervised data anal-

ysis techniques can exploit the now-simpler representations

to classify and discriminate populations (e.g., according to

subtle migration changes37) as well as to answer questions re-

flecting on the biological relevance of experimental condi-

tions,116 but they cannot always give a user-friendly picture

of the combination of features (say, SH components) that

make the difference. For example, t-SNE and UMAP exploit

non-linear dimensionality reduction in an attempt to reveal

local data structures while preserving global-scale informa-

tion;117,118 the resulting manifolds facilitate cell type phenotyp-

ing via standard clustering methods in high-dimensional sets,

but their focus on pairwise distances obscures any connection

to the original features as compared with more classic linear

approaches such as PCA or NMF. To improve the interpret-

ability of the results, we expect future work to lean toward dif-

ferential geometry because it is a natural and more illustrative

way of representing manifolds such as the (2D) surface of a

cell bending in (3D) space.119,120 Meanwhile, some recent ef-

forts take a shortcut and directly train supervised machine

learning algorithms using human input on simplified image

data. This is only effective if the end result is tangible; for

example, to detect and classify cell protrusions. In this way,

it has been shown that some proteins in melanoma cells are

differentially modulated by certain morphological motifs such

as blebs or filopodia.100

Cell Tracking and Velocimetry
Diffusive, confined, intermittent, and directed motions are four of

many patterns of cell movement that can be inferred from the

stochastic analysis of cell trajectories (Figure 1). Purely diffusive*

motions are hardly expected at the scale of the cell18 because

Re* is low, cells are self-propelled, and molecular polarization

carries some inertia. Instead, cells display different degrees of

persistence121 that reflect why or how they are moving.122

Computationally, the problem of cell tracking is one of

optimal mapping: already-segmented cells in consecutive

frames are paired over time in order to build trajectories ac-

cording to some criteria.123 Nearest neighbors—a criterion

assigning a cell’s center to the closest center in the next

frame—is an effective choice when the temporal resolution

is high relative to the number of cells in the field of view.

This is the case with most essays in morphodynamics. At a

lower spatiotemporal resolution, where cell and particle

tracking are practically equivalent, there is a need for bet-

ter-educated criteria that do not only privilege short distances

but rather consider multiple hypotheses given the time course

of the particles and some statistical priors.124,125 A collection

of methods designed to deal with cluttered environments in

which particles (here cells) ‘‘jump’’ across each other can

be found in Chenouard et al.126 (Table 1). Once the cell tra-

jectories are known, a range of statistical techniques are

used to classify the observed motion into one of the many
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patterns of cell movement. For example, the mean squared

displacement (MSD) has traditionally been used to discrimi-

nate between different diffusivity regimes127 because it mea-

sures the progressive deviation of the cell with respect to its

initial position; it is typically reported by comparison with

diffusive motion.

According to the MSD, the directionality of E. histolytica in-

creases once in the liver, but randomly migrating trophozoites

are still super-diffusive in the absence of stimuli.115 Correlative

studies have shown that E. histolytica alternates between low-

persistence exploration and a highly polarized and invasive

mode induced by signals from the intestinal environment that

include TNF, erythrocyte factors, bacterial lysates, fibronectin

residues,49,128 and, perhaps most interestingly, self-secreted

proteins.129 The underlying motility switches involve the activa-

tion of different molecular pathways that regulate the cytoskel-

eton in response to external stimuli.130

More recent statistical tests are able to associate a signifi-

cance (p value) to the classification of cell trajectories,131 detect

pattern changes within the same track,132 and account for any

surface manifold to which the cells might be constrained within

a 3D environment.133 Further classification of the tracks, as

well as their relation with the different migration modes, can be

approached with methods similar to those presented for cell

shape: descriptors (e.g., net versus total displacement),134

changes of basis, machine learning, manifolds, etc.

The ‘‘social’’ behavior of cells is written down on their tracks

too,135 and could be studied as is done in mice136 and flies.137

For example, cell-cell contact is a means of information ex-

change in multiple biological processes, including the immune

response, wherein T cells need to recognize surface antigens.

Engineered molecular labels that are enzymatically transferred

upon contact have been used to monitor the dynamics of

these so-called kiss-and-run interactions,138 but cell tracking

could help unveil any underlying interaction network. Another

remarkable instance of multicellular tracking concerns tracing

cell lineages through development; for example, to study em-

bryo morphogenesis (discussed later).

Yet another by-product of tracking is cell speed, which

frequently doubles as a measure of motility; for example, to

quantify the invasiveness of E. histolytica in biological environ-

ments such as (enterocytic-like) Caco-2 cell monolayers or

hamster livers.115 Intracellular velocity fields, such as those

describing the movement of the cytoplasm, are also inter-

esting (Figure 3E.i; Videos S1, S2, and S3, Table 1); e.g., to

study how active molecular transport administers the distribu-

tion of proteins when diffusion is not sufficient.139 The classic

methods to compute intracellular speed are two: kymographs,

which concentrate on the time evolution of a single cross-sec-

tion of the image; and projections, where the brightness

values across an image stack are cast onto a single image.140

Since these approaches discard plenty of information, nowa-

days image analysts resort instead to a combination of

speckle microscopy and multiple-particle tracking,141 or to

particle image velocimetry (PIV) techniques, which can pick

up on the movement of pixel intensity directly on standard

fluorescence microscopy by following pixels of constant inten-

sity (optical flow) or by maximizing the correlation of succes-

sive image patches. The resulting intracellular velocity fields
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Figure 3. Classification of Methods to
Measure Biophysical Quantities
Active:
(A) Atomic force microscopy to measure force or
elasticity.
(B) Servo-null micropipette to measure pressure.
(C) Optical trap to measure forces or probe prop-
erties (e.g., rheology).
Passive: most passive methods require image
analysis to some extent.
(D) TFM measures forces exerted on the substrate.
(E) Measurements of cytoplasmic streaming. (E.i)
Left to right: IC velocity field (0.2–6.1 mm/s), IC
velocity field corrected for bulk movement
(0–4.8 mm/s), and IC pressure (0–6.7 Pa) in a
migrating E. histolytica trophozoite imaged in two-
dimensions with a confocal microscope. The im-
ages are 25 mm high. Lower values are in blue,
higher in red. (E.ii) Arrows represent IC velocity,
stream lines show cytoplasmic streaming, and
surface colors display pressure. Migrating
E. histolytica trophozoite imaged in three-di-
mensions with a confocal microscope.
(F) FRET or photo-quenching (see text).
While the first three methods require interacting
actively with the cell (and possibly disturbing it), the
last three use passive reporters that are captured
by non-invasive imaging techniques.
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have been dense enough (Figure 3E.i) to show that bleb for-

mation results primarily from a redistribution of cytoplasm in

zebrafish primordial germ cells142 (Video S2), to determine

the effect of cortical contractions on streaming in oocytes,143

and to allow tracking the movement of molecular regions

that are too diffuse to be segmented144,145 (Videos S3).

BIOPHYSICAL MEASUREMENTS USING IMAGE DATA

While century-old studies had anticipated the importance of

physical forces in shaping and modeling the organism,146 only

the relatively recent development of force-probing techniques

has shown their far-reaching implications in morphogenesis, dif-

ferentiation, and cell migration.147 It is now established that phys-

ical forces can propagate information within (and between) cells,

elicit mechanical and biochemical signals down to the meta-

bolic148,149 and transcriptional150 pathways, and regulate cell

migration. Indeed, the mechanisms underlying cell shape and

motility involve complex molecular machinery that senses and

actuates both mechanical and chemical signals (internal and

external),151 including the generation of endogenous forces by

the contractile actomyosin network. Even though this ensemble

of molecular motors contracts locally and independently, by ex-

ploiting the biophysical properties of the cell, their proper coordi-

nation translates local mechanical tension into whole-cell motion

and, eventually, into global cell migration. Therefore, deciphering

how cells deform andmove requires a better understanding of the

biophysical quantities that do not only drive but also reflect IC/EC

dynamics, such as IC/EC forces and IC pressure (Figure 1). Unfor-

tunately, many such measurements cannot be taken directly,

especially at the IC level. Instead, current experimental methodol-

ogy152 is either active or passive (Figure 3).
Some methods are classified as active because they apply

exogenous forces (Figure 3, top). For example, using micropi-

pette aspiration153 or atomic force microscopy154 to probe cor-

tex tension or elasticity (Figure 3A), microchip injection155 or

servo-null micropipette penetration to measure local IC pres-

sure156 (Figure 3B), or magnetic and optical tweezers to estimate

molecular-level IC forces (Figure 3C). As regards E. histolytica,

micropipette aspiration has been used to study the role of the

membrane-cortex pair153 during bleb-based motility.47 Mag-

netic tweezers have also been quite versatile. They have been

used to study the response of the parasite to mechanical stimuli,

whereby forces exerted on the cell rear are transduced and

amplified into a biochemical signal that enhances the polariza-

tion of the cell,157 and also to determine the rheological proper-

ties of the amebic cytoplasm.158

BIA has contributed methods that are more passive (Figure 3,

bottom; Table 1) and less harmful to cells. These include any

combination of image-based data extraction such as PIV with

posterior simulations of theoretical models,159,160 for example

to study cytoplasmic streaming in early animal development143;

or with inverse problems*, for instance traction forcemicroscopy

(TFM) estimates EC forces by watching cells interact with

deformable substrates that have been filled with marked

beads161 (Figure 3D). If the constitutive relation of the substrate

material is known, the traction forces can then be ‘‘inverted’’

from the deformation observed under a fluorescent micro-

scope.162 In a similar way, the study in Boquet-Pujadas et al.33

estimates several IC quantities inside migrating amebae by im-

aging the movement of their cytoplasm with standard fluores-

cence microscopy (Figure 3E) and modeling it as a viscous fluid

as previously probed using magnetic rheology.158 By using a

data assimilation framework to couple PIV techniques with
PATTER 2, January 8, 2021 9
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physical models, this approach not only quantifies IC forces,

stresses, and pressure gradients but also yields velocity esti-

mates at unprecedented detail (Figure 3E.i and ii and Videos

S1, S2, and S3). These measurements allowed corroborating

experimentally some long-established hypotheses regarding

the physical mechanisms driving ameboid migration in

E. histolytica47 and unveiled a coupled periodicity underlying

the parasite’s protrusions.

Although the majority of passive methods described so far

report macroscopic measurements, the different mechanisms

of mechano-transduction and -sensation span several scales;

accordingly, the measuring range of the techniques stretches

from the tissue to the protein levels. At the tissue scale, tech-

niques include micro-droplet embeddings and monolayer stress

microscopy,163 while gauges at the protein level typically resort

to genetic engineering. For example, biosensors based on fluo-

rescence resonance energy transfer (FRET) or photo-quench-

ing164 are conceived to shine in response to tension across a

protein of interest (Figure 3F), resolving magnitudes down to

the pN. However, their exact range of application is still contro-

versial165 and the calibration process remains very delicate: it re-

quires, first, controls for environmental independence and, later,

extensive image analysis.166

We remark thatmodels are not a requirement exclusive to pas-

sive methods, and physical assumptions (not biological) underlie

both active and passive approaches because forces can only be

accessed indirectly (Newton’s second law) through their effect

on other quantities; most commonly, the deformation of well-

described materials.

Even though we have introduced movement at the single-cell

scale, let us point out that a good part of cells is gregarious. Col-

lective cell migration and rearrangement are at the heart of

fundamental biological processes,167 including morphogenesis

and metastasis. However, the emerging mesoscale properties

of collective cell organization, as seen for example in epithelial

sheets, cannot necessarily be predicted efficiently from the

behavior of individual cells.168 For instance, the fluid-to-solid-

like phase transitions that have been characterized in cell mono-

layers169 can be inferred from a small set of physical properties

such as cell shape and cell alignment. In the likes of schools or

flocks, it is the local interaction between neighboring cells that

creates this global cell behavior. Context is important.

MICROENVIRONMENTS, A LENS TO THE FUTURE
OF BIA

Historically, the lack of technological solutions at the micro scale

has found good rationale in reductionism to justify 2D (or glass)

experiments. However conducive this bottom-up avenue has

been to singling out the key players in morphodynamics, it has

also demonstrated that cell behavior in vivo should not be (care-

lessly) extrapolated from studies performed outside the native

context of the cell; for instance, new migration strategies are

discovered as cells face increasingly complicated obstacles.36

Indeed, cells consider the most variate environmental stimuli.170

They take into account the composition and stiffness of the ECM;

physical forces (e.g., shear flows and peristaltic compressions),

which have been shown to influence differentiation and infec-

tion;171,172 biochemical cues such as cytokines; andmulticellular
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factors (e.g., E. histolytica interacts with the immune system and

with the commensal microbiota in the colon).173 Consequently,

to facilitate experimental design while retaining physiological

relevance, great effort has been invested in engineering 3D mi-

croenvironments that integrate a select (e.g., in balance with

the cost) subset of variables relevant to human pathologies.174

The quest for increasingly relevant setups has put optical mi-

croscopy to a test175: the resulting multicellular 3D structures

require higher penetration depth and multiple wavelengths,

and, if the system is to be imaged live, faster acquisition and

reduced phototoxicity; even at the single-cell scale, a boost in

speed is necessary to capture the molecular mechanisms

behind cell protrusions, which occur at the 1 mm33 s scale. Lat-

tice light-sheet microscopy (LLSM) has delivered176 and it is

now open season for BIA. In its relatively short life, LLSM has

already been key to elucidating cell fate during embryogenesis;

for example, to understand how oriented cell division and

migration shapes the early nervous system106 or how the spatial

modulation of cell proliferation is necessary to limb forma-

tion.177 Instead of resorting to genetic markers,178 by exploiting

the spatiotemporal resolution of LLSM, cells can be automati-

cally followed all the way from gastrulation to the onset of

organogenesis through cell division, differentiation, migration,

and apoptosis in order to classify and map their fates.54

Although big-data management plays a big role in these pro-

jects, robust segmentation and a well-tailored set of mapping

rules within the tracking algorithm are fundamental because

small mistakes are quickly amplified through the lineage tree.

For this reason, image analysts rely on highly specific nuclear

labels and combine trained ANNs with wavelet representations

to ensure cell divisions are properly detected.54,106 LLSM is but

one example of an imaging revolution that is generating increas-

ingly complex datasets. Under the new paradigm, biologists

have to step out of their comfort zone: manual quantification

is far-fetched and automatic image analysis becomes nigh

imperative.

With the help of BIA, we have seen that the ameboid mode of

E. histolytica has certain nuances that support the parasites’

ability to penetrate complex environments such as intestinal

or hepatic tissue. First, the migratory behavior of E. histolytica

switches from exploratory to invasive upon detection of intesti-

nal signals. Second, although this cell deforms considerably

and its nucleus is particularly small, proteolytic activity appears

necessary to invade the deep layers of the intestine. While

maintaining ameboid motility, E. histolytica takes advantage

of human cells because proteolysis results only from the com-

bined activity of parasitic and human proteinases when faced

with dense ECMs.51 To reproduce intestine-like conditions in

a controlled environment, potential models have to mimic not

only intercellular relations but also its crypt-villi topography

and physical peristalsis.171,179 Applying BIA to these active

3D tissue models will be a requirement if we are to decipher

how the parasite’s movements occur in deep tissue layers

and eventually understand the molecular basis of the infection;

for example, to reconstruct 3D live images of the infection pro-

cess, to investigate the motivations behind their tracks and reg-

ister their interactions, to study morphological changes and

their relation with protein location and intracellular redistribu-

tion, and to consider the role of physical forces in infection
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both at the cellular and tissue levels (e.g., does stressed tissue

facilitate infection?). To this end, and to the study of cell motility

in general, we count four main future challenges for BIA.

(1) The sheer size of the new volumetric datasets precludes

manual analysis, but processing the throughput of modern mi-

croscopy is no cinch either. Admittedly, rather than a big con-

ceptual leap, dealing with the 3D nature of images is more a

question of reformulating algorithms to scale better with

increasing image sizes. At the same time, integrating image pro-

cessing directly into a smarter microscope might help discard

irrelevant data from the get-go180 or adapt to multi-scale pro-

cesses on-the-fly.54,181 We expect that reducing the computa-

tional burden will pave the way for a comprehensive analysis of

biological processes that complements image analysis with all

the omics approaches16 (Figure 1).

(2) Aside from economizing countless hours of labor for scien-

tists to focus on higher-level hypotheses and complementing

their intuition with advanced 3D visualization tools,182 quantita-

tive BIA is to become themain vector driving biological discovery

as systems grow increasingly complex and non-linear.

(3) To avoid compromising the integrity of contemporary mi-

croenvironments, biophysical gauges will have to continue their

drift toward inverse problems. This is usual in medical imaging:

tomographies, magnetic resonances, and elastographies are

all based in the theory of inverse problems. The common theme

is taking measurements indirectly. However, uncertainty is the

‘‘elephant in the room’’ of inverse problems in general, and of

their bio-applications in particular. For example, TFM does not

provide measurement errors. In the near future, any trustworthy

measurement will have to take into account the uncertainty intro-

duced by image noise, as well as the approximations inherent to

the physical model.

(4) If the hope is to tip the balance from expensive laboratory

equipment to algorithms, it is imperative to provide working soft-

ware.183 Multi-purpose BIA platforms have now been offering

open-source solutions for a decade or two55 (Table 1) and they

are well prepared for the advent of 3D imaging, although not

so much for that of big data.184 Having many algorithms within

the same platform offers the opportunity to build automatic

workflows (Figure 1: pre-processing, segmentation, tracking)

that travel all the way from pixel information to biological dis-

coveries.

Unfortunately, these pipelines are still not very robust, as

many of the steps require extensive fine-tuning; the large

collection of segmentation methods is good evidence of this.

The boom of supervised deep learning94,96 will help tackle the

work-intensive fraction of BIA challenges by (quite literally)

substituting human vision and memory with chips.185,186 Those

include problems such as cell segmentation, where the

outcome is ‘‘known’’ and thus the algorithms can replace

hand-designed feature extraction with sufficient training. How-

ever, the same approach is unsuited for intuition-driven BIA

challenges because supervised ANNs enforce preconceived

ideas, missing subtle differences and eventually leading to a

confirmation bias incompatible with new knowledge. Therefore,

unsupervised algorithms, mathematical methods, and curated

physical laws will play an increasingly large role in guiding biol-

ogists forward through the big data resulting from the quest for

physiological relevance.
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and superdiffusion in the context of biological encounters and random
searches. Phys. Life Rev. 5, 133–150.

42. Li, L., Nørrelykke, S.F., and Cox, E.C. (2008). Persistent cell motion in the
absence of external signals: a search strategy for eukaryotic cells. PLoS
One 3, e2093.

43. Shirley, D.T., Watanabe, K., and Moonah, S. (2019). Significance of
amebiasis: 10 reasons why neglecting amebiasis might come back to
bite us in the gut. PLoS Negl Trop Dis. 13, e0007744.

44. Shirley, D.A.T., Farr, L., Watanabe, K., andMoonah, S. (2018). A review of
the global burden, new diagnostics, and current therapeutics for amebi-
asis. Open Forum Infect. Dis. 5, ofy161.

45. Aguilar-Rojas, A., Olivo-Marin, J.-C., and Guillen, N. (2016). The motility
of Entamoeba histolytica: finding ways to understand intestinal amoebi-
asis. Curr. Opin. Microbiol. 34, 24–30.

46. Dufour, A.C., Olivo-Marin, J.C., and Guillen, N. (2015). Amoeboid move-
ment in protozoan pathogens. Semin. Cell Dev. Biol. 46, 128–134.

47. Maugis, B., Brugués, J., Nassoy, P., Guillen, N., Sens, P., and Amblard, F.
(2010). Dynamic instability of the intracellular pressure drives bleb-based
motility. J. Cell Sci. 123, 3884–3892.

48. Talamás-Rohana, P., and Meza, I. (1988). Interaction between patho-
genic amebas and fibronectin: substrate degradation and changes in
cytoskeleton organization. J. Cell Biol. 106, 1787–1794.

49. Blazquez, S., Zimmer, C., Guigon, G., Olivo-Marin, J.C., Guillén, N., and
Labruyère, E. (2006). Human tumor necrosis factor is a chemoattractant
for the parasite Entamoeba histolytica. Infect. Immun. 74, 1407–1411.

50. Silvestre, A., Plaze, A., Berthon, P., Thibeaux, R., Guillen, N., and Lab-
ruyère, E. (2015). Entamoeba histolytica, a BspA family protein is required
for chemotaxis toward tumour necrosis factor. Microb. Cell 2, 235–246.

51. Thibeaux, R., Avé, P., Bernier, M., Morcelet, M., Frileux, P., Guillén, N.,
and Labruyère, E. (2014). The parasite Entamoeba histolytica exploits
the activities of human matrix metalloproteinases to invade colonic tis-
sue. Nat. Commun. 5, 5142.

52. Marquay Markiewicz, J., Syan, S., Hon, C.-C., Weber, C., Faust, D., and
Guillen, N. (2011). A proteomic and cellular analysis of uropods in the
pathogen Entamoeba histolytica. PLoS Negl. Trop. Dis. 5, e1002.

http://refhub.elsevier.com/S2666-3899(20)30234-8/sref12
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref12
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref13
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref13
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref13
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref14
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref14
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref14
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref14
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref15
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref15
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref15
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref16
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref16
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref16
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref17
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref17
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref17
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref17
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref17
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref18
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref19
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref19
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref20
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref20
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref20
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref20
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref21
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref21
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref21
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref21
http://www.cellmigration.org/science/#stasis
http://www.cellmigration.org/science/#stasis
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref23
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref23
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref23
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref24
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref24
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref24
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref24
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref25
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref25
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref25
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref25
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref26
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref26
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref26
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref26
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref27
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref27
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref27
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref28
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref28
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref28
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref28
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref29
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref29
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref29
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref29
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref30
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref30
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref30
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref30
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref30
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref31
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref31
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref31
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref32
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref32
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref33
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref33
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref33
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref33
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref34
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref34
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref35
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref35
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref35
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref36
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref36
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref37
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref37
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref37
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref37
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref37
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref183
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref183
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref183
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref38
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref38
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref39
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref39
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref39
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref39
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref40
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref40
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref40
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref41
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref41
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref41
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref184
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref184
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref184
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref42
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref42
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref42
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref43
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref43
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref43
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref44
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref44
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref45
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref45
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref45
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref46
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref46
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref46
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref47
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref47
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref47
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref48
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref48
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref48
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref49
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref49
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref49
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref49
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref50
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref50
http://refhub.elsevier.com/S2666-3899(20)30234-8/sref50


ll
OPEN ACCESSReview
53. Neumann, B., Walter, T., Hériché, J.-K., Bulkescher, J., Erfle, H., Conrad,
C., Rogers, P., Poser, I., Held, M., Liebel, U., et al. (2010). Phenotypic
profiling of the human genome by time-lapse microscopy reveals cell di-
vision genes. Nature 464, 721–727.

54. McDole, K., Guignard, L., Amat, F., Berger, A., Malandain, G., Royer,
L.A., Turaga, S.C., Branson, K., and Keller, P.J. (2018). In toto imaging
and reconstruction of post-implantation mouse development at the sin-
gle-cell level. Cell 175, 859–876.e33.

55. Eliceiri, K.W., Berthold, M.R., Goldberg, I.G., Ibáñez, L., Manjunath, B.S.,
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