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Abstract

Single particle tracking allows probing how biomolecules interact physically with their natural environments. A
fundamental challenge when analysing recorded single particle trajectories is the inverse problem of inferring the
physical model or class of models of the underlying random walks. Reliable inference is made difficult by the
inherent stochastic nature of single particle motion, by experimental noise, and by the short duration of most
experimental trajectories. Model identification is further complicated by the fact that main physical properties of
random walk models are only defined asymptotically, and are thus degenerate for short trajectories.

Here, we introduce a new, fast approach to inferring random walk properties based on graph neural networks
(GNNs). Our approach consists in associating a vector of features with each observed position, and a sparse graph
structure with each observed trajectory. By performing simulation-based supervised learning on this construct [1],
we show that we can reliably learn models of random walks and their anomalous exponents. The method can
naturally be applied to trajectories of any length. We show its efficiency in analysing various anomalous random
walks of biological relevance that were proposed in the AnDi challenge [2]. We explore how information is
encoded in the GNN, and we show that it learns relevant physical features of the random walks. We furthermore
evaluate its ability to generalize to types of trajectories not seen during training, and we show that the GNN
retains high accuracy even with few parameters. We finally discuss the possibility to leverage these networks to
analyse experimental data.

Keywords: inverse problems, graphical models, random walks, amortised inference, single particle tracking,
deep learning, graph neural networks.

1 Introduction

Random walks are encountered throughout a large variety of scientific domains, spanning diverse fields such as
condensed matter physics [3], molecular biology [4], ecology [5], and finance [6]. The random walkers can
be considered probes of their environment, and their recorded trajectories contain information on the properties
of both the walkers and their environments. When analysing experimental data from such systems, one needs
to solve the inverse problem of inferring an appropriate model or class of models and their parameters from a
given set of trajectories.

Whether the recorded trajectories come from single-molecule experiments [7, 8] or from other types of
experimental recordings [9—11], the inverse problem of identifying the nature (i.e. model class and parameters)
of the random walks is a complex one. The reasons for this complexity are multiple: the inherent stochastic
nature of random walks makes it difficult to identify stereotypical behaviours, characteristic features of different
random walks models overlap for finite size trajectories, experimental noise can mask subtle local dynamics that
could differentiate some models, and the distributions of selective features associated with many random walks
are difficult to compute.



A continually growing number of approaches have been developed to tackle the task of identifying and
characterising random walks from their individual realisations. A popular class of approaches consists in
fitting temporal curves of moments of the displacements [12, 13]. The main such statistics is the mean
square displacement (MSD), either estimated from an ensemble of random walks or evaluated for individual
trajectories [12, 14—16]. The MSD is widely used and remains a tool of choice for analysis, both for historical
reasons and for its simple interpretation [3] (see Section 2 below). The MSD however has several undesirable
statistical properties which can make conventional analysis suboptimal. It is nonstationary, highly autocorrelated,
and has a non-Gaussian distribution [17], making the design of efficient inference procedures difficult. Moreover,
it may be insufficient on its own to distinguish between different random walk models, especially for heterogeneous
systems [18, 19]. The inferences of the model class and associated parameters degrade with decreasing
trajectory lengths, with increasing positioning noise and with positional correlations induced by the experimental
measurement process. Many complementary approaches, based on predefined features extracted from trajectories,
have been developed. Some are ensemble-based, relying on distributions of features evaluated in sets of
trajectories, such as the distribution of tangent velocities [20], of displacements [21], of "excursions” [22],
or of first time passage statistics [23]. Others are centred on individual trajectories, such as non-ergodicity
estimators [24], renormalisation-group-based second moment analysis [25], mixed use of multiple estimators in
decision trees [26], asymmetry samplers [27], or filtered temporally-averaged MSDs [28].

Statistical learning has provided new tools to address these inverse problems in a principled way. Hidden
Markov Models (HMM) [29] are efficiently used to probe diffusion modes [30—32], detect confined-like
motion [33], and mix local and global information to perform inference on very short trajectories [34]. (It is
worth noting here that the temporally averaged MSD (TAMSD) can also be used in detecting diffusion mode
changes [35].) Other Bayesian approaches have allowed to infer fBM characteristics [36—38] and to perform
model selection between several different models [39].

The main drawback of statistical learning approaches is that they often require an analytical expression for
the likelihood function. This limits the applicability of these approaches as many random walk models of interest
do not have a ftractable likelihood.

Recently, machine learning approaches have been developed to tackle this problem and to provide a broader
class of random walks with efficient means for model selection and inference. To overcome the lack of
ground truth annotations for experimental random walks, applications of machine learning generally involve a
simulation-based approach, where a machine learning model is trained on simulated data from a selection of
random walk models using supervised learning. Assuming that the selected training set contains models that
describe the experimental system well enough, the learned model can then be transferred to classify and/or infer
the parameters of experimental random walks. This differs from the typical approach to supervised learning where
the model is trained on an annotated experimental dataset. Within this type of approaches, ensemble learning
methods such as random forest have been found to be remarkably effective when applied to appropriately
selected features of recorded trajectories [2, 40, 41]. Neural networks applied on windowed MSDs have
also been found to be efficient for differentiating between modes of motion and detecting their transitions in
time [42].

As larger datasets become available, deep learning approaches, which automatically learn features from the
raw data, have consistently been found to outperform classic machine learning models relying on predefined
features [43]. Following this trend, deep learning approaches have recently been developed to infer properties
of random walks. Recurrent neural networks (RNNs), tools of choice for time series analysis, have been used to
infer parameters associated to sub-diffusive behaviour [44] and to detect changes between different diffusion
modes [45]. An approach based on a deep learning architecture search platform, leveraging convolutional
neural networks (CNNs), LSTM networks (a class of RNNs), and the ResNet and InceptionTime architectures
known for their efficiency for natural language processing (NLP) [46], has proven to be efficient even for short
trajectories [40]. Another recent approach, inspired from generative audio generation models [47], leverages a
temporal convolution network [48] where convolutions are applied with various dilation effect to detect long
term correlations, has shown impressive performance in inferring the nature of random walks [49].

The limitations of deep learning approaches applied to random walks are similar to other applications of deep
learning: identifying overfitting can be difficult, and learned models typically lack interpretability (they are usually
referred to as black box models for this reason). Furthermore, the computational cost of training generally grows
with the number of parameters and with the level of recurrence of the neural network.

The particular nature of random walk data and the simulation-based approach also adds difficulties when
adapting to experimental data: varying trajectory lengths complicate the application of non-recurrent neural
networks (e.g., CNN architectures), and varying experimental noise as well as mislinking between particle positions
in experimental images may degrade statistical performance. Finally, inevitable differences between our random



walk models and the true data generating process (known as distribution drift, but here exacerbated by the
simulation-based approach), makes it hard to define the conditions under which transfer learning performs well.

To address some of these problems, we here propose to leverage graph neural networks (GNNs) [50], a
recent extension of neural networks to general dependency structures between data points (Fig. 1). Our goal is
two-fold:
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Figure 1: Examples of graphs associated to a single trajectory. A) An example of a short, subdiffusive fBM trajectory. B)
Graph associated to the trajectory following a causal geometric edge wiring scheme (see Section 3.2). C) Graph obtained by
wiring edges at random. Edges linking to a single selected node are shown in red in B and C.

(i) To develop an inference procedure that can be applied to trajectories of any length, is robust w.r.t.
noise, and is numerically efficient, while keeping the number of parameters of the neural network low.

(i) To provide physical interpretability of the neural network model through analysis of the latent
representations it learns, and to study its robustness w.r.t. differences in the statistical properties of the training
and testing data which is essential for transfer to experimental data analysis.

In this paper, we will focus our approach and applications on a limited subset of random walk models.
However, the approach is transferable to any type of random walk. We focus here on anomalous motion
stemming from the following 5 different models, which were selected for the anomalous diffusion (AnDi)
challenge [51]: subdiffusive continuous time random walks (CTRW) [52, 53], fractional Brownian motion
(fBM) [54], superdiffusive Levy walks (LW) [55-57], annealed transient time motion (ATTM) [58], and
scaled Brownian motion (sBM) [59—61]. We will also consider Brownian motion and the Ornstein-Uhlenbeck
process [62] in the analysis of the representations learned by the GNN.

Although the GNNs will always be trained on random walks whose nature does not change with time (i.e.
each trajectory is generated by a single model with constant parameter values), we will explore the robustness
of these trained networks to changes in the underlying generative model over time. We refer the reader
to Refs. [63—67] for methods addressing spatial and temporal heterogeneities in the overdamped Langevin
equation and to Refs. [38, 40] for fBM.

The paper is organised as follows. In Section 2 we briefly introduce the different models of random walks
and the motivation for our learning procedure. In Section 3 we introduce the graph neural network approach to
random walk inference, the graph building process and properties of the architecture. In Section 4 we discuss
the results, quantify the properties of the learning procedure and explore what has been learnt by the network.
We also explore neural network design choices and their effect on learning. Finally, in Section 5 we discuss
the efficiency of the approach, challenges in its application to experimental data and possible extensions to
unsupervised learning.

2 Anomalous random walks

Here we briefly introduce important properties of the anomalous random walk models [3, 62] that we will
consider in the following. Anomalous diffusion emerges when a random walker diffuses in a disordered system or
in an out-of-equilibrium environment. Usually, the principal property used to characterise an anomalous diffusion
process is the temporal scaling behaviour of its mean squared displacement,
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where r is the position of the random walker, (-) denotes ensemble averaging, and a € [0, 2] is the anomalous
exponent. The process is subdiffusive when o <1, superdiffusive when a >1 and Brownian (i.e. non anomalous)
when a = 1.

Anomalous diffusion is associated to at least one of the following properties: (i) random walkers or their
environment exhibit spatially or temporally varying properties, (ii) displacements are not statistically independent
at any sufficiently small time scale, and (iii) displacements at small time scales exhibit anomalies that prevent the
central limit theorem applying [19].

We consider the five following models of anomalous diffusion:

|. Fractional Brownian motion (fBM) [54, 62]. fBM is a Gaussian process characterised by long temporal
correlations in the noise driving the process. It is generated by a Langevin equation [62] of the form

d';(tt) = /Kan (t), where n is a zero-mean Gaussian noise process with covariance structure (n(t;)n(t;)) =

a(o— 1)t =192, and K, is a generalized diffusion constant that sets the scale of the process. fBM is a
self-similar Gaussian process with stationary increments [54, 62]. Its associated noise is anti-persistent and
negatively correlated in the subdiffusion regime but persistent and positively correlated in the superdiffusion
regime. As such, this random walk model displays anomalous property (ii) as defined above. It is stationary
and ergodic [68], and its likelihood is analytically tractable.

2. Scaled Brownian motion (sBM) [59, 69]. sBM is generated by a Langevin equation [62] with a time-
dependent diffusion coefficient [59, 69] of the form K (t) = aKot*~' and driven by an uncorrelated (white)
noise. It can generate both subdiffusive and superdiffusive processes. sBM displays anomalous property (i),
it is weakly non-ergodic [61] and has the same marginal probability density for the time-evolution of the
walker’s position as the fBM [60], but a different autocorrelation structure.

3. Subdiffusive continuous time random walk (CTRW) [52]. In the CTRW the random walker’s motion is
generated by a renewal process consisting of discrete jumps with a given waiting time distribution between
jumps, @ (T), and a distance distribution of jump lengths, f (A). Within the context of this study f will be
a centered Gaussian distribution and w (1)  T7~9~!, giving rise to subdiffusive random walks. The definition
of the CTRW used here corresponds to a physical model associated to an annealed environment [70].
The subdiffusive CTRW model displays anomalous property (iii) and does not have a tractable likelihood.
It shows weak ergodicity breaking [71], ageing [72, 73], and non thermal plateau convergence when
confined [74], and it has discontinuous paths.

4. Superdiffusive Levy walk (LW) [55, 75, 76]. LWs belongs to the CTRW class of models, but instead of
performing discontinuous jumps their motion is continuous and composed of a series of uncorrelated “flights’
of constant speed generated from given flight time and distance distributions, w (7) and f (A), respectively.
Here, we consider a subset of the LW class corresponding to superdiffusive motion with a flight time
distribution scaling as w (1) ~ 7', and with a distance distribution that is conditional on T and given
by f(A) x §(|A| —vT), where v is a constant speed parameter and & is the Dirac delta function. The
superdiffusive LW displays anomalous property (iii), it exhibits weak ergodicity breaking and its likelihood is
intractable.

5. Annealed transit time motion (ATTM) [58, 77]. The ATTM model considers a random walker in an
annealed heterogeneous environment where the diffusivity varies over space and time. In the ATTM, the
random walker has a diffusivity that is piecewise constant over time with values drawn from (D) ~ D°~!
and with resting time at each diffusivity level drawn from a conditional distribution p(7|D). We consider
here p(t|D) = &(t — D7) and the parameter range o <y <o+ | (defined as Regime | in ref [58]), which
leads to subdiffusive motion with an anomalous exponent of a = o/y. Subdiffusive ATTM displays both
anomalous properties (i) and (i), and it exhibits weak ergodicity breaking and ageing.

We refer to realisations of random walks as trajectories. A trajectory, R = (r|,ry,...,ry), is a d-dimensional
time-series of positions r, recorded at equidistant points in time t, € {At, 2At,. .., NALt}.

Experimentally, the positions of the trajectory are corrupted by various types of experimental noise. Here we
assume an independent additive Gaussian white noise, i.e. ©, = r, + &,, where &, ~ N (0,0l) are d-dimensional
Gaussian variables that are independent of both the past and of the random walker's motion. We refer to [17,
78] for how correlated noise induced by experimental settings can be taken into account. From a statistical
analysis perspective, we consider individual random walk trajectories as noisy time series with two latent variables:
a continuous anomalous exponent o and a discrete random walk model class.



3 From random walks to graph learning

We propose to leverage the flexibility and the capacity for representation learning of graph neural networks
(GNNs) [79] to infer properties of random walks, in particular their anomalous exponent and model class,
following a methodology which we detail below.

We start by associating a graph with each trajectory (see Figure 1). Inference is then performed by a GNN,
capable of processing graphs of variable size, and which outputs an estimate of the anomalous exponent and a
probability of belonging to each random walk model class. The weights of this neural network are set during
training (on numerically generated trajectories) similarly to conventional supervised learning schemes, and the
network can later be used for inference on other trajectories, not seen during training.

3.1 Rationale for learning random walks with graph neural networks

The use of a graphical representation has long been a method of choice to model and perform inferences
of complex systems [80]. For example, factor graphs associated to mean field, belief propagation [81] and
cavity methods [82] have been used to model spin glass dynamics and perform complex optimisation problems.
Hidden Markov models [83] have been developed to model changes in random walker dynamics, and mixture
models [84, 85] have been applied to approximate the point spread function in fluorescence microscopy and to
model and analyse complex networks [86].

Over the past 4 years, extensions of deep learning approaches to graph data in the form of graph neural
networks have attracted significant attention [79] and have demonstrated great efficiency for representation
learning on point clouds, graphs and manifolds [87, 88]. GNNs meet several criteria that make them well suited
for analyzing trajectories, and which motivated the design of our learning procedure. (i) They can be applied
directly, using a shared architecture, to trajectories of different lengths [88, 89]. (ii) The choice of graph
structure allows taking into account different time scales while retaining a sparse architecture. (iii) Numerous
known features associated to random walks, such as the convex hull [90-92], first passage times [93—95], or
the distributions of different features’ extreme values [96—98], are linked to geometric properties which can
be learned efficiently using GNNs. (iv) Finally, while advances in machine learning are associated to impressive
achievements [43, 99] they are often obtained with large scale models (several millions to billions of parameters)
that are prone to over-fitting and are challenging to interpret [100]. Hence, a model with a limited number of
parameters and a means to quantify the acquired information during training would be beneficial to understand
the requirements for random walk inference using machine learning. All these criteria point towards using graph
neural networks for individual random walks analysis.

3.2 Graph representation of trajectories

We associate to each trajectory R = (ry,ry,. .., ry) a directed graph G = (V,E, X), with V ={1,2,...,N} the
set of nodes corresponding to the positions in the trajectory, E C {(i,j)|(i,j) € V?} the set of edges connecting

pairs of nodes, and X = (x(lo),x(zo),...,x,(\?)) a sequence of local feature vectors xi(o)

in V (fig. 2A). Each node features vector x(9, of dimension n,, may contain any feature of the trajectory or
of the graph and may depend only on i or on arbitrary neighborhoods of i. This graph-based encoding of
trajectories was inspired by applications of GNNs to point cloud data [88, 89], but where time is an additional
feature associated to each point here.

We attach to each node i the time f; and three differently normalised versions of the i-th position r;: (1)
normalised using the standard deviation of step sizes, (2) normalised using the standard deviation of positions,
and (3) normalised using the mean step size. We also include in each node features the values of the
cumulative sums of step sizes and of squared step sizes up to their time-point, computed using each of the
three normalised positions. In order to prevent Levy walks from having a disproportionate influence in the
learning process, due to the extreme distance values that the walk can induce, we clipped extreme jump lengths
before normalisation. We noted during initial training that these rare events induced significant bias in the batch
normalisation layers [101].

Thus, two matrices initially represent the graph associated to the random walk: the (sparse) adjacency
matrix A, of size (N,N), and the node feature matrix X, of size (N,n,) where n, is the number of features
initially attached t. Note that we may also add features to edges in the graph [50], represented by an
edge feature matrix U, of size (|E|,ne). Training is much faster when omitting edge features, due to the
efficient implementation of sparse matrix operations. As a consequence, we do not consider GNNs leveraging

associated to each node i
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Figure 2: Graphical representation of the GNN model. A) Construction of a graph from a raw trajectory: (left) raw trajectory,
(middle) positions in the trajectory are represented by nodes and a vector of local features is associated to each node; (right)
nodes are connected to each other using a wiring scheme as described in section 3.2 to form a graph on which the GNN is
applied. B) Overview of the GNN's architecture. Red arrows symbolise outputs of layers passed as inputs to other layers.
When several arrows point to a same layer, their features vectors are concatenated before being passed to the layer. Graph
convolution layers are shown in blue, they can process inputs of variable length (for graphs of variable size representing
trajectories of variable length) using neural message passing (see Section 3.4). They use two different aggregation methods
for messages: mean (averages over all the messages) and maximum (takes the maximal value of messages, for each feature).
In green, the pooling operation embeds the variable-sized vector output from the graph convolution layers into a fixed-size
vector representing the trajectory. Orange boxes downstream are multi-layer perceptrons, acting on vectors of fixed dimension
as in conventional neural networks architectures.

edge features in the main text, but we investigate their performance for specialised training involving limited
information (see Section 7.2 in Supplementary Information)

A known limitation of message passing GNNs has motivated us to choose particular wiring schemes for the
graph. The mechanism of information propagation in a GNN involves iteratively passing messages between
neighboring nodes, aggregating them in each step. The latter creates an information bottleneck [102], leading
to a limitation of information encoding in finite sized vectors. A GNN may fail to faithfully propagate local
information stemming from nodes separated by long paths in the graph. It can hence perform poorly if the
properties to be predicted depend on long-range information, which is generally the case for the task of classifying
various random walks and inferring their anomalous exponents. Our approach overcomes these limitations by
using structured wiring schemes to ensure more direct message passing from distant nodes. We discuss here two
different wiring schemes, (i) hierarchical causal and (ii) regular random, but many options are possible. In the
hierarchical causal scheme (i), the incoming edges of each node connect only to nodes in the past (respecting
causality): node i is connected to nodes i— Ay,...,i — Anay, Where (A;);>) is a geometric series (see details in
7.1). In the regular random scheme (i), edges are drawn at random, with the only constraint that all nodes
have the same in-degree, generating a type of random regular graph. Example graphs can be seen in Figure 1.
In both schemes, the graph structure ensures that distant time points of the random walk are connected by short
paths.



3.3 Neural network architecture

We used a two-part architecture for the graph neural network, starting with an encoder followed by task-specific
multi-layer perceptrons [100], each estimating a property of interest from the latent representation built by
the encoder — here the anomalous exponent and the random walk class. This architecture, shown in figure 2,
enables multi-task training (i.e. simultaneous inference of a random walk’s class and anomalous exponent).

The encoder is the entry-point to the model. It embeds the graph representation of the trajectory into a
latent space whose dimension is independent of the trajectory length. To do so, it performs several graph
convolution operations [103—106] (described in Section 3.4 below) which propagate learnt features through the
graph. It is terminated by a pooling layer, i.e. an operator that combines an aggregation of features across
nodes with a multi-layer perceptron that outputs a fixed-size vector. We used convolution layers using both
"mean” and "max" operations to aggregate messages they receive from their neighbors, thus enabling the network
to compute a broader variety of features. We also chose to wire convolution layers so that the last one receives
both the output of its predecessor and the initial features to prevent the information from vanishing through
bottlenecks created by successive graph convolutions.

3.4 Graph convolution layers and neural message passing

The core of GNN operations is formulated in terms of neural message passing, which gathers and transmits
information from nodes to nodes through connecting edges (Fig. 3) and aggregates it using basic operations
such as convolution and pooling [103—107].

Graph convolution layers implement operations on node feature vectors following a message passing
scheme [107] (Fig. 3):

) o (1. et @

Here, the exponent (k— 1) denotes a vector's value before the k-th convolution, and (k) its updated value after
the convolution. The functions y; are neural networks (in our case, multi-layer perceptrons) whose weights are

learned during training. The dimension of ¥ is not constrained to be the same as that of )?j(kfl): drawing
analogy with convolution layers in classic architectures used for image processing, each output dimension of y
corresponds to a convolution kernel. x is a permutation-invariant aggregation operator which reduces the set of
input vectors to a single vector of fixed dimension. In our case, it is either a feature-wise mean or maximum
across nodes. We illustrate both the graph building process and the learning in Figure 2.

We point out here that, while initial motivations for using GNNs stemmed from the known efficiency (see
Section 3.1) of graph models in physics, GNNs differ strongly from physically motivated graph models and
message passing techniques. The neural messages do not represent beliefs about features or variables of interest,
they are not normalised by conservation of probability and optimisation is not performed by sampling. The graph
serves as a means to link features to sets of neighbor features and allow “classical’ learning to be performed by
optimisation.

4 Results

We test our model's performance on classification (model selection) and regression (parameter estimation) tasks
for simulated trajectories of varying lengths and with a range of localisation noise amplitudes and characteristic
scales of motion. We use the same convention as in the AnDi Challenge [51] regarding the localisation noise,
i.e. we apply an independent Gaussian noise to all positions in a trajectory with a standard deviation equal to a
constant factor of the expected standard deviation of the jump sizes of the random walk. We refer to this
proportionality factor as the “noise amplitude’, and we consider noise amplitudes in the range [0, 1].

The lengths and anomalous exponents of trajectories used for both training and evaluation were sampled
uniformly between their respective extreme values (unless otherwise specified, N = 10—1000 and o = 0.05—1.95).
For each evaluation, performance metrics were computed using one million trajectories (200000 from each
model), generated using the AnDi package [51]. We added localisation errors with the same amplitude to
all dimensions of a trajectory. Here, we will show only results for 3D trajectories, but the dimension of the
trajectories does not qualitatively change results.

Unless otherwise specified, we trained the GNN to perform both classification and regression simultaneously by
using a training objective given by a simple sum of the mean squared error (MSE) of the estimated anomalous
exponent and the cross-entropy between the true and predicted class labels. To quantify regression accuracy,



B ©® ©
A
o :'yk(A ’mean({s,o, o}) )

S S

Figure 3: lllustration of a graph convolution. At each iteration k, each node (A) aggregates messages sent by nodes that
are connected to it. The color code illustrates how the information is propagated between nodes. The weight parameters
of the multi-layer perceptron yi, corresponding to the kth layer of the GNN, are learnt during the training. Here, the
aggregation scheme for feature vectors shown is a mean over neighbor nodes.

we follow the AnDi settings [51] and use the mean absolute error (MAE) between the estimated and true
values of the anomalous exponent o, while we use the F| score to quantify overall classification accuracy and
confusion matrices for class-by-class evaluation. Section 7.1 gives detailed definitions of each of the measures.

4.1 Performance in absence of localisation noise

We show in Figures 4 and 5 the performance of a GNN trained on trajectories of lengths between 10 and
1000 and in the absence of localisation noise. Figure 4A shows that the accuracy of the inference of the
anomalous exponent o from a single trajectory depends on ftrajectory length and the class of random walk
considered: the anomalous exponent of ATTM is harder to infer than that of CTRWs or fBMs. Looking at
how the estimation error on a depends on its true value, we see as can be expected a conservative bias shifting
estimates away from extreme a values (i.e. O, | and 2). The bias is pronounced for short trajectories and
decreases with trajectory length (Fig. 4B,C). The bias stems in majority from the poor performance on ATTM
trajectories.

Looking at the confusion matrices to assess classification accuracy (Fig. 5), we see that even for short
trajectories, most walks are accurately classified, and misclassifications mainly confuse sBM and fBM. For
trajectories longer than 200 points, the classification exhibits high performance. The GNNs classification
performance for short trajectories illustrates that it relies not only on the asymptotic properties but also on
finite-scale features of the random walks. Hence, even for short trajectories identification is possible. Furthermore,
the confusion between sBM and fBM can be explained by the similarity of the processes for short trajectories,
with a more pronounced effect for o close to one (in the range of approximately 0.7 to 1.4). sBM and fBM
indeed share the same marginal probability density for the time-evolution of the walker's position [59] and they
both approach Brownian motion as o approaches one.

4.2 Robustness to noise

Experimentally recorded trajectories are subject to various sources of noise. We here focus only on localisation
noise, modelled as an uncorrelated Gaussian noise, but correlated noise sources may also be present [108, 109].
We investigated the performance of the inference when both training and inferring on trajectories observed with
a broad range of noise amplitudes.

As shown in Figure 4, high localisation noise may significantly impair the accuracy of inferences when it has
not been taken into account in the training data. We tested a global approach to induce noise robustness by
assuming that no information on noise was accessible safe for a range of possible amplitudes. Hence, we trained
on trajectories with added localisation error whose noise amplitude was randomly drawn from [0, 1]. Remarkably,
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function of true value of o for B) trajectories of 10 to 100 points and C) 100 to 1000 points. x-axis : true exponent a,
y-axis : inferred exponent &.
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Figure 5: Confusion matrix for model classification, i.e. probability to identify a trajectory as having been generated by each

random walk model (inferred class) given its true generating model (true class). For trajectory lengths in the range: A)
10-50, B) 50-200, and C) 200-1000.

training on such a wide distribution of noise leads to a nearly flat performance in of the anomalous exponent
inference over the full range of noise amplitudes (green curve in Fig. 6). Similarly, the performance in classifying
the trajectories, i.e. identifying their generative model, exhibited only a limited decrease with increasing noise
amplitude. Conversely, when inference is performed on trajectories with localisation noise outside the range that
the GNN was trained on, the performance of both regression and classification may degrade significantly.

In most experimental settings, there are means by which a range of possible values for positioning noise can
be either deduced a priori or directly measured. Taking this in account by simulating with the same noise range
to generate the training set increases the accuracy (curve corresponding to 0.2-0.4 in Fig. 6A), even if the
GNN trained on the whole range of noise amplitudes already performs well. We refer the reader to [110] for
an example of a procedure to estimate positioning noise within the context of single molecule experiments.

4.3 Improving performance on specific cases

We tested the performance of the architecture on data with parameters corresponding to typical experimental
conditions, i.e. short trajectories (between 10 and 50 points) corrupted by a significant but bounded amount of
noise (here, noise amplitudes between 0.2 and 0.4). The model was trained on this same range of trajectory
lengths and noise amplitudes. We illustrate the model's performance in Figure 7. We show that despite the
inherent difficulty of inferring properties from such short observations, the model is precise enough to extract
relevant properties from these trajectories, e.g., it can reliably separate subdiffusive and superdiffusive trajectories
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Figure 7: Performance on short trajectories (10 > N > 50) for a GNN trained with a known range of localisation noise
amplitudes. A) Confusion matrix for identification of subdiffusive, normally diffusive and superdiffusive anomalous exponent
values. B) Confusion matrix for model classification. The color code is identical to the one in figure 5.

and distinguish CTRWs from fBM. These results suggest that if we consider the random walk models to provide
good approximations of the dynamics we may encounter in an experimental system, the approach may be
efficiently leveraged to analyse single molecule experiments.

We next assessed more generally the effect of specialisation of the inference task on performance. First, we
compared the performance of a model trained specifically on short trajectories (10 <N < 100) to that of a model
trained on short and long trajectories (10 <N < 1,000) (Fig. 8A,B). We only considered model performance
on the range of lengths that was common to both training sets. Then, we compared the performance of a
model trained solely to infer the anomalous exponent with one trained both for regression and classification
(Fig. 8CD). We see that the performance increases with specialized training, although here only to a limited
extent. This capacity of GNN models trained on numerical simulation to provide generalisable inference will be
instrumental for their use in experimental data analysis.



10 < N <100

A S0 MAE = 0.178 _, B . MAE = 0.182
1.75 1.75
1.50 1.50
N 1.25 N 1.25
(X 1.00 (X 1.00
0.75 0.75
0.50 0.50
025 025
0.001_" 0.00
—— median prediction 00 05 10 15 20 00 05 10 15 20
mean prediction Od Oé
e ot 10 < N <1000
99.9% C MAE = 0.098 D MAE = 0.103
2.00 ]
175
1.50
JEEE
(Y 1.00

0.75

0.50

0.25

0.00

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 1.5 2.0

« a

Figure 8: Improvement in model performance with specialized training: Distribution of estimated anomalous exponent
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exponent estimation task and D) GNN trained on both tasks.
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4.4 Performance as a function of the number of neural network parameters

GNNs generally do not require as many parameters as other recent deep neural architectures [87]. Here, we
investigated the effect of the GNN's size (as measured in total number of parameters) on its performance. To
do so, we modified the base architecture, first by making layers thinner and then by removing some layers
(reducing by up to two orders of magnitude the number of parameters). Details are available in Table 7.1.
Results are shown in Figure 9. It is noteworthy that even with only about 1,600 parameters, the GNN
maintains a good performance. This suggests that increased model tractability may be possible for GNNs.

5 Discussion

5.1 Latent space encoding of physical properties and generalisation

Our work lies in the framework of simulation-based inference [1]. This allowed large scale data generation at
low computational cost and ensured that features of one dataset could not impair the learning. This contributed
to reducing possible overfitting bias [111]. However, since some processes are non-ergodic, it is still a concern
that the learning procedure might have failed to learn relevant properties on a finite dataset. Moreover, the
statistics of experimentally recorded trajectories are unlikely to exactly match those of any of the models that
we trained our machine learning model on. Here, we show that the learned latent space of the GNN encodes
physically relevant properties of random walks, and we explore how it can be used to evaluate the robustness
and generalisation performance of the approach.

In Figure 10 we provide a representation of the latent space (output of the penultimate MLP module).
Each point corresponds to the latent representation of a single trajectory. We relied on UMAP [112], a
dimensionality reduction algorithm in the family of manifold learning techniques, for 2D visualisation of the high
dimensional latent space while preserving its local topology.

First, the structure reveals how well the model is able to distinguish trajectories of different types and
anomalous exponents. Levy Walks, CTRWs and ATTM form three well separated clusters while fBMs and
sBMs form a more complex shape with an extended overlapping region corresponding to a ~ 1, i.e. the regime
of normal (Brownian) diffusion (Fig. 10A). Within each cluster and continuous region, the anomalous exponent
is mapped in a stable fashion (Fig. 10B). In concordance with the lower performance on regression for the
ATTM model, we see that the value of a is less clearly mapped than for the other random walk models. The
length of the trajectories, which directly relates to the available quantity of information, is also encoded in an
ordered manner within the latent space, along a direction that is roughly orthogonal to the direction encoding
the exponent.

In order to investigate the capacity of the GNN to encode physical properties of the random walks and its
ability to generalize to trajectories with unseen properties, we applied the GNN to trajectories of walkers starting
with a given type of motion and ending with another, and to random walks generated by unseen models on
which the GNN was not trained.

To evaluate how the GNN encodes random walks that change of motion class over time, we generated
trajectories of fixed length (L = 200) where the first part was generated by a given model of subdiffusive walks
and the second by another, and varied the relative importance of the two parts. Both segments have o =0.5.
In Figure 10D we can see the trajectories’ encoded positions in the latent space draw a transition from the
fBM domain to the ATTM cluster as the percentage of the ATTM part in the trajectory increases. Some
trajectories fall within a region of the latent space that was originally not occupied. The model is thus able to
continuously encode random walk properties and interpolate between the properties of the two models based on
previously unseen behaviour. It is an indication of its ability to generalize.

To investigate how the GNN behaves when used on trajectories generated by models not included in the
training phase, we use the GNN to encode the properties of trajectories generated by pure Brownian motion
(BM, with a = 1), and by the Ornstein-Uhlenbeck (OU) process which models Brownian motion confined in a
harmonic potential [62]. In Figure 10E we show that BM trajectories all fall within the portion of the latent
space where fBM and sBM overlap, corresponding to the region where o = | and their dynamics approach
Brownian motion. The OU trajectories cover a region where subdiffusive fBMs with a values close to, or slightly
below one are encoded. This is also a physically sensible encoding as the OU process shows anticorrelated
dynamics, similar to the fBM but with a much faster, exponentially decaying kernel. In this respect, the latent
space does encode relevant physical properties, suggesting that the GNN will generalize well to experimental data
with statistical properties that may not be exactly equal to any of the random walk models it was trained on.
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Figure 10: UMAP [112] representation of the latent space of the GNN. UMAP is a generalist manifold learning and
dimension reduction algorithm relying on Riemannian geometry and algebraic topology to perform the embedding. Each point
represents the encoded latent position of a single trajectory. A) Positions of each trajectory colored by the random walk's
true model class. B) Mapping of the anomalous exponent « in the latent space. The color is associated with the value of
a. C) Mapping of the trajectory length in the latent space. The color is associated with trajectory length. D) Positions of
trajectories mixing fBM and ATTM in different proportions. Colors indicate the percentage of the trajectories generated by
each of the two random walks. Note that trajectories continuously occupy the empty space between the ATTM cluster and
the fBM domain. E) Projection of Brownian trajectories in the latent space. F) Projection of Ornstein-Uhlenbeck trajectories
in the latent space.

5.2 Misclassified random walks

We investigated the sources of misclassification by the GNN. In Figure | 1A we show the classification accuracy
as a function of both trajectory length and noise factor. Error in model identification is concentrated in high

noise and low length regions. Figure 11 helps to pinpoint the hardest samples to characterise. Intuitively, they
are short and noisy. Furthermore, as could be expected from the latent space’s structure, properties of trajectories
whose anomalous exponent is close to one tend to be harder to infer (Fig. 11B).

5.3 Influence of graph structure

n iere, we investigated GNNs applied to graphs generated from recorded trajectories using a specific wiring
scheme. As discussed in Section 3.2, we designed this scheme to ensure that the graph would connect distant
portions of the trajectories, for efficient information exchange, while retaining a causal and hierarchical dependency
structure. To test the influence of graph structure, we compare its performance to that of a random wiring
scheme in Supplementary Section 7.3.

Recent work [113] has highlighted a strong link between the how a GNN's depth affects its performance
and the connectivity of the graphs it is applied to. Following this direction, it has been proposed to learn the
graph structure itself from an input point cloud in Euclidean space [114]. This could very well be applied to
this setting in the future.
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Figure 11: A) Accuracy of random walk classification as a function of trajectory length and noise amplitude. B) Classification
accuracy and MAE of the estimated anomalous exponent & as a function of the true value of the anomalous exponent.
Trajectories are of length 10 <N < 1 000, and without positioning noise.

5.4 Computational Complexity

The inference-time algorithmic complexity of the GNN model depends on the three main time-consuming parts
when applying it to infer the properties of a random walk:

|. initial features evaluation;
2. forward pass through graph convolutions;
3. forward pass through subsequent layers.

I. The set of features we use to initialize each node's feature vectors can be computed in O(N) time (N is
the number of nodes, equal to the trajectory length).

2. From Eq. (2) it follows that the complexity of a convolution operation for all nodes of the graph is of
O(|E]) time complexity in the general case. In our case we restrict node's degrees to a maximum of k, so we
have E < kN and the convolution operation thus has O(N) time complexity too.

3. Finally, as the dimension of the latent representation is independent of the graph's size, the forward pass
through subsequent layers has O(1) time complexity.

Thus, provided that the number of edges scales linearly with the number of nodes, this architecture can scale
well to long trajectories, inferring their model class and anomalous exponent in O(N) time.

6 Conclusion

In this paper we have shown that we could learn a physical representation of anomalous random walks using
GNNs. We leveraged this representation to infer both the anomalous exponent and the model of a random
walk from single trajectories. We relied on simulations to train our procedure. The scheme was found to be
efficient in performing regression and classification tasks as well as being robust to positional noise. We showed
that the latent space learned by the GNN is linked to the physical properties of the random walks.

While GNNs provide a general and expressive framework, they are still a new approach. Future developments
are likely to improve their computational efficiency (e.g., improving their scalability to large graphs [115] and
the efficiency of GPU acceleration [115]), their statistical power (e.g., by incorporating higher-order geometric
features [107, 116] or appropriately relaxing the permutation-invariance of the aggregation operator), as well
as our theoretical understanding of their capacities [50].

Representation learning paves the way to new approaches to explore biomolecule random walks whose
dynamics cannot be purely described by a unique canonical random walk model. We foresee two directions for
developments: First, neural networks and feature learning may be used to accelerate likelihood-free inference [ 1],
allowing to fit more complex and realistic simulation-based models for experimentally recorded random walks.
Second, the ability to learn relevant representations from random walk realisations may be exploited to develop
unsupervised approaches to analyse experimentally recorded random walks.
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Future work may also involve imposing constrains during learning to reinforce known symmetries in the
random walk (e.g. directional symmetries) to increase training efficiency and to ensure that the neural network
does not learn spurious features.
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7 Supplementary Material

7.1 Numerical simulations, Graph neural network training and hyper parameters

Simulating trajectories Random walks were generated using the python package provided during the AnDi
challenge [51]. We slightly modified it to generate the same noise amplitude along all dimensions, which
corresponds more closely to experimental conditions.

We additionally considered pure Brownian motion and the Ornstein-Uhlenbeck process:

e We simulated Brownian motion by directly sampling its displacements according to X, | = X, + Axp with

Axp, ~ N(0,1).

e We simulated the Ornstein—Uhlenbeck process using the Euler method according to the following update
formula: X, = X,(1 — &t) + V/Ste with e ~ A'(0,0.11) and &t = 0.01.

Neural network hyper-parameters The detailed architectures of the model’s components are summarized in
table 7.1, ordered from the smallest to the largest tested network in terms of the number of parameters. Within
this paper we have mostly discussed results associated to the architecture showing the best performance (see
vertical line in 9), which correspond to the fourth row in the table. The first convolution layer receives the
initial nodes features (there are 28) as well as, optionally, some of their powers. In the first two architectures
presented in table 7.1, it receives only the first power. In the third and fourth, it additionally receives the
squared features. In the last architecture it also receives the cubed features (hence the initial width being a
multiple of 28). This is meant to allow the network to compute moments of the features distributions. When
building the graphs, we used a maximal in—degree value of 20.

| parameters | y layers \ projector \ o module \ classifier

1588 [(56,8) (24,6) (6,16,1) (6,5)
(16.8)
(32.8)

6420 | (56.16,16) (48.8) (664161 (6.165)
(32,16.16)
(64,16,16)

36 660 | (84,32,32,32) (96,64,16) (16,128.64,16,1) (16,16,16,5)

(64,32,32,32)
(128,32,32,32)

185 879 | (84,128,64,64) (192,128,64,32) | (32,128,128,64,16,1) | (32,64,325)
(128,128,64,64)
(256,128,64,64)

(256,256,128,128,128)
(512,256,128,128,128)

871 596 | (112,256,128,128,128) | (384,512,256,128,64) | (64,128,128,128,64,1) | (64, 128,64,32,5)
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Figure 12: Performance of GNNs trained with (plain lines, circles) or without (dashed lines, triangles) features attached to
edges as a function of the noise amplitude in the trajectories. MAE is shown in red, F, score in green.

We used batches of 128 trajectories for training, with a learning rate of 10~3, exponentially decaying until it
reaches 2- 10~* after the network has seen 3-10° trajectories. Training lasts about 5 to 10 hours. We relied
on the "PyTorch Geometric" package [117] to implement the graph convolutions and perform the learning.

Metrics The mean square error (MSE) is computed as follows: MSE (&) = ((& — a)?).
The mean absolute error (MAE) reads: MAE (&) = (|& — al)

The cross-entropy loss, used for the classification task, reads: CE
{1,2,3,4,5} denotes the index of the true model of a trajectory.

To quantify overall classification performance, we used the F| score, which is the harmonic mean of the
precision and the recall of the model. Using TP, FP & FN to denote the number of true positives, false
positives and false negatives, respectively, we have:

_<Zi5:1 Smilogpi). Where m €

‘i . p_ TP

e Precision: P = .
. p_ _TP

e Recall: R = TB1FN

o F| score: F| =255

The confusion matrices, used to illustrate the ability of the GNN to infer random walk models, are defined
as follows: Cjj = (Sm(r)i)R of type  Where m is the index of the inferred model, i.e. the one which has been
assigned the highest probability, and & is the Kronecker symbol. That is, C;; is the probability that a trajectory
generated by the model class j (column) is classified as belonging to model class i (row). Defined this way, the
diagonal elements C;; are the per-class recall.

7.2 More complex Graph Neural Networks

In this paper, we focused on an approach where the GNN learns to build relevant features of random walks.
We focused on a setting where features were only assigned to nodes, but the general framework of graph
neural networks allows a more complex structure, by attaching features to edges, and by having two multi-layer
perceptrons involved in the convolution operations : one before and one after the aggregation. In this more
general setting, the neural message passing equations [107] read :

. —(k— S(k—1) =(k—=1) Z(k—1
#9 =y (R0, Benor (3D 7D 1)) (3

We show in Figure 12 that edge features allow better performance on noise-free trajectories but is less robust
to localisation noise.
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Figure 13: Regression performance of GNNs applied to different graph structures. A) Random regular graph structure. B)
Causal hierarchical graph structure. Shaded regions represent probability intervals of the estimators.

7.3 Random versus structured connection patterns

As illustrated in Figure |3, connecting nodes according to a regular geometric pattern yields better performance
than linking them at random.

In the geometric causal wiring scheme, node i receives edges from nodes i— B |,i— [B2],..., min(0,i— |Bk]),
where k is the maximal in-degree, independent of trajectory length and which enforces sparsity, and where
Bi,Bo, ..., Bk is a geometric progression, parametrized such that the last node receives a connection from the
first node, and |B] denotes the integer part of B. We ensure that no edge is doubled. We used a value of
k = 20 throughout this paper. Hence, nodes close to the start of the trajectory receive less connections than
those located at the end.
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