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Abstract 11	

A wide variety of pathogens reach the blood circulation during viral, parasitic, fungal 12	

or bacterial infections, causing clinically diverse pathologies. Such systemic 13	

infections are usually particularly severe and frequently life-threatening despite 14	

intensive care, in particular at the age of antibiotic resistance. Because of its position 15	

at the interface between the blood and the rest of the organism, the endothelium 16	

plays a central role during these infections. Through several examples of systemic 17	

infections, we propose to explore the diversity of interactions between pathogens and 18	

the endothelium. These examples reveal that bacterial pathogens target specific 19	

vascular beds and affect most aspects of endothelial cell biology ranging from 20	

cellular junction stability to endothelial cell proliferation or inflammation. 21	

22	
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THE ENDOTHELIUM AS A SITE OF BACTERIAL INFECTIONS 23	

The endothelium refers to the layer of endothelial cells (ECs) lining the inner surface 24	

of blood vessels that span the entire body and ensure the distribution of blood 25	

throughout the organism (1). It can be estimated that the human body contains the 26	

staggering number of 100 000 km of blood vessels, more than twice the earth’s 27	

circumference (2). Therefore, a bacterium reaching the circulation is engaged in a 28	

maze of huge proportion. Moreover, a pathogen travelling throughout the circulation 29	

does not encounter a homogeneous environment, as an important feature of the 30	

vascular network is its diversity. Although endothelial cells are present in all vessels, 31	

the organization of the vessel wall – formed by three layers referred to as the tunica 32	

intima, media and adventia (from the vessel lumen outward) – is different among 33	

different vessel types and different organs (3). Vessels can be first differentiated by 34	

the complex extracellular matrix layers surrounding them. For instance, elastic 35	

arteries such as the aorta are surrounded by 50 elastic layers providing them unique 36	

mechanical properties (3). Second, the cellular content is also different according to 37	

vessel type, the wall of arteries and veins contains a layer of smooth muscle cells 38	

(SMCs) that provides their capacity to relax or constrict in response to vasoactive 39	

molecules (4). An additional level of complexity in the network stems from the fact 40	

that larger vessels, veins or arteries are themselves vascularized by smaller vessels, 41	

the vasa vasorum (5).  Although endothelial cells are constituent of all vessels, they 42	

themselves present different properties depending on their anatomical location, in 43	

particular in the case of capillaries. The lumen of continuous capillaries, which are 44	

the most common, are lined with an uninterrupted layer of endothelial cells. 45	

Fenestrated capillaries, typically present in glomeruli of the kidney, are laced with 50-46	

80 nm openings thus changing their permeability properties. In the liver, sinusoidal 47	
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capillaries contain numerous holes that can reach several microns in diameter and 48	

could in principle allow objects such as bacteria to escape the circulation (6). Also, 49	

particularly relevant to infection, sinusoidal capillaries host a large number of Küpffer 50	

cells, phagocytic cells that constantly filter the blood from particulate matter including 51	

bacteria (7). Finally, the heart, a central element of the circulation network and also a 52	

potential site of infection, displays a specialized endothelium referred to as the 53	

endocardium. In contrast to the endothelium, the endocardium is constituted of three 54	

juxtaposed layers that ensure i) its physical anchorage to the surface of the 55	

myocardium (the heart muscle), ii) its mechano-elastic properties allowing its 56	

adaptation to the heart contraction and relaxation cycles and iii) its low permeability 57	

thanks to a sealed monolayer of endothelial cells (8).  58	

Although usually viewed as a static structure, the design of the blood vessel network 59	

is dynamic, in particular in the case of the smaller vessels, first during development 60	

but also following wound healing, cancer development, ischemia or infection (9, 10). 61	

During development, vasculogenesis supports the establishment of the arteries and 62	

the veins that transport the blood from and back to the heart, respectively (11). An 63	

additional mechanism, referred to as angiogenesis, gives rise to smaller vessels, 64	

such as blood capillaries of few micrometers in diameter, which deliver oxygen and 65	

nutrients to the body’s tissues. These vessels elongate from endothelial sprouts 66	

emanating from pre-existing vessels and invade non-vascularized areas (12). Of 67	

note, capillaries are also able to interconnect through anastomosis, a process 68	

resulting in the fusion of two capillary growing-ends (13). Therefore, pathogens 69	

reaching the circulation encounter a complex, diverse and dynamic network.  70	

 71	
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CELLULAR JUNCTIONS AS THE GATEKEEPERS OF THE ENDOTHELIAL 72	

BARRIER 73	

Through the fine control of vessel permeability, intercellular junctions within the 74	

endothelium are at the heart of the maintenance of vascular integrity, thus ensuring 75	

the proper barrier function of the endothelium (14). Among the two main types of 76	

endothelial cell-cell junctions, adherens junctions (AJ) are ubiquitously found, 77	

whereas tight junctions (TJ) are mainly located in endothelial barriers with a very high 78	

selectivity (15). This is the case of the blood-brain barrier, where tight junctions 79	

ensure the charge- and size-selective exchanges between the cerebral vasculature 80	

and the central nervous system (CNS) (16), thus participating in the protection of the 81	

brain parenchyma from bacterial invasion, for instance. The main component of 82	

adherens junctions is the intercellular adhesion molecule Vascular Endothelial (VE)-83	

Cadherin. VE-Cadherin proteins expressed at the surface of neighboring endothelial 84	

cells engage their extracellular domain within homotypic interactions that are 85	

stabilized by extracellular calcium (17), thus ensuring the sealing of the endothelium. 86	

Platelet-Endothelial Cell Adhesion Molecule (PECAM)-1 also participate in the 87	

structural integrity of AJs (18). Intracellularly, VE-Cadherin is linked to the actin 88	

cytoskeleton through its interactions with α-, β-, γ- and p120-Catenin (19) (Figure 1). 89	

In contrast, TJs are made by the homophilic interaction of cell adhesion molecules 90	

such as Claudins, Occludin and Junction Adhesion Molecules (JAMs), which are 91	

connected to the actin cytoskeleton through Zona Occludens (ZO)-1, -2 and -3 92	

proteins (Figure 1). Because of their importance, the establishment and maintenance 93	

of cell-to-cell junctions are tightly controlled. One of the best illustrations of such 94	

regulation is the modulation of vessel permeability by the Vascular Endothelial 95	

Growth Factor (VEGF) (20, 21). Its binding to Vascular Endothelial Growth Factor 96	
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Receptor (VEGFR)-2 induces an increase in intracellular calcium levels, leading to 97	

the subsequent activation of Src family kinases, MAP kinases, PI3 kinase and protein 98	

kinase G (21, 22). This mainly results in i) the remodeling of the actin cytoskeleton, 99	

through the activation of the small GTPase Rho-A, ii) the activation of myosin light-100	

chain kinase (MLCK) that favors actomyosin contractility, iii) the destabilization of 101	

integrin-mediated adhesion to the extracellular matrix and iv) the phosphorylation of 102	

VE-Cadherin and its internalization, thus loosening cell-cell junctions (23). All 103	

combined, these events participate in increasing endothelial permeability. In contrast, 104	

the activation of other small GTPases, such as Rac-1 or Cdc42, protect the barrier 105	

function of the endothelium by stabilizing intercellular junctions and the cortical actin 106	

cytoskeleton (24). Therefore, the fine regulation of the interface between intercellular 107	

junctions and the actin cytoskeleton plays a crucial role in regulating endothelial 108	

integrity. 109	

Strikingly, certain pathogens have the ability to overcome the physical barrier 110	

imposed by the endothelium either from the outside towards the inside or/and vice 111	

versa to exit the vascular lumen and reach specific organs. Pathogenic bacteria can 112	

reach the circulation by accessing the vascular lumen through micro-abrasions within 113	

the skin or mucosa but also through insect bites (25-27). Once in the circulation, 114	

bacterial adhesion to the endothelium is a frequent starting point (28-30). Bacteria 115	

then either divert the host cell actin cytoskeleton to induce their internalization and 116	

transcytosis, leading to the passage of live bacteria through endothelial cells (31-35), 117	

or remain extracellular and interfere with the assembly of intercellular junctions 118	

facilitating their paracellular passage (36).  119	

 120	
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Hence, bacterial interaction with the endothelium often leads to the alteration of 121	

vascular integrity that might be at the origin of vascular leaks, bacterial dissemination 122	

within the surrounding tissues and/or organ dysfunction. 123	

Throughout different examples of infection, we will here illustrate the many faces of 124	

bacteria-endothelium interactions and the subsequent perturbations of specific 125	

vascular functions in the particular environment of the blood circulation. 126	

 127	

ALTERATION OF VASCULAR INTEGRITY UPON INFECTIONS BY RICKETTSIA  128	

Spotted fevers associated with rickettsial infections are among the best characterized 129	

examples of pathogenic bacteria with a vascular tropism and disturbing endothelial 130	

functions. Members of the Rickettsia family are obligate intracellular vector-borne 131	

pathogens mainly transmitted by tick bites and triggering diverse diseases such as 132	

typhus or spotted fever (27). Endothelial cells of the peripheral circulation represent 133	

the main target of Rickettsia belonging to the spotted fever group (27, 37, 38) (Figure 134	

2). Rickettsia adhesion to the endothelial surface is mediated by the expression of 135	

the outer-membrane protein (Omp)-A and B (39) and their interaction with endothelial 136	

integrins, such as the α2β1 integrin (40). This induces a rapid and efficient 137	

internalization of the adherent bacteria within few minutes after the initial contact. 138	

Internalization occurs through a mechanism called “induced phagocytosis” that is at 139	

the crossroad between phagocytosis and endocytosis (41, 42) and involving Clathrin 140	

and Caveolin-2, two canonical proteins of the endocytic pathway (43).  141	

Adhesion of Rickettsia onto endothelial cells also leads to a drastic remodeling of the 142	

actin cytoskeleton within the host cells that not only facilitates bacterial entry but also 143	

participates to bacteria movement and spreading within the endothelium. Endothelial 144	

cell surface-bond bacteria locally regulate actin rearrangements by recruiting the 145	
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Arp2/3 complex and activating Cdc42 and kinases of the Src-family to support 146	

bacterial internalization within phagosomal vesicles (44). The expression of the pore-147	

forming proteins Hemolysin C and Phospholipase D by Rickettsia allows them to 148	

escape phagosomes and access the host cell cytosol (45-47) where they benefit 149	

from nutrients and energy present to support their growth (48). Within infected cells, 150	

Rickettsia also uses proteins from the actin cytoskeleton to propel and disseminate 151	

within adjacent endothelial cells. Rickettsia assembles polar actin tails made of 152	

unbranched parallel actin filaments, which help intracellular bacterial movement (49). 153	

The precise machinery allowing bacteria to assemble these actin comet tails remains 154	

debated. Whereas the involvement of RickA, a WASP-family protein homolog 155	

encoded by Rickettsia, in Arp2/3-mediated actin polymerization in vitro favors a 156	

mechanism of tail assembly relying on Arp2/3 activity (50, 51), Arp2/3 was not found 157	

to associate with Rickettsia actin tails (52, 53). An alternative hypothesis rather 158	

suggests that the bacterial protein Sca2 might participate in assembling actin tails 159	

through a formin-like mechanism (54, 55). 160	

The infection of endothelial cells by Rickettsia leads to the activation of the 161	

endothelium, which is associated with the upregulation and secretion of a plethora of 162	

cytokines and chemokines, collectively referred to as rickettsial vasculitis (56). 163	

Interestingly, Rickettsia has developed different strategies to counteract immune 164	

responses and optimize their intracellular residence. First, Rickettsia has the ability to 165	

escape phagosomal vesicles before their fusion with lysosomes, hindering their 166	

degradation by the lysosomal content (47). Moreover, the bacterium activates the 167	

anti-apoptotic NF-κB signaling pathway within infected cells (57-60), thus balancing 168	

the killing of these cells mediated by the recruitment of CD8 T cells (61). 169	
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Importantly, Rickettsia also damages the endothelium by altering the assembly of 170	

endothelial intercellular junctions, most probably by disturbing the actin cytoskeleton 171	

(62), as well as by inducing an oxidative stress within infected cells that contributes to 172	

cell death (63, 64). Therefore, rickettsial infections lead to endothelial cell activation 173	

and dysfunction, including an alteration of the vascular integrity that results in the 174	

increase in vascular permeability and concurring to the pathophysiology of Rickettsia-175	

induced vascular leaks (56, 65). Despite alterations in vascular integrity, rickettsial 176	

infections are not associated with subsequent dissemination to other organs, such as 177	

the brain as in the case of meningitis-causing pathogens.  178	

 179	

VASCULAR COLONIZATION AND BLOOD-BRAIN BARRIER CROSSING BY 180	

NEISSERIA MENINGITIDIS  181	

A limited number of pathogenic bacteria have developed mechanisms allowing them 182	

to cross the blood-brain barrier (BBB), most often triggering bacterial meningitis, a 183	

high-fatality rate disease (66). A hallmark feature of the clinical manifestations of 184	

bacterial meningitis is the presence of the pathogenic bacterium within the 185	

cerebrospinal fluid (CSF) where it triggers the inflammation of the meninges and the 186	

recruitment of immune cells within the CSF (66, 67). Since the bacterium is also 187	

found in the bloodstream, the most prevalent view is that the bacterium breaches the 188	

blood-CSF barrier to reach the CSF. However, as at this stage the anatomical site at 189	

which crossing occurs is not known, we will rather refer to crossing of the blood-brain 190	

barrier to be more inclusive.  191	

With significant socioeconomic and geographic variations, Neisseria meningitidis, 192	

Streptococcus pneumoniae and type B Haemophilus influenzae are the most 193	

frequent causative agents of bacterial meningitis in adults and children. Of note, 194	
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while neonatal meningitis is mainly triggered by group B Streptococcus, Listeria 195	

monocytogenes and Escherichia coli K1 (68), immunocompromised patients 196	

frequently developed Mycobacterium tuberculosis or non-typhoid Salmonella 197	

meningitis (69, 70). Despite their heterogeneity, common themes in the mechanisms 198	

used by these pathogenic bacteria to cross the BBB can be drawn (for review, see 199	

(71)). 200	

Recent studies have pointed to the importance of a process called vascular 201	

colonization during N. meningitidis infections and probably during meningitis (72). 202	

This bacterium has the ability to adhere to the endothelial surface and proliferate in 203	

the form of bacterial aggregates that eventually fill the lumen of small vessels of 10 to 204	

50 µm in diameter (Figure 3). A recent study shows that this colonization process is 205	

facilitated by the honey-like viscous liquid properties of the bacterial aggregates 206	

which allow them to adapt to the complex morphology of the vasculature upon 207	

proliferation (73). Adhesion to the endothelium likely participates in the immune 208	

evasion as this prevents phagocytosis from Küpffer cells in the liver. Histological 209	

analysis of post-mortem samples reveals large bacterial aggregates in the brain 210	

vessels suggesting that vascular colonization could promote BBB crossing by 211	

concentrating a high number of bacteria at specific sites and by altering endothelial 212	

cell physiology (74). The combined effect of vessel occlusion due to bacterial 213	

accumulation and the activation of the coagulation cascade (75) might participate in 214	

altering endothelium integrity.  215	

Alternatively, in vitro studies have identified specific signaling pathways triggered by 216	

N. meningitidis, which lead to the opening of intercellular junctions within the cerebral 217	

endothelium. Meningococcal adhesion to the host cells is mediated by their 218	

expression of type four pili (Tfp) (76) that engage host cell surface receptors, such as 219	
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CD147 and β2-adrenergic receptor (77, 78). While proliferating at the surface of 220	

infected endothelial cells, thus forming bacterial aggregates, meningococci induce 221	

the remodeling of the host cell plasma membrane (79, 80) (Figure 3). Associated to 222	

their aggregation capacity, plasma membrane protrusions infiltrating meningococcal 223	

microcolonies were shown to enhance the mechanical cohesion of the microcolony 224	

thus allowing them to resist the blood-flow induced shear stress (81). Interestingly, 225	

although the cortical actin network is strongly reorganized below the bacterial 226	

colonies (82), the active contribution of the host cells has been shown to be 227	

dispensable in the Nm-mediated plasma membrane remodeling. The actin 228	

cytoskeleton or even the intracellular ATP is not necessary for the Tfp-induced 229	

plasma membrane reorganization (80, 81). Upon bacterial adhesion to microvascular 230	

endothelial cells, Tfp trigger a complex cascade of signaling events leading to the 231	

formation of “ectopic junctions” underneath bacterial aggregates together with the 232	

local remodeling of the cortical actin cytoskeleton (83). This process relies, on the 233	

one hand, on the activation of small GTPases such as cell division cycle protein 42 234	

(Cdc42) and Rac1, along with the local recruitment of proteins of the polarity 235	

complex, including partitioning-defective 3 (PAR3), PAR6 and protein kinase C-ζ 236	

(PKC-ζ), as well as the branched-actin nucleating complex Arp2/3. On the other 237	

hand, by mistargeting recycling endosomes, meningococci induce the accumulation 238	

of junctional proteins, such as VE-Cadherin, underneath bacterial aggregates, a 239	

process shown to weaken intercellular junctions and increase blood-brain barrier 240	

permeability, thus facilitating meningococcal dissemination within the cerebral tissues 241	

and the cerebrospinal fluid (CSF) (83). These elaborated mechanisms illustrate the 242	

panoply of strategies enabling pathogenic bacteria to alter the endothelial barrier.  243	

 244	
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ALTERATION OF THE ENDOCARDIUM AND ENDOCARDITIS 245	

Infective endocarditis (IE) is a bacterial infection of the cardiac endothelium. The 246	

hallmark of IE is the colonization and destruction of the cardiac valves by pathogenic 247	

bacteria following local endothelial injury or inflammation (84, 85) (for review, see 248	

(86)). Although the causative agent of such a disease greatly varies according to the 249	

geographic zones, most IE result from Staphylococcus aureus, Enteroccocus or 250	

Streptococcus species, among which S. gallolyticus (87, 88).  251	

The pathologic cascade starts following sterile lesions of the cardiac valve 252	

endothelium of unclear origin that lead to the exposure of the extracellular matrix. 253	

This triggers the formation of a platelet- and fibrin-rich thrombus, considered as a 254	

hot-spot for the adhesion of blood-circulating bacteria (89) (Figure 4). Alternatively, 255	

bacterial adhesion can occur at the surface of inflamed endothelium, a process 256	

facilitated by the local upregulation of cell surface adhesion molecules, such as β1 257	

integrins (90). From the bacterial side, adhesion is mediated by the surface 258	

expression of extracellular matrix-targeting adhesins, such as fibronectin binding 259	

proteins (FnBPs) (91, 92). Adherent bacteria locally proliferate and form a vegetation, 260	

a biofilm-like structure where aggregated bacteria are mixed together with 261	

extracellular matrix proteins, clot components and/or immune cells (93). While the 262	

vegetation matures, the adjacent endothelial cells are exposed, thus driving the 263	

propagation of the local inflammation and cell death and ultimately leading to the 264	

destruction of the infected valves thus requiring surgical replacement (94). However, 265	

this mechanism probably does not entirely account for IE induced by intracellular 266	

bacteria such as Bartonella species	or	Staphylococcus aureus, which rather rely on 267	

the secretion of exoenzymes and toxins to mediate their pathogenic effects (95) and 268	

for which the host immune response might play an important role (96). Although 269	
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Bartonella species have been described in relatively rare cases of human 270	

endocarditis (97, 98) with a preferential localization at the aortic valve (99), these 271	

bacteria are mostly known for their involvement in angioproliferative syndromes. 272	

 273	

ANGIOPROLIFERATION DURING BARTONELLA INFECTIONS 274	

As mentioned earlier, angiogenesis supports the formation of new blood vessels from 275	

pre-existing ones (12). Interestingly, this process can be diverted by pathogenic 276	

bacteria and especially Bartonella henselae (for review, see (100)).  Bartonella spp. 277	

are Gram-negative organisms found in domestic and wild mammals with a tropism 278	

for red blood cells and endothelial cells (100, 101). While in healthy individuals, 279	

Bartonella henselae infections cause benign cat scratch diseases (102), in 280	

immunocompromised patients these infections can trigger a vasoproliferative 281	

syndrome resulting in the formation of tumor-like nodules in the skin, known as 282	

cutaneous bacillary angiomatosis (BA) (100). This results from the ability of 283	

Bartonella henselae to invade endothelial cells and trigger their proliferation and 284	

migration (103, 104) together with the recruitment of macrophages, monocytes and 285	

polymorphonuclear neutrophils (105, 106) (Figure 5). 286	

Interestingly, similar to Neisseria meningitidis microcolonies, B. henselae also forms 287	

plasma membrane-associated bacterial aggregates that either remain at the surface 288	

of or are internalized in infected endothelial cells (106). Two actin-dependent 289	

mechanisms have been described regarding bacterial internalization within 290	

endothelial cells (107, 108): the first one is reminiscent of the previously described 291	

bacterium-induced phagocytosis and allows the relatively fast entry of Bartonella 292	

within perinuclear phagosomes (109). The second mechanism, lasting for up to 24 293	

hours, allows the slow internalization of small B. henselae aggregates within large 294	
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vacuoles, referred to as invasomes (107). Of note, similarly to the protective 295	

mechanisms developed by Rickettsia to promote their survival during their 296	

intracellular residence, Bartonella is able to inhibit key steps of the apoptosis 297	

program induced upon cell infections (110).  298	

Although not fully understood, the proliferation of infected endothelial cells is in part 299	

supported by bacterial proteins that are translocated within the host cells through the 300	

VirB-VirD4 type IV secretion system (T4SS) encoded by Bartonella (111, 112). In 301	

addition, several reports have shown that macrophages, locally recruited upon 302	

endothelial cell infection, participate in the pathological angiogenesis induced by 303	

Bartonella. Indeed, macrophages are well-known producers of pro-angiogenic factors 304	

upon activation (113). In vitro, macrophages have been shown to support endothelial 305	

proliferation through the secretion of VEGF in response to B. henselae infection (114, 306	

115), thus suggesting that macrophages are involved in a paracrine loop that 307	

enhances Bartonella-mediated vasoproliferation (116).  308	

 309	

SYSTEMIC IMPLICATIONS OF VASCULAR INFECTIONS 310	

Under steady-state conditions, besides normal transitory bacteremia, the vascular 311	

organ is thought to be sterile (26). Therefore, it possesses robust mechanisms to 312	

recognize circulating pathogens and trigger innate and/or adaptive immune 313	

responses (117, 118). Similarly to immune cells specialized in pathogen recognition, 314	

endothelial cells express chemokine receptors, such as CXCR-1, -2 and -4 (119, 315	

120) as well as pattern-recognition receptors (PRRs), such as Toll-Like Receptors 316	

(TLRs) and NOD-Like Receptors (NLRs) (121, 122). They have also been shown to 317	

secrete pro-inflammatory molecules, such as the cytokines interleukin (IL)-1 and -8 318	

(123-125) and to respond to bacterial lipopolysaccharide (LPS), tumor necrosis 319	
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factor-α (TNF-α) or interferon-γ (INF-γ) by signaling through the canonical pro-320	

inflammatory NF-κB pathway (126). Hence, the endothelium possesses an array of 321	

tools allowing the recognition of pathogenic microorganisms and the recruitment of 322	

cells from the innate immune system in order to clear blood-circulating pathogens.  323	

Of particular interest, endothelial cells (ECs) also participate in mounting adaptive 324	

immune responses since they can act as antigen presenting cells (APCs) (127). The 325	

hallmark of APCs is their expression of major histocompatibility complex class II 326	

(MHC-II) molecules allowing them to present extracellular antigens to T cells (128). 327	

Whereas quiescent ECs express basal levels of MHC-II molecules (129), they 328	

possess the capacity to upregulate their expression upon activation (130), providing 329	

them with the ability to present antigenic determinants to T cells and rapidly initiate 330	

pathogen-specific immune responses. Therefore, endothelial cells are equipped to 331	

recognize pathogenic microorganisms, locally attract cells of the innate immunity and 332	

serve as a link to trigger adaptive immune responses in order to efficiently fight 333	

invaders (for review, see (131)).  334	

Although invasion of the endothelium by bacteria leads to the activation of the 335	

immune system, in absence of appropriate treatments or when the body fails clearing 336	

the pathogens, it might evolve toward an uncontrolled and systemic affection. Indeed, 337	

the constant release of damage-associated molecular patterns (DAMPs) by invading 338	

bacteria and/or injured endothelium leads to the imbalance of various body systems, 339	

among which the overstimulation of immune cells through TLRs and the complement 340	

pathway (132), as well as the exacerbated production of cytokines, referred to as the 341	

cytokine storm (133). Together with a persistent bacteremia, this systemic 342	

inflammatory response syndrome (SIRS) is the hallmark of sepsis (134, 135).  343	
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Paradoxically, a common feature of sepsis is its association with a form of immune 344	

suppression occurring after the unregulated inflammation (132, 136). While not fully 345	

understood, sepsis is marked by the severe depletion of T and B cells, as well as 346	

dendritic cells, which all show an enhanced pro-apoptotic activity (137, 138). In 347	

addition, in patients suffering from sepsis, a bias in the ratio of regulatory over 348	

effector T cells is often observed (138, 139). The latter also showing a reduced ability 349	

to produce cytokines, a feature known as T cell exhaustion (140), most probably due 350	

to dysregulations in the programmed cell death 1 (PD1) - PD1 ligand 1 (PDL1) axis 351	

(141), owing to the exacerbated cytokine production. 352	

In addition, sepsis frequently affects the coagulation pathway: ranging from the 353	

formation of small thrombi to the manifestation of disseminated intravascular 354	

coagulation (DIC) –which corresponds to the coagulation of the blood throughout the 355	

entire body– coagulopathies are one of the major complications in sepsis and have 356	

been extensively reviewed elsewhere (142, 143). Nevertheless, we would like to 357	

mention that perturbation of the coagulation pathway occurs early during sepsis and 358	

first results from the activation of the endothelium in response to the cytokine storm, 359	

thus favoring the local deposition of fibrin at the surface of the vessel walls (133).  360	

Alternatively, endotoxins derived from Gram-negative bacteria, such as the 361	

lipopolysaccharide (LPS), can trigger in a NF-κB-dependent manner both the 362	

secretion and the surface expression of tissue factor (TF) by endothelial cells and 363	

circulatory blood cells. By making a complex with the activated coagulation factor VII 364	

(FVIIa), TF is a highly potent pro-coagulant molecule (144, 145). In both scenarios, 365	

thrombus formation in turn leads to the activation of the endothelial cell surface 366	

protease-activated receptor (PAR)-1 that signals through the small GTPase RhoA to 367	

disassemble actin filaments and induce VE-Cadherin internalization, hence affecting 368	
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the stability of intercellular junctions and the integrity of the vascular endothelium 369	

(118). As a consequence, vessels become leaky, blood pressure decreases and 370	

proteins from the endothelial extracellular matrix, such as collagen, are exposed to 371	

the vessel content, which further activates platelet aggregation and fibrin formation 372	

(118, 143). Multi-organ failure is often associated with the late phases of DIC, which 373	

results from microvascular thrombosis and poor tissue perfusion (146, 147).  374	

 375	

CONCLUDING REMARKS 376	

Bacterial infections taking place in the circulation are particularly problematic 377	

because of the specific alterations they cause to the circulation, possibly affecting the 378	

entire body. According to the specific site of infection and the properties of the 379	

different pathogens, a complex set of interactions takes place during these infections. 380	

Blood vessels are highly diverse with broad ranges of size and structure and each 381	

pathogen has a set of virulence factors that alter blood vessel function in specific 382	

ways. As a result, clinical manifestations are also very different. However, despite 383	

this diversity, the endothelium is at the center of these infectious processes and a 384	

limited number of endothelial functions are targeted in these infectious contexts: the 385	

integrity of the vasculature and its permeability, but also its inflammatory and 386	

coagulation status. More research is needed on host-pathogen interactions during 387	

these systemic infections and on endothelial cell biology to better treat these 388	

infections.  389	

 390	

 391	

 392	

 393	
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 830	

Figure 1: Schematic representation of the two main types of intercellular 831	

junctions within the endothelium. Adherens junctions (AJ) are made by the 832	

homophilic interaction of Vascular Endothelial (VE)-Cadherin and PECAM (Platelet 833	

endothelial cell adhesion molecule, also known as CD31). In contrast, claudins, 834	

occludin and proteins from the junctional adhesion molecules (JAMs) family are 835	

involved in establishing tight junctions. Connection with the actin cytoskeleton is 836	

ensured by proteins of the catenin family (alpha-, beta- and p120-catenin) in the case 837	

of adherens junctions, and proteins from the zonula occludens family (ZO-1, -2 and -838	

3) in the case of tight junctions. 839	
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 841	

Figure 2: Infection of the endothelium by Rickettsia. Following bacterial 842	

inoculation into the lumen of blood vessels, Rickettsia adheres at the surface of the 843	

endothelium through the surface expression of the outer-membrane protein (Omp)-A 844	

and -B. Binding of Omp-A/B to cell-surface integrins induces the phagocytosis of 845	

bacteria and the remodeling of the cellular actin cytoskeleton. Then, Hemolysin C 846	

and/or Phospholipase D-expressing bacteria escape phagosomal vesicles, proliferate 847	

intracellularly and utilize cellular components, such as actin monomers and nutrients, 848	

to assemble actin comet tails supporting bacterial movement and cell-to-cell 849	

spreading. Both actin cytoskeleton remodeling and bacterial propagation participate 850	

in damaging infected vessels, including the destabilization of cellular junctions 851	

responsible for the increase in vessel permeability. 852	
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 854	

Figure 3: Vascular colonization by Neisseria meningitidis. Once into the 855	

bloodstream, Neisseria meningitidis adheres to the endothelium thanks to the surface 856	

expression of type four pili (Tfp). While proliferating, and owing to their auto-857	

aggregative property, bacteria form a tight microcolony at the surface of the 858	

endothelium, which ultimately leads to the congestion of the colonized vessel. 859	

Bacterial adhesion at the surface of endothelial cells induces a drastic remodeling of 860	

the host cell-plasma membrane that forms membrane protrusions interdigitating 861	

within the bacterial aggregate. In addition, pilus interaction with endothelial cell-862	

surface receptors, such as CD147 or β2-adrenergic receptor (β2-AR), induces the 863	

reorganization of the actin cytoskeleton and intercellular junctions by recruiting their 864	

components underneath the microcolony. Taken together, these events are proposed 865	

to destabilize intercellular junctions, hence resulting in the increase in vessel 866	

permeability. 867	
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 869	

Figure 4: The stepwise process leading to endocarditis. The apparition of sterile 870	

lesions (most often of unknown origin) on the heart valvular endothelium leads to the 871	

exposure of the underneath extracellular matrix (ECM). This in turn triggers the 872	

formation of a thrombus – characterized by the local deposition of platelets and fibrin 873	

at the surface of the damaged endothelium – that favors bacterial adhesion. While 874	

bacteria proliferate and spread, the valvular endothelium become more and more 875	

damaged, eventually leading to the failure of the valve and the need for its surgical 876	

replacement. 877	
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 879	

Figure 5: Bartonella-induced angioproliferation. Interactions of Bartonella with the 880	

endothelium might occur at the single-bacterium level through the bacterial 881	

expression of the Bartonella adhesin A (BadA) protein. This triggers the phagocytosis 882	

of the cell-surface bound bacteria and results in their perinuclear accumulation within 883	

phagosomes. Similarly, to Neisseria meningitidis, Bartonella also forms aggregates 884	

that are internalized through a slower process within big vacuoles, referred to as 885	

invasomes. In both cases, the VirB-VirD4 type four secretion system (T4SS)-886	

dependent cytoplasmic release of Bartonella effector proteins (Beps) by intra-887	

vesicular bacteria promotes the proliferation and activation of the infected endothelial 888	

cells. This notably results in the secretion by the endothelium of pro-inflammatory 889	

(e.g. IL-8) and pro-angiogenic (e.g. VEGF) factors. As a consequence, cells from the 890	

innate immunity, including neutrophils and macrophages, are locally recruited to fight 891	

the infection. Activated macrophages locally secrete VEGF, thus reinforcing the pro-892	

angiogenic microenvironment. Combined to the bacterium-mediated endothelial cell 893	

proliferation, this particular environment promotes angiogenesis that ultimately leads 894	

to the local accumulation of new blood capillaries and the formation of Bacillary 895	

Angiomatosis lesions. 896	


