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Efficient randomization of biological
networks while preserving functional
characterization of individual nodes
Francesco Iorio1*† , Marti Bernardo-Faura1,2†, Andrea Gobbi3†, Thomas Cokelaer1,4†, Giuseppe Jurman3

and Julio Saez-Rodriguez1,5*

Abstract

Background: Networks are popular and powerful tools to describe and model biological processes. Many
computational methods have been developed to infer biological networks from literature, high-throughput
experiments, and combinations of both. Additionally, a wide range of tools has been developed to map experimental
data onto reference biological networks, in order to extract meaningful modules. Many of these methods assess
results’ significance against null distributions of randomized networks. However, these standard unconstrained
randomizations do not preserve the functional characterization of the nodes in the reference networks (i.e. their
degrees and connection signs), hence including potential biases in the assessment.

Results: Building on our previous work about rewiring bipartite networks, we propose a method for rewiring any
type of unweighted networks. In particular we formally demonstrate that the problem of rewiring a signed and
directed network preserving its functional connectivity (F-rewiring) reduces to the problem of rewiring two induced
bipartite networks. Additionally, we reformulate the lower bound to the iterations’ number of the switching-algorithm
to make it suitable for the F-rewiring of networks of any size. Finally, we present BiRewire3, an open-source
Bioconductor package enabling the F-rewiring of any type of unweighted network. We illustrate its application to a
case study about the identification of modules from gene expression data mapped on protein interaction networks,
and a second one focused on building logic models from more complex signed-directed reference signaling
networks and phosphoproteomic data.

Conclusions: BiRewire3 it is freely available at https://www.bioconductor.org/packages/BiRewire/, and it should have
a broad application as it allows an efficient and analytically derived statistical assessment of results from any network
biology tool.
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Background
Representing and modeling biological processes as net-
works, in particular signaling and gene regulatory rela-
tions, is a widely used practice in bioinformatics and
computational biology. This bridges these research fields
to the vast repertoire of tools and formalisms provided by
graph- and complex-network-theory. Furthermore, this
facilitate an integrative analysis of experimental observa-
tions, either by derivation of networks from the data, or
by mapping the latter on the former. Hence, network-
based approaches have become a popular paradigm in
computational biology [1, 2].
In the last few years this has allowed the design of

a broad assortment of algorithms and tools whose aim
ranges from providing an interpretative framework for
the modeled biological relations, to the identification of
network-modules able to explain phenotypic traits and
experimental data from large reference signaling graphs
[3, 4]. Many methods in this last class aim at identi-
fying a sub-network, for example, that is composed by
the most differentially expressed or significantly mutated
genes [5–9], or that it is targeted by a given external per-
turbation [10–14]. Toward this aim different optimization
procedures have been used to analyze experimental data,
identifying a pathway that is deregulated in a given dis-
ease, or whose activity is perturbed upon a given drug
treatment.
In many approaches, directed signed networks (DSNs,

formally defined in the following sections) are used to
model pathways and to interlink pathways from a given
collection. In these networks, nodes represent biological
entities (typically proteins) while edges represent the bio-
logical relationships between them (e.g., the activity of
protein A affects that of protein B). These edges have a
direction to discriminate effectors and affected nodes in a
modeled relation, and a sign to specify whether the mod-
eled relation is an activation (positive sign) or an inhibi-
tion (negative sign). Unsigned/undirected edges modeling
generic interactions can be also present. When available,
sign and direction allow a more detailed detection of the
nature of the interaction between the nodes. In this study,
the number, sign and direction of a node’s connections are
cumulatively denoted by the functional characterization
level (FCL) of the correspondingmodeled biological entity
(from now entity).
In a reference network modeling a set of interlinked

pathways or protein-protein-interactions, the FCL might
be high for a node that models a functional hub. For exam-
ple a kinase phosphorylating a large number of substrate
proteins will have a high number of out-going edges with
positive sign. Similarly, a gene activated by a large num-
ber of transcription factors will have a high number of
positive in-coming edges. On the other hand the FCL
might be strongly biased by the relevance of a biological

entity in a given research field, and the resource the net-
work has been assembled from. For example, in a cancer
focused reference network it is reasonable to find nodes
that have a high FCL just because they have oncogenetic
or tumor-suppressive properties, thus have been stud-
ied more than others. As a consequence, solutions to the
network optimization problems tackled in bioinformat-
ics (and mentioned above) can be strongly influenced by
the topology of the initial network, and by the FCL of its
nodes.
In an attempt to overcome this issue, some tools assess

this bias by comparing their provided sub-network solu-
tions with those that would be obtained (using the same
experimental data and the same algorithm) across a large
number of trials, each starting from a reference network
that is a randomized version of the original one. Many
other tools neglect this aspect and the significance of the
solution is computed by randomizing the experimental
data only. For both options, the expectation of some topo-
logical properties (for example the inclusion of a given
edge or node) of the sub-network solutions is estimated
by analyzing the random solutions obtained across the
trials. In this way, the significance of these properties
is quantified as the divergence from their expectation,
testing against the null hypothesis that there is no asso-
ciation between the analyzed experimental data and the
outputted sub-network solutions.
To our knowledge, all the existing methods assessing

their solution significance through reference network ran-
domizations make use of a simple edge shuffling. This
means that in a randomization trial each edge of the net-
work is simply set to link two randomly selected nodes.
This implicitly means that null models resulting from
this randomization strategy are totally unconstrained with
regards to the degree of the nodes, and the way they are
linked to each other in the original network. Therefore,
the impact of the FCL of the nodes in the original ref-
erence network on the outputted sub-network solution is
not considered. In order to take this into account a con-
strained randomization strategy preserving the FCL of all
the nodes in the original network must be used.
The problem of randomizing an undirected and

unweighted network while preserving the degree of its
nodes, i.e. the total number of incident edges for each
node, is known in graph theory as network rewiring and
unfortunately presents itself with analytical and numerical
challenges [15].With the additional constrain that the net-
work to rewire is bipartite (i.e. nodes can be partitioned
into two sub-sets such that there are no edges linking
nodes in the same set), this problem reduces to random-
izing a binary matrix preserving its marginal totals, i.e.
its row-wise and column-wise sums. Several algorithms
exist to solve this problem [16, 17] but the computation-
ally efficient randomization of moderately large matrices
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(therefore the rewiring of large bipartite networks) is still
challenging. Additionally, to our knowledge, none of the
methods published is formally shown to be able to actu-
ally simulate samplings from the uniform distributions of
all the possible binary matrices with prescribed marginal
totals. Such proof exists for methods rewiring directed
binary networks based on swap-and-fill strategies applied
to their adjacency matrices [18] but not dealing with
DSNs. Finally, some recent methods have been proposed
to solve the related (but yet different from FCL preserving
rewiring) problem of randomizing metabolic networks in
a mass-balanced way [19].
In [20] we showed how an algorithm based on a Monte

Carlo procedure known as the switching-algorithm (SA)
[21] can be used to efficiently randomize large can-
cer genomics datasets preserving the mutation burdens
observed across patients and the number of mutations
harbored by individual genes (hence to efficiently rewire
large bipartite networks). To this aim, we derived a novel
lower bound for the number of steps required by the
SA in order for its underlying Markov chain to reach
a stationary distribution. Additionally, we implemented
the SA in the R package BiRewire (publicly available on
Bioconductor [20]) and we showed a massive reduction
in computational time requirements of our package and
bound with respect to other existing R implementations
[22] and bounds [21].
Here (i) we introduce the problem of rewiring a DSN

modeling a biological network in a way that the FCL of
all the modeled entities is preserved: F-Rewiring; (ii) we
formally show how this problem reduces to rewiring 2
bipartite networks; (iii) we provide a generalized bound
to the SA for bipartite networks of any size; and (iv) we
show the validity of theMarkov chain convergence criteria
(used in our previous work) for F-rewiring DSNs.
Finally, we provide an overview of the functions

included in a new version of BiRewire for F-Rewiring,
and we show results from two case studies where solu-
tions obtained with two network optimization methods
(BioNet [9], and CellNOpt [23]) are assessed for statisti-
cal significance and intial reference network biases against
constrained null models generated with BiRewire.

Methods
Preliminary notations
The problem we are tackling is the computationally effi-
cient randomization of a directed and signed network
(DSN) (formally defined below) in a way that some local
features of its individual nodes are preserved.
In such a network G = (V ,E), the edges in E can be

encoded as triplets (a, b, ∗) where a is called source node,
b is called target node and ∗ is a label denoting the sign
of the relation occurring among them, which could be
positive, ∗ = +, or negative, ∗ = −.

According to this definition, in a DSN the edge (a, b,+)

is different from the edge (a, b,−), thus making this for-
malism more flexible than that provided by a directed
weighted network (with weights ∈ {+1,−1}). In fact, dif-
ferently from such a model, in a DSN two edges with
same terminal nodes and direction but different sign can
coexist. In addition, a DSN is different and less general
than a multidigraph (a directed multigraph), because only
two possible edges with the same direction can coexist
between the same couple of nodes.
Given an edge e ∈ E, we define the function λ(e) : E →

{+,−}, mapping each edge to its sign label.
Given a node v ∈ V , we define its in-bound-star I(v)

as the set of edges in E having v as destination, I(v) =
{e ∈ E : e = (a, v, ∗)}. Similarly, considering the edges
having v as source defines its out-bound-star, O(v) =
{e ∈ E : e = (v, b, ∗)}. Imposing as additional condi-
tion for an edge to be included in these sets that of having
a fixed sign label, defines positive and negative in-bound
and out-bound stars. Formally, the v positive- (respectively
negative) in-bound-star is the set of edges in G having v
as destination and positive (respectively negative) label,
I+(v) = {e ∈ I(v) : λ(e) = +} (respectively I−(v) =
{e ∈ I(v) : λ(e) = −}). Analogously, the v positive-
(respectively negative) -out-bound-star is the set of edges
in G having v as source and positive (respectively nega-
tive) label, O+(v) = {e ∈ O(v) : λ(e) = +} (respectively
O−(v) = {e ∈ O(v) : λ(e) = −}).
By naturally extending the definition of node degree

(i.e. the number of edges connected to a node) to these
formalisms, we call positive-in-degree of a node v the
quantity |I+(v)| equal to the number of edges with pos-
itive label having v as destination. Similarly we define
the v negative-in-degree, positive-out-degree and positive-
in-degree, the quantities |I−(v)|, |O+(v)| and |O−(v)|,
respectively.
In the light of the introduced notation, the object

of this study can be redefined as the randomization
of the edges of a DNS G while preserving not only
its general node-degrees (network rewiring), but also all
the signed degrees defined above, for all the nodes:
network F-rewiring.
A biological pathway can be naturally represented

through a DNS G = (V ,E). In this case the nodes
in V would represent biological entities, and the edges
in E would represent functional relationships occurring
among them, whose type would be defined by the sign
label (+ for activatory and − for inhibitory interac-
tions), with directions indicating effector/affected roles
(source/destination of the edges). In this case the signed
degrees introduced above would define the functional
characterization level (FCL) of the individual biological
entities considering all the possible roles that they can
assume within a given pathway.
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Particularly the positive-out-degree of a node v would
correspond to the level of characterization of the corre-
sponding biological entity as activator of other entities;
the negative-out-degree would correspond to its charac-
terization as inhibitor; finally, the positive-, respectively
negative-, in-degree of a node would correspond to the
level of characterization of the corresponding entity as
activated, respectively inhibited, by other entities in the
same DSN.
As a consequence, the ultimate goal of this study is to

efficiently randomize a pathway (or a collection of inter-
linked pathways) in a way the functional characterization
levels of its individual entities, i.e. the signed-directed
degrees of all the nodes, are preserved.

F-rewiring of a directed signed networks is reducible to the
rewiring of two bipartite networks: reduction proof
Let us consider a directed signed network (DSN) G =
(V ,E), with λ(e) ∈ {−,+}, ∀e ∈ E and a transform-
ing function f (G), from the set of all the possible DSNs
to the set of all the possible pairs of bipartite networks
(B+,B−), such as B∗ = (S∗,D∗,E∗), whose node sets are
defined as S∗ = {v ∈ V : ∃(v, x, ∗) ∈ E}, and D∗ =
{v ∈ V : ∃(x, v, ∗) ∈ E}, with ∗ ∈ {+,−}. Worthy of
note is that the same node of G can be both a source
(therefore belonging the set S∗) for some edge in E, and
a destination (therefore belonging to the set D∗) for some
other edge in E. As a consequence f should also rela-
bel the nodes (for example adding a subscript to labels of
the nodes in D∗). Here, for simplicity we will neglect this
relabeling.
As a conclusion, the function f maps G to two bipartite

networks (BNs) (B+,B−) such that B+ = (S+,D+,E+) is
the BN induced by the positive edges of G, where all the
sources of these edges are included in the first node set S+,
all the destinations in the second set D+ and two nodes
across these two sets are connected by an undirected edge
if they are connected in the original network G by a posi-
tive edge that goes from the node in the first set to that in
the second one. The second bipartite network of the pair
B− is similarly induced by the negative edges of G. For-
mally E∗ = {(s, d) : s ∈ S∗, d ∈ D∗ and ∃(s, d, ∗) ∈ E}, with
∗ ∈ {+,−}. An example of this transformation is shown in
Fig. 1a.
It can be shown that such a function f realizes a bijection

between the set of all the possible DNSs and the set of all
the possible pairs of BNs [24]. As a consequence its inverse
f −1 is a function from the set of all the possible pairs of
BNs to the set of all the possible DSNs, and it is defined as
f −1(B1,B2) = G = (V ,E), where

V = S1 ∪ S2 ∪ D1 ∪ D2,

E = {(s, d,+) : (s, d) ∈ E1with s ∈ S1andd ∈ D1}
∪{(s, d,−) : (s, d) ∈ E2withs ∈ S2andd ∈ D2}.

For simplicity, we assume that f −1 re-assignes to
the nodes their original labels before constructing the
node/edge sets ofG, if they were relabeled by the function
f. An example of this inverse transformation is shown in
Fig. 1b.

Proposition 1 Let be G = (V ,E) a DSN modeling a
pathway (or a set of interlinked pathways) P, and f the
transformation function described above f (G) = (B+,B−).
If R+ and R− are rewired versions of B+ and B− respec-
tively, then f −1(R+,R−) = H is a randomized version of G
in which the signed-directed degrees of all the nodes v ∈ V,
i.e. the quantities |I+(v)|, |I−(v)|, |O+(v)|, |O−(v)|, are kept
equal to their original values. This implies that H is an F-
rewired version of G, hence a randomization of P in which
the functional characterizations of the individual entities
are preserved.

Proof First of all we need to show thatH is a randomized
version of G, in other words that H is a directed signed
network with the same nodes set and number of edges ofG
and the same signed-directed node degrees but a different
edge set.
To this aim let be H = (W , F) = f −1(R+,R−). Since a

rewiring does not affect the node set of the transformed
network, R+ has the same node set of B+, and R− has the
same node set ofB−. On the other hand,B+ andB− are the
two bipartite networks induced by the positive and nega-
tive edges (respectively) of G. For construction, the union
of their nodes gives V. Taken together these observations
imply thatW = V
From the definition of f, B+ contains the positive edges

in E and B− the negative edges of E (whose terminal
nodes have been possibly relabeled). From the definition
of rewiring, the edge set of R+ contains the same num-
ber of edges of B+ but at least one edge not contained in
B+. Similarly the edge set of R− contains the same num-
ber of edges of B− and at least one edge not contained in
B−. Therefore, from the definition of f −1, |F| = |E| and F
contains at least two edges that are not included in E. This
imply that F �= E.
As a conclusion G andH have the same set of nodes and

number of edges but different edge sets.
Secondly we need to show that the signed degrees of

all the nodes of H are equal to those of all the nodes in
G.
Let us assume that the positive-in-degrees of H are

different from those of G. From the f −1 definition, this
implies that R+ contains at least a node in the source set
for which the degree is different from that of its counter-
part in B+. However, this contradicts R+ being a rewired
version of B+. With the same argument it is possible to
prove that all the signed-directed node degrees of H are
equal to those of G.
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Fig. 1 F-rewiring of directed signed networks is reducible to the rewiring of two bipartite graphs: a Scheme of the transformation function mapping
a directed signed network (DSN) to two bipartite networks (BNs) induced by the positive, respectively negative, edges of the original network; b
scheme of the inverse function that, after the two BNs induced by the edges of the original network have been rewired via the switching-algorithm,
maps back the resulting rewired BNs to a DSN

Switching-algorithm lower bound for bipartite networks of
any size
To rewire a bipartite network B = (S,D,E), the switching-
algorithm (SA) [21] performs a cascade of switching-steps
(SS). In each of these SS two edges (a, b) and (c, d) are ran-
domly selected from E and replaced with (a, d) and (c, b)
if these two new edges are not already contained in E. In
this case the SS under consideration is said successful.
Underlying the SA is a Markov chain whose states are

different rewired versions of the initial network G and
a transition between states is realized by a successful
SS.
In [20] we prove that, if executing a sufficiently large

number of SS, the SA can efficiently simulate samplings
from the uniform distribution of all the possible bipar-
tite networks with predefined node sets and prescribed
node degrees. Therefore it can be used to obtain a rewired
version of a network B that it is, on average, no more
similar to B than are similar to each other two bipartite
networks B1 and B2 sampled from the real uniform dis-
tribution of all the possible bipartite networks with the
same node sets and node degrees of B. To this aim, the
number of SS to be performed before sampling the (k+1)-
th rewired network must be large enough to assure that

the algorithm has forgotten the k-th sampled rewired net-
work (the starting network G for k = 0). Formally, the
number of SS between two following samplings must be
at least equal to the burn-in time of the Markov chain
underlying the SA, which is needed to reach a station-
ary distribution [25, 26]. An example of this is shown in
Fig. 2: the 5 plots show results from a simulation study in
which the SA has been used to rewire a synthetic bipar-
tite network of 50 + 50 nodes and an edge density of 20%,
and rewired versions of this network have been sampled
at different intervals of SSs. A sampling interval of 1 SS
produces sampled networks that are strongly related to
each other (Fig. 2a). Gradually increasing the sampling
interval (from 5 to 20 SS, Fig. 2b to d), reduces the sam-
pled network similarities but some local dependencies are
maintained. At a sampling interval of 300 SS (Fig. 2e) the
Markov chain underlying the SS has reached its stationary
distribution, the sampled networks are completely unre-
lated and there are no dependencies. Therefore, for the
bipartite network under consideration, a number of SS
≥ 300 is sufficient to simulate samplings from the uniform
distribution of all the possible bipartite networks with 50
+ 50 nodes and node degrees equal to those of the original
network.
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Fig. 2 Rewired network samplings using the switching-algorithm (SA) at different sampling intervals, in terms of switching-steps (SS), as indicated
by the different panel identifiers (a, b, c, d and e). Points represent sampled networks, arrows indicate a starting synthetic network, and colors
indicate the sampling order. Point proximities reflect corresponding network similarities quantified through the Jaccard index. Point coordinates
have been obtained with a generalized multi-dimensional scaling procedure (t-SNE)

An empirical bound N ′ for the minimal number of SS
to be performed by the SA between two consecutive sam-
plings has been proposed in [21] as being equal to 100
times the number of edges of the bipartite network to
rewire. This makes rewiring moderately large networks
computationally very expensive.
By analyzing the trend of similarity to the original net-

work along the sample path of the Markov chain simula-
tion implemented by the SA, in [20] we proposed a novel
lower bound to the number of SS needed to rewire large
bipartite networks equal to

N = |E|
2(1 − d)

ln [ (1 − d)|E|], (1)

where E is the set of edges of the network to rewire
B = (S,D,E) and d = |E|/(|S||D|) is its edge density.
In [20] we show that this bound is much lower than N ′
and that our SA implementation and bound provide a
massive reduction of the computational time required to
rewire large bipartite networks (with thousands of nodes
and tens of thousands of edges) with respect to other SA
implementations [22] and the bound N ′.
Here we provide a generalization of the lower bound N

making the SA effective and computationally efficient in
rewiring bipartite networks of any size. This is led by the
observation that a DSN modeling a pathway (and the two
bipartite networks induced by its positive and negative
edges, respectively) can be even composed by a modest
number of nodes and edges.
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As shown in the supplementary data of [20] (from now
on going, equations from this paper will have GSD, for
Gobbi supplementary data, as prefix), Eq. 1 follows from
the GSD-Equation 11 (page 20) and it is a simplified form
of

N =
|E|(1 − d) ln

( |E|
ε

− |E|2
εt

)

2pr
(2)

where t = |S||D| is the total number of possible edges of
the original network, d = |E|/t is its edge density, pr is
the probability of a SS to be successful. ε is the accuracy
of the bound in terms of distance (quantified through the
convergence metric that we used to monitor the Markov
chain underlying the SA, based on the number of edge
shared by the original network and its rewired version at
the generic k-th SS, and defined in GSD-Equation 9, page
19) from the real fixed point x̄.
Under the assumption of a uniform degree distribution1

we showed that pr = (1− d)2 (GDS-Equation 4, page 16).
As a consequence Eq. 2 can be rewritten as:

N =
|E| ln

( |E|
ε

− |E|2
εt

)

2(1 − d)
, (3)

which for ε = 1, gives Eq. 1.
Equation 3 expresses the lower bound of the number of

SS as a function that accounts for the network topology
and the estimated distance of the Markov chain under-
lying the SA from its steady-state, according to the con-
vergence metric used in [20]. More detailed, this distance
is equal to |x(k) − x̄|, where x(k) is the number of com-
mon edges between the original network and its rewired
version after k SS, and x̄ is the expected number of com-
mon edges between the original network and its rewired
version, after the Markov chain underlying the SA has
reached its stationary distribution.
In our previous bound definition ε was defined in terms

of number of edges, and N defined as in Eq. 1 in order to
have |x(k) − x̄| ≤ 1 for k ≥ N .
For large bipartite networks, i.e. |E| > 10000, a value

of ε = 1 guarantees a relative error δ < 0.01% of edges
for a number of SS k ≥ N . However, for relatively smaller
networks, for example when |E| = 100, a value of ε =
1 implies a substantially increase in the relative error to
δ = 1%, making the estimated lower boundN increasingly
suboptimal with respect to the estimated real fixed point.
For this reason here we redefine the lower bound N for

the number of SS as a function of its relative error δ, which
quantifies its sub-optimality with respect to the estimated
real fixed point. Through the simple substitution ε = |E|δ,
Eq. 3 can be rewritten as:

N =
|E|(1 − d) ln

(
1−d

δ

)

2pr
= �|E|

where � = (1−d)(ln (1−d)−ln δ)
2pr depends only on the level of

accuracy δ, the density d of the original network and the
probability pr of a successful SS. For uniformly distributed
degrees1, i.e. pr = (1 − d)2, this bound reads as:

N =
|E| ln

(
1−d

δ

)

2(1 − d)
. (4)

A value of δ = 0.00005 (corresponding to ε = 1 edge
when |E| ∼ 20000), is used by default by our new imple-
mentation of the SA in the new version of the package
BiRewire but this parameter can also be set to a user
defined value, making our tool and bound suitable for the
rewiring of bipartite networks of any size. Additionally,
the choice of a suitable value for this parameter can be
determined by visually inspecting the SA Markov chain
convergence with a new dedicated function (described
in “Overview of the new functions included in BiRewire
v3.0.0” Section)

Convergence criteria for signed directed networks
In [20] we showed that the convergence criteria we used to
estimate our lower bound N for the number of switching-
steps (SS) needed to rewire bipartite networks can be
applied also to the more generic case of undirected net-
works.
To show the validity of this criteria for F-rewiring of

directed signed networks (DSNs) let us observe that the
Jaccard Index (J) [27] used to assess the similarity between
two DSN with the same set of nodes and same number of
edges: G = (V ,E) andH = (V , F) is defined as

J(G,H) = |E ∩ F|
|E ∪ F| = x

2|E| − x

where x = |E ∩ F| is the number of common edges and
the last equivalence holds because the two DSNs have
the same number of edges. When estimated for bipartite
networks, our N guarantees that the number of common
edges between an initial network B and its rewired version
at the N-switching-step is asymptotically minimized.

Proposition 2 Let be R+ and R− the rewired versions
of two bipartite networks B+ and B− obtained through
a number of switching-steps respectively equal to N+
and N− (both computed using Eq. 4), and such that
(B+,B−) = f (G) (where f is the transformation function
defined in Section F-rewiring of a directed signed net-
works is reducible to the rewiring of two bipartite networks:
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reduction proof and G a DSN). Then the Jaccard similarity
between G andH = f −1(R+,R−) is minimized.

Proof J(G,H) reaches a minimum when the number of
common edges x between G and H reaches a minimum.
x is given by the sum of the number of common positive
and negative edges across the two networks, namely x =
x+ + x−. Given that H = f −1(R+,R−), x+ is the number
of common edges between B+ and R+. Analogously x− is
the number of common edges between B− and R−. Since
R+ and R− are rewired version of B+ and B− computed
through N+ and N− (minimizing x+ and x−, respectively)
also x = x+ + x− is minimized.

Results
Overview of the new functions included in BiRewire v3.0.0
The R-package BiRewire (http://bioconductor.org/
packages/BiRewire/) was originally designed to efficiently
rewire large bipartite networks ([20]). We have performed
a major update, by including functions to:

• read/write directed signed networks (DSN) from/to
simple interaction format (SIF) files (functions
birewire.load.dsg and
birewire.save.dsg);

• perform the transformation f (and its inverse f −1) to
derive bipartite networks induced by positive and
negative edges of a DSN, and vice-versa (functions
birewire.induced.bipartite and
birewire.build.dsg);

• F-rewire a DSN by applying the switching-algorithm
(SA) to the two corresponding induced bipartite
networks with numbers of switching-steps
automatically determined for both networks
individually, using Eq. 3 (function
birewire.rewire.dsg);

• sample K rewired versions of a network: this function
runs K instances of the SA in cascade; each of these
instances performs a number of switching-steps (SS)
determined using Eq. 3. This function can take in
input a bipartite network, an undirected network or a
DSN (in this case Eq. 3 is used individually for the
two bipartite networks induced by the positive and
negative edges of the DSN, respectively)
(birewire.sampler.* functions);

• monitor the convergence of the Markov chain
underlying the SA on user defined networks. This
routine samples a user-defined number of networks
at user defined intervals of SS. For each of these
intervals, it computes a Jaccard similarity [27]
pair-wisely comparing the sampled networks to each
other; finally it plots the sampled networks in a plane
where points proximities reflect Jaccard similarities
of the corresponding networks and point coordinates

are computed through the generalized
multidimensional scaling method t-SNE [28]; this
function gives in output the network coordinates of
such scale reductions and produce the plots shown in
Fig. 2. Also in this case the inputted graph can be a
bipartite network, an undirected network or a DSN
(birewire.visual.monitoring.* functions);

• perform an analysis of the trends of Jaccard similarity
across SS. This function performs a user-defined
number of independent runs of the SA, computing
the mean value and a confidence intervals of the
observed pairwise Jaccard similarities between the
obtained rewired networks. The result is a dataset
containing the Jaccard similarity scores computed
and sampled at user-defined intervals of SS, and a
plot similar to that showed in Figs. 3a and 4a. This
function takes in input a bipartite network or an
undirected network or a DSN
(birewire.analysis.* functions).

Worthy of note is that, supporting the analysis of DSNs,
our package can handle also generic directed graphs,
therefore with BiRewire3 it is now possible to rewire any
kind of unweighted networks.
We have developed also a cython wrapper of the corre-

sponding C library for Python users. A first release (with
some basic functions) can be found in https://github.com/
andreagobbi/pyBiRewire.

Case study 1: BioNet
The R package BioNet [29] provides a set of methods to
map gene expression data onto a large reference biolog-
ical network, and to identify (with a heuristic method)
a maximal scoring sub-network (MSS), which a is a set
of connected nodes (or module) with unexpectedly high
levels of differential expression [30]. Several other meth-
ods moving along the same lines exist (as, among others,
EnrichNet [6]). Here we focus on BioNet because it can
be considered a typical example among these methods,
and we show how BiRewire3 can be used to estimate
the impact of the reference network topology and the
functional characterization level (FCL), i.e. sign-directed
degree, of its nodes on the optimal module outputted by
this tool.
The initial reference network used by BioNet (the Inter-

actome) is a large undirected protein-protein-interaction
network assembled from HPRD [31] and encompassing
9,392 nodes and 36,504 edges. In [29], the authors show an
application of BioNet to gene expression data from a dif-
fuse large B-cell lymphoma (DLBCL) patient dataset, with
corresponding survival data. After determining gene-wise
P-values for differential expression and risk-association,
the authors aggregate them and fit a beta-uniform mix-
ture model to the distribution of aggregated P-values that

http://bioconductor.org/packages/BiRewire/
http://bioconductor.org/packages/BiRewire/
https://github.com/andreagobbi/pyBiRewire
https://github.com/andreagobbi/pyBiRewire
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Fig. 3 BioNet study case. a Analysis of the Jaccard index trend across switching-steps (SS) while rewiring the BioNet reference Interactome and
estimation of the lower bound N; b visual inspection of the switching-algorithm Markov chain convergence to verify the suitability of the estimated
bound (see Fig. 2 legend for further details); c Interactome module outputted by BioNet while analyzing the DLBCL dataset; d scatter plots of BioNet
scores vs. frequency of inclusion in the rewired solutions for all the nodes included in the BioNet module (left plot) and for all the other Interactome
nodes contained in the DLBCL dataset (right plot)

yields a final score (accounting for both considered fac-
tors) for each gene: the higher this score the more a gene
is differentially expressed across the contrasted groups
of patients. Then the methods proceeds with mapping
these scores onto the Interactome nodes and, applying a
heuristic method [9], it identifies a sub-network (referred
to as a module) that is a sub-optimal estimate of the
MSS. This module is shown in Fig. 3c and the BioNet
package vignette contains detailed instructions on how to
reproduce this result.
To evaluate the impact of the FCLs of the Interactome

nodes on the module outputted by BioNet when used on
the DLBCL dataset, we generated 1,000 F-rewired ver-
sions of the Interactome with BiRewire3 and used each
of them as initial reference network in 1,000 individual
BioNet runs, using the DLBCL dataset as input.
To this aim we first conducted a BiRewire3 analysis

(using the dedicated function of our package) to deter-
mine the number of switching-steps (SS) to be performed

by the switching-algorithm (SA) in order to F-rewire the
Interactome. This function makes use of the convergence
criteria we designed in [20], which is based on the esti-
mated time, in terms of SS, in which the Jaccard similarity
(JS) between the original network and its rewired version
at the k-th SS reaches a plateau (Fig. 3a). In [20] we showed
that this criteria is equivalent to other established meth-
ods tomonitorMarkov chain convergence when the states
are networks. In addition its relatively simple formula-
tion consents the analytical derivation of an estimated
plateau time, i.e. our bound N. Neverthless, our package
allows also a visual inspection of the optimality of the esti-
mated bound N showing how independent are F-rewired
versions of an initial network sampled at a number of
user-defined SS intervals as well as every N SS (Fig. 2).
These preliminary analyses resulted in a required num-

ber of SS equal to N = 170, 491 (Fig. 3a) and showed
that this number of SS is actually sufficient to generate
unrelated F-rewired versions of the Interactome, thus to
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Fig. 4 CellNOpt study case. a Analysis of the Jaccard index trend across switching-steps (SS) while rewiring the two bipartite network induced by
the positive (respectively negative) edges of the reference DSN (liver prior knowledge network (liver-PKN)) and estimation of the lower bounds for
the number of switching-steps; b visual inspection of the switching-algorithm Markov chain convergence to verify the suitability of the estimated
bounds (see Fig. 2 legend for further details); c Comparison of the CellNOpt scores and the rewired scores; d Empirical p-values of the CellNOpt
scores across the entire family of models. e The liver-PKN used by CellNOpt as initial reference network; f The model outputted by CellNOpt when
using the liver-PKN as initial reference network with superimposed the frequency of inclusion of each node in a set of 1,000 models outputted by
CellNopt using F-rewired versions of the liver-PKN as reference networks
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simulate samplings from the uniform distribution of all
the possible networks with the same number of nodes and
FCLs of the Interactome (Fig. 3b). Generating 1,000 F-
rewired versions of the Interactome sampled each N SS
required ∼ 2 hours on a 4 core 2.4 Ghz computer with
8GB memory.
Running 1,000 independent instances of BioNet using

each of these F-rewired Interactome as reference network
and the DLBCL dataset in input resulted into 1,000 dif-
ferent module solutions (rewired solutions). For each of
the nodes included in the original BioNet module solu-
tion (Fig. 3c), we quantified the ratio of rewired solutions
including them and we investigated how this quantity
related to the corresponding BioNet scores (Fig. 3d). As
expected, we observed a significant correlation (R = 0.51,
p = 0.001). In fact, as per the definition of the MSS, it is
reasonable that nodes with high scores (such as, for exam-
ple NR3C1 and BCL2) tend to be included in the module
outputted by BioNet regardless their edges and degree in
the reference Interactome. Similarly, nodes with large neg-
ative scores (such as CDC2 and JUN) are included in the
module only because they link high scored nodes and it is
obvious that they do not tend to be included in the rewired
solutions, as in this case the way they are interlinked to
other nodes is crucial.
Nevertheless, a number of nodes (such as, SMAD4,

SMAD2 and PIK3R1) have modest score but tend to be
included very frequently in the rewired solutions. This
hints that what leads the inclusion of such nodes in the
BioNet module is their high FCL. As a confirmation of
this, SMAD4, SMAD2 and PIK3R1 fall over the 99th per-
centile when sorting all the nodes in the Interactome (and
included in the DLBCL) based on their FCL (which in this
case corresponds to their degree). This is a proof that the
reference network provides the BioNet outputted module
with a positive impact, and that at least some nodes are
included in the solution because of their high FCL.
When extending this analysis to the nodes of the Inter-

actome (included in the DLBCL dataset) that are not
present in the module outputted by BioNet we observed
again an expected significant correlation (R = 0.51, p <

10−16), and some nodes (such as JUP,MMP2 and ITGA6)
with high scores frequently included in the rewired solu-
tions (the fact that these nodes do not appear in the
BioNet outputted module is due to the sub-optimality of
the used heuristic). However we also observed a large
number of nodes (such as RPL13A, STK17A and IDH3A)
scored high but relatively infrequently included in the
rewired solutions. This hints that these nodes are penal-
ized by their low FCL in the reference Interactome, thus
proving the existence of a negative impact provided by
the reference Interactome to the BioNet outputted mod-
ule, and that at least some nodes are not included in the
solution because of their low FCL.

An indication of both these types of impacts, together
with diagnostic plots and statistics would complement
and complete the output of many valuable and widely used
tools, such as BioNet.

Case study 2: CellNOpt
CellNOpt (www.cellnopt.org) is a tool used to train logic
models of signal transduction starting from a reference
directed signed network (DSN) called a prior knowledge
network (PKN), describing causal interactions among sig-
naling species (obtained typically from literature), and
a set of experimental data (typically phosphorylation),
obtained upon various perturbatory conditions ([23]).
CellNOpt converts the PKN into a logicmodel and iden-

tifies the set of interactions (logic gates) that best explain
the experimental data. This is performed through a set
of Bioconductor packages supporting a number of math-
ematical formalisms from Boolean models to ordinary
differential equations.
Through a built-in genetic algorithm CellNOpt identi-

fies a family of subnetworks from the reference DSN (from
now,models) together with the value of the objective func-
tion (the model score δ) quantifying at what extent each
model is able to explain the experimental data (the lower
this value the better is the fit of the model to the data).
By default, the best model with the lowest score denoted δ̂

is returned to the end-users. Note, however, that multiple
models may be returned if they cannot be discriminated
given the experimental evidence. Besides, to account for
experimental noise, users may also provide a parameter,
which is called tolerance (in percentage), that will keep all
models below a threshold defined as λ = δ̂(1+ tolerance).
Setting this tolerance parameter is non-trivial and

depends largely on the experimental error. One idea would
be to estimate this threshold by looking at the expected
ability of F-rewired versions of the liver-PKN to explain
the data, when they are used as input to CellNOpt. In
fact, even if original local node properties are maintained,
in each of these F-rewired networks the topology of the
biological pathways interlinked in the liver-PKN is dis-
rupted. As described before, a large score calculated by
CellNOpt indicates a large disagreement between data
and network logic behavior at themeasured nodes. There-
fore the distribution of the δs outputted by CellNOpt
when using these F-rewired networks gives an idea of the
attainable base-line performaces, which are not derived
from biologically meaningful models but depend only on
the FCL (signed and directed node degrees) of the original
liver-PKN.
Based on these considerations, here we show how

BiRewire3 can be used to identify such a threshold as the
maximal δ value whose deviance from expectation is sta-
tistically significant. Similarly to the previous case study,
this expectation can be empirically estimated by running

www.cellnopt.org
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a large number of independent CellNOpt runs using F-
rewired versions of the initial reference signaling network
and the same experimental data. Thus accounting for the
effect of the node FCLs on both scores and outputted
models. To this aim, we used the same reference PKN net-
work and phosphoproteomic data used in [23], which has
about 80 nodes and 120 directed and signed edges. This
was a study on human liver cell and hence the network
is called liver-PKN hereafter. With the BiRewire3 pack-
age we generated (in less than 10 seconds, on a standard
unix laptop) 1000 F-rewired versions of the liver-PKN,
visually inspecting (as in the previous case study) the opti-
mality of our estimated lower bound N for the number
of switching-steps (SS) to be performed by the switching-
algorithm (SA) (Fig. 4a,b) between one sampled F-rewired
network and the following one. Subsequently we run 1000
independent instances of CellNOpt (using the CellNOptR
package [23], v1.16 available on Bioconductor at www.
bioconductor.org/packages/CellNOptR/).
On each of these F-rewired liver-PKN networks and the

same phosphoproteomic dataset (obtaining one rewired
model per each analysis), as well as a final run using the
original liver-PKN network (obtaining a family of 1000
different models).
When comparing the two populations of CellNOpt

scores obtained from these two analyses we observed,
as expected, a notably statistically significant difference
(t-test p-value < 10−16, Fig. 4c), indicating that in the F-
rewired networks the topology of the pathways originally
interlinked in the liver-PKN is actually disrupted. Subse-
quently, using the distribution of scores of the rewired
models we computed empirical p-values for the CellNOpt
scores for the entire model family outputted by the final
run (making use of the original liver-PKN).
For a given score δi corresponding to the i−th model of

the family, an empirical p-value was set equal to the num-
ber of rewired models m such that δm ≥ δi divided by
1000 (the number of tested f-rewired liver-PKNs). More
than 90% of the models in the outputted family had a
CellNOpt score significantly divergent from expectation
(p-value < 0.05) and the estimated score threshold guar-
anteeing this (or a greater) divergence from expectation,
thus a minimal impact of the initial liver-PKN FCLs, was
equal to 0.06.
Finally, and similarly to the analysis performed in the

first study case, we quantified the tendency of each of the
nodes included in the final merged CellNOpt model to be
included in the rewired models, finding that also in this
case this is indeed proportional to the nodes’ FCL.
In summary, BiRewire3 could be effectively used to

determine a score threshold on an analytical ground,
based on which meaningful models could be selected
from the family outputted by CellNOpt for further anal-
yses, and finally assemble a consensual model solution.

Additionally, it could be employed to evaluate the extent
of impact of the CellNOpt reference network on the
topology of its outputted consensual model.

Discussion
BiRewire3 is a one-stop tool to rewire in a meaning-
ful way any type of unweighted networks (undirected,
directed, and signed) currently used to model different
datasets and relations in computational biology (including
presence-absence matrices, genomics datasets, pathways
and signaling networks) in an computationally efficient
way. It represents a significant and formally demonstrated
advance with respect to its previous version [20], whose
applicability was restricted to presence/absence matrices
and undirected bipartite networks. We have previously
shown that, thanks to an analytically derived lower bound
to the number of steps of its underlying algorithm, the
computational time requirements of BiRewire3 are vastly
lower than those of other similar tools, reducing from
months to minutes (on a typical desktop computer) when
rewiring networks with tens of thousands of nodes and
edge density ranging up to 20%. Additionally, the core
algorithm underlying BiRewire3 is based on a Markov
chain procedure that could be easily parallelized in future
implementations, to exploit the power of modern multi-
core computer architectures, thus reducing these time
requirements even further.
Our package is available as free open source software on

Bioconductor and, as we showed in our case studies, it can
be easily combined into computational pipelines together
with a wide range of existing bioinformatics tools aiming
at integrating signaling networks with experimental data.

Conclusion
We have presented a computational framework imple-
mented in a R package that could complement existing
network based tools. This will be useful for computing a
wide range of constrained null models testing the signif-
icance of the solutions of these tools, and to investigate
how the topology of the used reference networks can
potentially bias these results.
Moreover, the range of applicability of BiRewire3 goes

beyond computational biology, and includes all those
fieldsmaking use of tools from network theory, from oper-
ative research, to microeconomy, and ecological research
(an example of the application of BiRewire application in a
micro-economy and technology patent study can be found
at http://arxiv.org/abs/1509.07285).

Endnote
1 Our proof applies also to non uniform degree distri-

butions, leading to the same conclusions for the case of
directed signed networks. Here we use the uniform case
for simplicity.

www.bioconductor.org/packages /CellNOptR/
www.bioconductor.org/packages /CellNOptR/
http://arxiv.org/abs/1509.07285
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