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ABSTRACT

Like most RNA viruses, influenza viruses generate defective viral genomes (DVGs) with large internal deletions during rep-
lication. There is accumulating evidence supporting a biological relevance of such DVGs. However, further understanding
of the molecular mechanisms that underlie the production and biological activity of DVGs is conditioned upon the sensi-
tivity and accuracy of detection methods, that is, next-generation sequencing (NGS) technologies and related bioinfor-
matics algorithms. Although many algorithms were developed, their sensitivity and reproducibility were mostly
assessed on simulated data. Here, we introduce DG-seq, a time-efficient pipeline for DVG detection and quantification,
and a set of biological controls to assess the performance of not only our bioinformatics algorithm but also the upstream
NGS steps. Using these tools, we provide the first rigorous comparison of the two commonly used sample processing
methods for RNA-seq, with or without a PCR preamplification step. Our data show that preamplification confers a limited
advantage in terms of sensitivity and introduces size- but also sequence-dependent biases in DVG quantification, thereby
providing a strong rationale to favor preamplification-free methods. We further examine the features of DVGs produced
by wild-type and transcription-defective (PA-K635A or PA-R638A) influenza viruses, and show an increased diversity and
frequency of DVGs produced by the PAmutants compared to the wild-type virus. Finally, we demonstrate a significant en-
richment in DVGs showing direct, A/T-rich sequence repeats at the deletion breakpoint sites. Our findings provide novel
insights into the mechanisms of influenza virus DVG production.
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INTRODUCTION

Defective viral genomes (DVGs) are generated by many
RNA viruses during viral replication and have an impact
on viral evolution and pathogenesis (for recent reviews,
see Genoyer and López 2019; Vignuzzi and López 2019).
Different types of DVGs have been observed and can be
present simultaneously during infection, including DVGs
with point mutations, frameshifts, deletions, insertions,

and/or sequence rearrangements. Viral particles contain-
ing a DVG are unable to carry out a full replication cycle ex-
cept upon coinfection with a complementing helper virus.
The most commonly observed are deletion DVGs with
large internal truncations that impede the production of
one or several essential viral proteins, while preserving
the cis-acting RNA sequences required for replication
and packaging of the defective RNA. Such DVGs have
the ability to interfere with the replication and production
of replication-competent viruses, possibly by competing
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with the full-length genome for essential viral and/or host
proteins.

Defective interfering viral particles were first described
60 yr ago in influenza virus stockspropagated at a highmul-
tiplicity of infection in embryonated hen eggs (vonMagnus
1954). Since then interfering DVGs have been detected
both during in vitro and in vivo infections with various influ-
enza types and subtypes (Baum et al. 2010; Saira et al.
2013; Vasilijevic et al. 2017; Sheng et al. 2018; Alnaji
et al. 2019; Bosma et al. 2019). In mice there is evidence
that DVGs can limit influenza virus-induced pathology
and trigger antiviral immunity (Tapia et al. 2013; Dimmock
and Easton 2015), potentially through a preferential recog-
nition by the cytosolic sensor RIG-I (Baum et al. 2010). Re-
cent studies revealed that DVGs are produced during
natural influenza infection in humans (Saira et al. 2013; Vasi-
lijevic et al. 2017; Lui et al. 2019) and canbe transmittedbe-
tween humans (Saira et al. 2013). A reduced accumulation
of DVGs was linked with a severe outcome in patients in-
fected with the H1N1pdm09 virus (Vasilijevic et al. 2017).
DVGs have therefore started to raise interest for their po-
tential as prophylactic agents or components of attenuated
vaccines (Dimmock and Easton 2014; Frensing 2015; Dim-
mock and Easton 2017).

The genome of influenza viruses consists of eight single-
stranded RNA segments of negative polarity, which are
encapsidated with nucleoproteins and associated with
one copy of the viral RNA-dependent RNA polymerase.
Interfering DVGs have been shown to derive predominant-
ly from the three longest genomic segments (PB1, PB2,
and PA), which encode the viral polymerase subunits
(Nayak et al. 1985; Frensing 2015). The internal deletions
are thought to occur during the replication process when
the viral polymerase detaches from its template at one po-
sition (breakpoint start) and restarts RNA polymerization at
another downstream position (breakpoint end) (Jennings
et al. 1983). Evidence suggests a genetic control of DVG
production as mutations in the PA subunit of the viral po-
lymerase and the NS2/NEP or M viral protein were found
to result in higher DVG levels in cell culture (Odagiri
et al. 1994; Fodor et al. 2003; Perez-Cidoncha et al.
2014). Whether certain cis-acting RNA sequences in the vi-
ral genome can drive or facilitate the production of DVGs
remains unknown. So far, no hotspots for the deletion
breakpoints have been identified. However, accurate pro-
filing of the multiple DVG species generated during infec-
tion still poses a number of challenges.

The advent of next-generation sequencing (NGS) has
enabled to characterize the diversity of viral DVGs at an un-
precedented scale. Several bioinformatics tools, such as
ViReMa (Routh and Johnson 2014; Alnaji et al. 2019), DI-
tector (Beauclair et al. 2018), DVG-profiler (Bosma et al.
2019), or VODKA (Sun et al. 2019) were designed in order
to identify the short Illumina reads that contain DVG dele-
tion breakpoints and are discarded by usual alignment al-

gorithms. Two critical issues are (i) how to differentiate true
deletion DVGs from artifactual deletions produced during
RNA sample processing for RNA-seq, and (ii) how to accu-
rately quantify the relative frequency of each DVG species
with respect to the full-length genome. Sample processing
may or may not involve PCR amplification of the reverse-
transcribed viral RNAs prior to sequencing. Noticeably,
most published NGS studies on influenza interfering
DVGs rely on PCR amplification of the reverse-transcribed
viral RNAs, while the potential artifacts and quantification
biases introduced by the PCR step have not been thor-
oughly assessed.

Here we developed a bioinformatics pipeline for DVG
detection and quantification called DG-seq. A preliminary
version of this algorithm was previously used to character-
ize in vivo DVGs produced by Sindbis virus (Poirier et al.
2018). We demonstrate its solid performance in terms of
sensitivity and reproducibility using either mixes of in vitro
transcribed viral-like RNAs containingpseudo-DVGsof dis-
tinct sizes and frequencies, or viral genomic RNAs extract-
ed from wild-type (WT) or mutant DVG-prone influenza
viruses. We also provide a rigorous comparison of the
two sample processingmethods for RNA-seq, with or with-
out a PCR preamplification step.We show that PCR confers
increased sensitivity for the detection of DVGs only when
their frequency is <10−2 and that this comes at the expense
of an accurate DVG quantification due to size- but also se-
quence-dependent biases. Using both methods to deter-
mine the DVG landscape of WT and mutant influenza
viruses, we further show that PA mutants induce more fre-
quent and diverse DVGs than their WT counterpart. Focus-
ing on the sequences at breakpoints, we observed a
significant enrichment in deletions showing direct, A/T-
rich sequence repeats at the breakpoint sites, suggesting
that such repeats could be involved in the mechanism of
DVG generation.

RESULTS

Fast detection and quantification of DVGs using
the DG-seq pipeline

Wedeveloped a bioinformatics pipeline namedDG-seq to
characterize influenza virus DVGs (Fig. 1A; Supplemental
Files S1, S2). Upon Illumina sequencing of viral genomic
RNAs (vRNAs) extracted from A/WSN/33 virions, the se-
quencing data were aligned to the viral genome reference
sequence using Burrows–Wheeler aligner (BWA MEM).
BWAMEM is a fast alignment program that can extract chi-
meric reads (also termed split reads), which occur when a
sequencing read aligns to two distinct sites in the refer-
ence sequence with little or no overlap. For example, if
the 5′ and 3′ portion of the read maps to positions 110–
160 and 1200–1270 in the reference genome, respective-
ly, the alignment identifies that the read is spanning the
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junction of a deletion from position 160 to position 1200
(Fig. 1B). Upon alignment, our DG-seq algorithm extracts
chimeric reads and further provides information relative
to the breakpoint ends, raw read counts and normalized
read counts (the latter being referred to as “Frequency de-
termination” in Fig. 1A) for each set of deletion DVGs char-
acterized by the exact same breakpoints.
To determine the background count threshold for the

DG-seq pipeline, we produced a set of eight full-length
in vitro transcribed (IVT) influenza vRNAs. Five equimolar
mixes of IVT vRNAs were reverse-transcribed and the
cDNA was submitted to Illumina sequencing directly (RT-
seq, three mixes), or the cDNA was PCR-amplified before
sequencing (RT-PCR-seq, twomixes). Upon DG-seq analy-
sis of the IVT vRNA mixes, most deletions were identified
based on a very low read count of 1 or 2 reads. Considering
collectively all deletions identified in the 5 IVT mixes, 99%
had counts <14, that is, that the 99th percentile of the raw
counts (referred to as Raw99) of the pooled data was 14, a
good candidate for background noise threshold (Fig. 1C;
Supplemental Table S1). To assess the robustness of this
estimation, we repeated this experiment independently
(four equimolar mixes of IVT RNA, two run in RT-seq and
two in RT-PCR-seq). When Raw99 was computed sepa-
rately for each deletion identified per mix and per seg-
ment, the distribution of Raw99 values was comparable in

both experiments (Supplemental Fig. S1A). Considering
collectively all deletions identified in the four IVT mixes
of Expt B, we found a Raw99 of 13 counts, in line with the
results from Expt A, suggesting that this threshold, in our
experimental conditions, is not dependent on
the experiment or the sequencing run. Notably, Raw99 val-
ues were not dependent on the method used (RT-seq
or RT-PCR-seq, Supplemental Fig. S1B). Additionally,
Raw99 was found to be poorly correlated to coverage
depth (r=0.2, P=0.1, Supplemental Fig. S1C), while its
normalized counterpart (referred to as Normalized99)
was significantly negatively correlated to coverage depth
(r=−0.56, P<0.0001; Supplemental Fig. S1D), providing
a rationale for using raw counts rather than normalized
counts to determine background threshold. Together,
these results suggest that the 99th percentile of raw counts
of control IVTmixes is a statistic that is robust to experimen-
tal run, sequencingmethod and coveragedepth, and iden-
tify 14 as an appropriate background threshold value in our
conditions. Therefore, in subsequent analyses, we filtered
out DVGs with a read count <14, as well as DVGs with a
deletion of <10 nt (“Noise filtering” in Fig. 1A) in order to
detect specific and biologically relevant DVGs.
The analysis of aligned chimeric reads (150 nt long) re-

vealed that themappedportions on each side of the break-
ing point were 30–120 nt long. This suggests that, for

E
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C

D

FIGURE 1. Detection and quantification of DVGs using DG-seq. (A) Schematic representation of the DG-seq pipeline. (B) DG-seq can detect
deletion DVGs. (C ) Distribution of the number of reads supporting a given deletion (with unique breakpoint start and end) upon analysis of in
vitro transcribed full-length pseudo-vRNAs. For instance, in RT-seq samples most deletions (>650) are covered by one read, about 100 are cov-
ered by two reads, etc. The 99th percentile was found identical in RT-seq and RT-PCR-seq samples. (D) Some DVG junctions cannot be identified
because of too short sequences on one side of the junction. (E) Typical coverage per site depending on DVG frequency.

RNA-seq accuracy for influenza DVG quantification
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example, a read whose 5′ breakpoint
is 20 nt downstream from its 5′ end
will be mapped on the right side but
not on the left side of the breakpoint,
and therefore will not be assigned as
a chimeric read (Fig. 1D). To compen-
sate for the undetected (30+30)/150
=60/150=2/5 of total DVGs, the
read counts were multiplied by 5/3.
In addition, read counts need to be
normalized with regard to variations
in the sequencing depth. Since the
coverage can be variable along the
vRNA sequence (typically it will show
a central drop when a high-frequency
DVG is present, Fig. 1E), normalizing
over the total number of reads map-
ping to the vRNA is biased. Therefore,
wenormalizedDVG read counts to the
maximum coverage per position (or,
rather, themean of the 2%highest val-
ues, to avoid outliers), generally found
within the packaging signals located
at the 5′ and 3′ ends of vRNAs. Nor-
malized counts are referred to below
as frequencies.

Reproducibility of DVG analysis
using the DG-seq pipeline

To assess the reproducibility of DVG
analysis using the DG-seq pipeline,
vRNAs were extracted from three
stocks of recombinant A/WSN/33 vi-
rus: the wild-type (WT) virus and two
PA mutants (K635A and R638A), pro-
duced by reverse genetics and sub-
mitted to one round of amplification
on MDCK cells upon plaque purifica-
tion. The K635A and R638A muta-
tions in PA were shown to weaken
the interaction between the influenza
polymerase and the carboxy-terminal
domain of cellular RNA polymerase II
largest subunit (Lukarska et al. 2017),
and in an independent study the PA-
R638A mutation was shown to pro-
mote the generation of DVGs (Fodor
et al. 2003). On each viral stock, two independent RNA ex-
tractions and independent RNA processing for RT-seq or
RT-PCR-seq were performed (referred to as Expts 1 and 2).

DG-seq analysis revealed respectively for theRT-seq and
RT-PCR-seq samples a total of 85 and 222 DVGs with inter-
nal deletions (at this stage theDVGswerenotdifferentiated
whether they derived from theWTormutant A/WSN/33 vi-

rus), with a good reproducibility between the two experi-
ments (r=0.96 and r=0.97, respectively) (Fig. 2A,B;
Supplemental Table S2). The proportion of DVGs detected
above background (i.e., with a read count ≥14) in both ex-
periments was 56% and 66% upon RT-seq and RT-PCR-
seq, respectively (Fig. 2A,B, pink dots and Venn diagrams).
Noticeably, all DVGs detected above background in one

BA

C D

FIGURE 2. Reproducibility of DVG analysis using the DG-seq pipeline. (A,B) Expt 1 and 2 cor-
respond to two independent purifications of genomic vRNAs from the same three viral stocks
(WT andmutant A/WSN/33 viruses), followed by independent processing for RT-seq (A) or RT-
PCR-seq (B) and analysis through the DG-seq pipeline. Each dot represents a distinct DVG
identified with a read count above the background noise threshold, that is, ≥14 in both
(pink dots) or in at least one of the experiments (red and blue dots). The frequency measured
in Expt 2 is plotted as a function of the frequency measured in Expt 1, with a logarithmic scale
(UD, undetected, i.e., read count= 0). Venn diagrams represent the numbers of DVGs identi-
fied above background in both or in one of the experiments. (C ) For the subset of DVGs iden-
tified in Expt 1, the frequency measured upon RT-PCR-seq is plotted as a function of the
frequency measured upon RT-seq, with a logarithmic scale (UD, undetected, i.e., read count
= 0). Each dot represents a distinct DVG identified with a read count above the background
noise threshold, that is, ≥14 with both (pink dots) or with at least one of the methods (red
and blue dots). The Venn diagrams represent the numbers of DVGs identified above back-
ground with both or with one of themethods. r values indicated inA–C are Pearson correlation
coefficients. (D) Same graph as in C, but with DVGs colored according to DVG size.
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experiment were also identified in the
second independent experiment, al-
beit for some of them with a read
count <14due to differences in the se-
quencing depth (undetected, or UD,
among the red and blue dots in Fig.
2A,B). DVGs that were detected
above background in a single RNA ex-
periment were mostly detected in
Expt 1, and were found at lower fre-
quencies than most of the DVGs de-
tected in both experiments (Fig. 2A,
B, red dots compared to pink dots).
When the analysis was restricted to
DVGswith a frequency>10−3, thepro-
portion detected in both experiments
was 78% and 83% upon RT-seq and
RT-PCR-seq, respectively, indicating
an excellent reproducibility.
We next focused on the 226 DVGs

detected above background in Expt
1 and compared the frequency ob-
tained using RT-seq versus RT-PCR-
seq (Fig. 2C). A moderate correlation
coefficient was observed (r=0.7) and
overall only 35%of theDVGs were de-
tected with both methods (Fig. 2C,
pink dots and Venn diagram).
Importantly, some (mostly small-sized)
DVGs detected above background
with frequencies up to 10−2 in RT-
PCR-seq remained undetected in RT-
seq (blue dots and UD in Fig. 2C,D).
Overall, our data indicate that the
DG-seq pipeline allows a robust and
very reproducible detection of DVGs,
but suggests that RT-seq and RT-
PCR-seq induce different biases in
DVG frequency estimation.

Comparison of RT-seq
and RT-PCR-seq using synthetic pseudo-DVG RNAs

To rigorously assess and compare the sensitivity and bias-
es of the RT-seq and RT-PCR-seq methods for the detec-
tion of DVGs, we used three synthetic in vitro transcribed
RNAs that mimic DVGs from the PB2 vRNA ranging from
424 to 1184 nt in size (Fig. 3A). To reveal sequence-depen-
dent biases, we designed an additional DVG derived from
the PB1 vRNA with almost the same size as the shortest
PB2 pseudo-DVG (425 nt) (Fig. 3A). Each synthetic pseu-
do-DVG RNA was mixed at different molar ratios (1:1,
1:9, 1:99, 1:999, corresponding to frequencies of 0.5,
0.1, 0.01, and 0.001, respectively) with the corresponding
synthetic full-length vRNA. Final mixes containing an equi-

molar ratio of in vitro transcribed RNAs corresponding to
the eight full-length genomic segments were processed
for RT-seq or RT-PCR-seq and analyzed with the DG-seq
pipeline (Supplemental Table S1).
Upon RT-seq or RT-PCR-seq, all pseudo-DVGs could be

detected when their actual frequency was 0.5 or 0.1 or
0.01 (closed circles in Fig. 3B–E), except for the PB2-424-
nt-long DVG which was not detected above background
upon RT-seq when present at a frequency of 0.01 (Fig.
3C, open circles indicate a read count <14). When pseu-
do-DVGs were present at a lower frequency of 0.001,
they systematically remained undetected above back-
ground noise upon RT-seq (open circles in Fig. 3C); in con-
trast, upon RT-PCR-seq, all but the PB1-425-nt-long DVGs
were detected above background noise (Fig. 3E),

E

B

A

C

D

FIGURE 3. Comparison of RT-seq and RT-PCR-seq using synthetic pseudo-DVG RNAs.
(A) Schematic representation of the synthetic RNAs corresponding to PB2- and PB1-derived
pseudo-DVGs. (B–E) The synthetic RNAs shown in Awere added to an equimolar mix of eight
synthetic full-length pseudo-vRNAs, using different molar ratios between the pseudo-DVG
and the corresponding full-length vRNA. The final mixes were processed for RT-seq (B,C ) or
RT-PCR-seq (D,E) and analyzed with the DG-seq pipeline. The measured frequency of each
synthetic pseudo-DVG is plotted as a function of the actual frequency with a linear (B,D) or a
logarithmic (C,E) scale. Open circles represent read counts below the background noise
threshold (i.e., <14).
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indicating that RT-PCR-seq is more sensitive than RT-seq
to detect low frequency DVGs in the 424–1184 nt range.

Upon RT-seq, themeasured frequencies were systemati-
cally lower than the actual frequencies (Fig. 3B,C). For
instance, at actual frequencies of 0.5 to 0.01, the underes-
timation rates were 1.3- to 2.7-fold and 1.5- to sixfold for
the 1184- and 765-nt-long DVGs, respectively (Fig. 3B,C).
The underestimations were more pronounced for the
smaller 424- and 425-nt-long DVGs, which were detected
at an ∼10- to 30-fold lower frequency than their actual fre-
quency (Fig. 3B,C). The lower detection efficiency of short-
er DVGs might be partly due to the specific range of
fragment size retained during Illumina library preparation
(400–700 nt, seeMaterials andMethods), as the proportion
of 400–700-nt-long fragments that contain a deletion
breakpoint is expected to be lower than for longer DVGs.
Importantly, the measured frequencies were very similar
for the 424- and 425-nt-long DVG, indicating that the
bias observed upon RT-seq is sequence-independent.

In contrast, the measured frequencies upon RT-PCR-seq
were up to 12-fold higher compared to the actual frequen-
cies, and they differedmore substantially from one DVG to
another (Fig. 3D,E). Notably, the measured frequency for
the largest, 1184-nt-long, DVG laid between themeasured
frequencies for the 765- and 424-nt-long DVGs, suggest-
ing that the frequency bias was not only size-dependent
(in which case the bias would have increased or decreased
with size, and the largest pseudo-DVGs would have shown
the smallest or largest bias). In support of this hypothesis,
the PB2-424- and PB1-425-nt-long DVGs showed very dif-
ferent biases: for instance, when the actual frequency was
0.1 they were detected at a frequency of 0.6 and 0.25, re-
spectively (Fig. 3D–E). These data indicate that PCR ampli-
fication, in addition to the expected size-dependent bias,
induces a sequence-dependent bias, which prevents accu-
rate estimation of DVG frequencies either in absolute or in
relative terms.

Characterization of DVGs in WT and transcription-
defective PA mutant viruses

We next characterized separately the DVGs found upon
DG-seq analysis of vRNAs purified from the WT, PA-
K635A and PA-R638A viral stocks in Expt 1 (Supplemental
Table S3). As shown in Figure 4A,B, DVGs were overall
more frequent and diverse for the mutants (red and or-
ange) than for the WT (blue), and more markedly so for
the PA-K635A mutant (red). The data obtained upon RT-
seq (left panels) and RT-PCR-seq (right panels) showed
the same trend, although the measured DVG frequencies
were higher upon RT-PCR-seq. The segments showing the
highest frequency (Fig. 4A) and diversity (Fig. 4B) of DVGs
were the polymerase gene segments PB2, PB1, and PA, in
agreement with previously published observations (Nayak
et al. 1985; Frensing 2015). The PA-K635Amutant was the

only virus for which, notably, DVGs were detected from ev-
ery single segment upon RT-seq, with an overall frequency
around 0.1 for the PB1, PB2, and PA segments, 0.01 for the
HA, NP, and NA segments, and 0.001 for the M and NS
segments (Fig. 4A, red bars). By comparison, only PB1-
and PA-derived DVGs were detected for the WT virus,
with an overall frequency of 0.01 and 0.003, respectively
(Fig. 4A, blue bars). DVGs derived from the PB1, PB2,
and PA segments showed mostly large deletions (i.e.,
>25% of the total segment length) whereas DVGs derived
from other segments showed a higher proportion of small
deletions, as illustrated in Figure 4B by their position rela-
tive to the diagonal line (representing a zero distance be-
tween the breakpoint start and end positions).

No hotspots for the breakpoint start or end position
were identified (Fig. 4B), and, accordingly, only few
DVGs with the exact same breakpoint start and end posi-
tions were found in distinct viral stocks (Supplemental
Table S3). Therefore, we assessed whether breakpoint
sites displayed a particular nucleotide environment. To
this end, we selected DVGs whose breakpoint start and
end could be mapped unambiguously to unique positions
in the reference A/WSN/33 sequences (61 DVGs out of
226, see next paragraph), and calculated the frequency
of each nucleotide at each position upstream of the break-
point start (−10 to −1) and downstream from the break-
point end (+1 to +10). No conserved motif was observed
(Fig. 5A,B). We next defined the distribution of A, T, G,
and C nucleotides within the −10 to +10 windows sur-
rounding a breakpoint and found no significant difference
when compared to their overall distribution in the A/WSN/
33 genome (Fig. 5C). Finally, we tested whether the ob-
served breakpoint sites were leading preferentially to in-
frame or out-of-frame deletions. As shown in Figure 5D,
the three types of frameshifts possibly induced by internal
deletions (+0, +1, and +2) were equally distributed, irre-
spective of the virus under study and whether the RT-seq
or RT-PCR-seq method was used.

Direct sequence repeats adjacent to DVG
breakpoints

Close analysis of the DVG sequences revealed in some in-
stances the presence of short direct repeats flanking each
sideof the internal deletion, which hinder theprecisedelin-
eation of breakpoint start and end positions. In the particu-
lar example shown in Figure 6A, due to the presence of a
short direct repeat of 3 nt (TAA) on each side of the dele-
tion, there are four possible alignments of the DVG se-
quence with respect to the reference sequence, and
therefore an uncertainty n=3 compared to DVGs for which
the alignment is unambiguous. The DG-seq algorithm was
designed so that the uncertainty value is provided in the
output file for each DVG (n=0 to 12 among the 226
DVGs detected in Expt 1, Supplemental Table S3). In cases

Boussier et al.

1910 RNA (2020) Vol. 26, No. 12

 Cold Spring Harbor Laboratory Press on December 18, 2020 - Published by rnajournal.cshlp.orgDownloaded from 

http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.077529.120/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.077529.120/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.077529.120/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.077529.120/-/DC1
http://www.rnajournal.org/lookup/suppl/doi:10.1261/rna.077529.120/-/DC1
http://rnajournal.cshlp.org/
http://www.cshlpress.com


where the uncertainty was >0, the breakpoint start position
was arbitrarily mapped to the nucleotide preceding the di-
rect repeat on the 5′ side of the deletion (bottomalignment
in Fig. 6A).
To assess whether our data set was enriched with DVGs

showing an uncertainty >0, we determined the probability
at which such uncertainties would appear if the polymer-
ase jumps were occurring randomly. Suppose the poly-
merase jumps from position a to position b. There is
uncertainty ≥1 if (and only if) either positions a+1 and b
show the same nucleotide [denoted N(a+1) =N(b)], or po-
sitions a and b− 1 show the same nucleotide [i.e., N(a) =
N(b− 1)] (Fig. 6B, left diagram). There is an uncertainty

≥2 if (and only if) positions either (i) N(a+1) =N(b) and
N(a+2) =N(b+1), or (ii) N(a) =N(b− 1) and N(a+1) =
N(b), or (iii) N(a−1) =N(b−2) and N(a) =N(b−1) (Fig.
6B, right diagram). Likewise, it is possible to define the
necessary and sufficient conditions for an uncertainty ≥n
to exist, for any value of n (details of the calculations are
provided in the Materials and Methods section). From
those equations we derived, in the case of polymerase
jumps occurring randomly, the distribution (for n=0 to 5,
Fig. 6C, gray bars) and complementary cumulative distri-
bution of uncertainty values (Fig. 6D, gray dashed line).
Because the genome of influenza virus is A/T-rich

(Fancher and Hu 2011) and contains secondary structure-

B

A

FIGURE 4. DVG landscapes for the WT and transcription-deficient A/WSN/33 viruses. The DVGs identified upon DG-seq analysis of vRNAs pu-
rified from the WT, PA-K635A and PA-R638A viral stocks in Expt 1 were characterized separately for each virus (while they were analyzed all to-
gether in Fig. 2C). (A) The total DVG frequency is indicated for each genomic segment. (B) 2D plots indicate, for each identified DVG represented
by a dot, the breakpoint start and end positions and the frequency (size of the dot). The axes scale is adapted according to the size of each
segment.
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forming sequences (e.g., the partially complementary 12
and 13 nt at the 3′ and 5′ end of each vRNA), we reasoned
that the formula generated from a random sequence may
not accurately account for the null hypothesis of polymer-

ase jumps occurring randomly within the viral RNA se-
quences. Therefore, we computed the distributions and
complementary cumulative distribution of uncertainty val-
ues using the A/WSN/33 reference sequence, for each

B

A

C

D

FIGURE 5. DVGbreakpoints. (A–C ) Nucleotidic composition of the sequences adjacent to theDVGbreakpoints. Analysis was performedby com-
bining DVGs obtained from all segments for the WT andmutant viruses. (A,B) The frequency of each nucleotide found both upstream and down-
stream from the breakpoints is shown.Negative andpositive numbers denotepositions upstreamof the breakpoint start anddownstream from the
breakpoint end, respectively.As a reference, theoverall frequencyof eachnucleotide in the IAVgenome is indicatedby thedashedhorizontal lines.
(C ) Distribution of each nucleotide when grouping positions−10 through +10, compared with the null distribution consisting of IAV reference se-
quences through all segments. Significance was determined using χ2 goodness-of-fit test. (D) Pie charts showing the relative proportion of DVGs
found with each frameshift, depending on the method used. Significance was determined using χ2 goodness-of-fit test.
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genomic segment. The distributions
were found to be very close to that
obtained with a random sequence
(Fig. 6C,D, colored bars and lines).
The mean distribution over all seg-
ments was subsequently used to rep-
resent the null hypothesis.
We then examined the actual distri-

bution of uncertainty values for DVGs
detected upon RT-seq with the two
PA mutant viruses (Fig. 6E,F) and
upon RT-PCR-seq with the WT and
PA mutant viruses (Fig. 6G,H). The
low number of DVGs detected upon
RT-seq with the WT virus (<10) did
not provide sufficient statistical power
to perform this type of analysis. For
each of the five experimental sam-
ples, we consistently found that the
observed probability of DVGs with
an uncertainty >0 was significantly
higher than under the null hypothesis
(colored lines compared to the gray
dotted line in Fig. 6F,H). Remarkably,
13 out of 14 DVGs that were detected
independently with the exact same
breakpoints in two or more distinct vi-
ral stocks showed an uncertainty ≥4
(Supplemental Table S3, P<0.001).
Finally, we assessed whether the di-
rect repeat sequences in DVGs with
an uncertainty >0 showed a nucleo-
tide composition bias. Indeed, com-
pared to the A/WSN/33 full length
genome used as a reference for the
null hypothesis (Fig. 5C), the direct re-
peat sequences present in DVGs with
an uncertainty = 1, ≤2, ≤3 or ≤4 (all vi-
ruses and segments combined) ap-
peared to be significantly enriched in
A and T nucleotides (Fig. 6I).

Comparative assessment of the
DG-seq pipeline

Awidely used algorithm for the analy-
sis of DVGs is ViReMa (Viral Recombi-
nant Mapper; Routh and Johnson
2014), which relies on iterative align-
ment while DG-seq relies on single
alignment. We assessed how DG-
seq compares to the ViReMa-based
pipeline recently published by Alnaji
et al. (2019) for the detection of in-
fluenza DVGs. The RNA-seq data

E F

B

A

C D

I

G H

FIGURE 6. Direct sequence repeats adjacent toDVGbreakpoints. (A) Example of aDVGwith a
direct sequence repeat of 3 nt adjacent to the breaking point (indicated in blue). (B) Conditions
for a jump from position a to position b to create a DVGwith an uncertainty ≥1 (left diagram) or
≥2 (right diagram). (C,D) Distribution function (C ) and complementary cumulative distribution
function (D) of the uncertainty value forDVGswith randombreakpoints, either computed froma
random sequence (gray bars and line) or computed from the sequence of each segment (col-
ored bars and line). (E–H) Distribution function (E,G) and complementary cumulative distribu-
tion function (F,H) of uncertainties of DVGs obtained for each indicated virus upon RT-seq
(E,F ) or RT-PCR-seq (G,H) analysis, comparedwith randomDVGs computed for each sequence.
(∗) P<0.05, (∗∗∗) P<0.001. Significancewas determined using χ2 goodness-of-fit test, followed
by multiple testing correction using Holm’s method. (I) Distribution of each nucleotide within
uncertainty sequences in DVGs with uncertainty= 1, ≤2, ≤3, or ≤4. Significance was deter-
mined using χ2 goodness-of-fit test, with the null distribution being computed from the
A/WSN/33 full-length genome reference sequences, as shown in Figure 5C.
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set from Alnaji et al. relative to four DVG-enriched viral
stocks, was retrieved online and analyzed with DG-seq.
As shown in Supplemental Figure S2A (to be compared
with Fig. 9B in Alnaji et al. 2019), the numbers of distinct
DVGs detected within each genome segment were similar
between DG-seq and the ViReMa-based pipeline. The
specific locations of DVG junctions found in the PB1 and
PA segments also showed a similar profile (Supplemental
Fig. S2B compared to Fig. 9C in Alnaji et al. 2019). Con-

versely, we analyzed our RNA-seq data sets with the
ViReMa-based pipeline developed by Alnaji et al. (https
://github.com/BROOKELAB/Influenza-virus-DI-
identification-pipeline). Upon analysis of the vRNAs puri-
fied from the WT, PA-K635A, and PA-R638A viral stocks
in Expt 1, 90%–100% of the DVGs detected with the
ViReMa-based pipeline were also detected with DG-seq
(Fig. 7A, left panels), whereas in most samples the
ViReMa-based pipeline detected no more than 50%–

70% of the DVGs detected with DG-
seq (Fig. 7A, right panels). One and
three DVGs were detected exclusively
with ViReMA upon RT-seq and RT-
PCRseq, respectively, compared to
21 and 45 DVGs detected exclusively
with DG-seq in the same conditions
(Supplemental Fig. S3). As the read
count threshold differed between the
twomethods, and to exclude the pos-
sibility that the extra-DVGs detected
with DG-seq were merely noise, the
comparison between the two pipe-
lines was extended to mixes of in vitro
transcribed viral-like RNAs spikedwith
pseudo-DVGs at frequencies of 0.5,
0.1, 0.01, or 0.001. As shown in Figure
7B, one out of the seven low-frequen-
cy DVG-samples that gave rise to low-
er than threshold read counts with
ViReMA was detected with higher
than threshold read counts with DG-
seq. For the remaining samples, the
read counts were overall higher with
DG-seq compared to ViReMa, regard-
less of the size of the DVGs or the
method used (RT-seq or RT-PCR-
seq), therefore confirming a slight
benefit of DG-seq in terms of
sensitivity.

DISCUSSION

Accurate quantification of viral DVGs
from RNA-seq data remains a chal-
lenge. PCR amplification biases,
when cDNAs prepared from viral
RNAs are amplified before seq-
uencing, have not been thoroughly
evaluated. Here we examined the ac-
curacy and reproducibility of RNA-
seq with or without preamplification
of the cDNA for the detection and
quantification of influenza DVGs, and
assessed theperformanceof our novel
bioinformatics algorithm DG-seq. We

B

A

FIGURE 7. Comparison of the DG-seq and ViReMa pipelines. (A) RNA-seq data correspond-
ing to RT-seq and RT-PCR-seq on the WT, PA-K635A, and PA-R638A viral stocks from Expt 1
were analyzed using the ViReMa pipeline. For each sample, DVGs identified upon DG-seq
analysis were compared to DVGs detected with the ViReMa pipeline. The percentage of
PA, PB1, and PB2 DVGs detected with DG-seq with respect to (wrt) ViReMa (left panel) and
conversely (right panel) are shown. The comparison was made using background thresholds
specific for each pipeline (read counts ≥14 for DG-seq; ≥30 (PA) or 20 (PB1, PB2) for
ViReMa). (B) RNA-seq data corresponding to RT-seq and RT-PCR-seq on the mixes of in vitro
transcribed vRNAs spiked with pseudo-DVGs at frequencies of 0.5, 0.1, 0.01, or 0.001 (as de-
scribed in Fig. 3) were analyzed using the ViReMa pipeline. The read counts of each synthetic
pseudo-DVG obtained with ViReMa is plotted against the DG-seq read counts. The back-
ground thresholds specific for each pipeline are indicated by dotted lines (read counts ≥14
for DG-seq; ≥20 for ViReMa). (UD) Undetected.
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used two types of RNA samples: two independent RNA ex-
tractions from influenza virus stocks (WTandDVG-prone vi-
ruses), and mixes of in vitro transcribed viral-like RNAs
mimicking the presence of DVGs of distinct sizes and fre-
quencies instead of simulated data like in previous studies
(Routh and Johnson 2014; Beauclair et al. 2018; Alnaji et al.
2019; Bosmaet al. 2019; Sun et al. 2019).Wequantified the
background level, reproducibility, sensitivity and accuracy
in frequency determination of the whole pipeline, includ-
ing all wet and dry lab steps involved.
Although both RNA-seq methods showed the same

background noise level (99% of DVGs found upon analysis
of synthetic full-length viral-like RNAs had counts <14,
whatever the method used), RNA-seq data obtained
from the synthetic RNA mixes containing pseudo-DVGs
showed a higher sensitivity of the preamplification-based
over preamplification-free RNA-seq method, with a possi-
ble detection of frequencies down to 10−3 for the former
compared to 10−2 for the latter. However, preamplifica-
tion-based RNA-seq resulted in over-estimation of fre-
quencies up to 12-fold, and more importantly this
estimation bias was not only size-dependent but also se-
quence-dependent, as two DVGs with near-identical sizes
but distinct sequences showed highly different frequency
estimation biases. On the contrary, preamplification-free
RNA-seq analysis of the same two DVGs showed no se-
quence-dependent frequency estimation bias.
The quantification of DVGs obtained from viral stocks in

two independent replicates demonstrated the robustness
of the DG-seq bioinformatic pipeline. Indeed, for each
RNA-seq method, the high reproducibility pattern (with a
regression slope very close to 1) confirmed our detection
limit (14 counts) as being stringent enough, in addition
to validating our normalization method. The much poorer
correlation between the preamplification-based and pre-
amplification-free quantification of DVGs is due to the dif-
ferent nature of size-dependent biases in both methods,
and more importantly to the existence of a strong se-
quence-dependent bias in the preamplification-based
RNA-seq method. Notably, many DVGs that were detect-
ed above background in RT-PCR-seq, some with frequen-
cies up to 10−2, remained completely undetected in RT-
seq (with counts = 0). Since RT-seq can detect frequencies
lower than 10−3 with counts >0, the actual frequency of
these DVGs are likely to be lower than 10−3, and the se-
quence-dependent bias observed with pseudo-DVGs
suggest they might diverge erratically from the estimated
frequencies. In contrast, our data demonstrate that for
the detection of DVGs at an actual frequency≥10−2, pre-
amplification-free RNA-seq is as sensitive as preamplifica-
tion-based RNA-seq and provides a more quantitative
determination of DVG landscapes. In conclusion, unless
there is a need for the detection of DVGs present at a fre-
quency lower than 10−2, and/or the initial viral input is too
low, the preamplification-freemethod is clearly preferable.

After direct comparison of DG-seq with the ViReMa al-
gorithm, which relies on multiple realignments (Routh
and Johnson 2014), DG-seq appeared to provide very sim-
ilar DVG information and even showed a slight benefit over
ViReMa in terms of sensitivity. Advantageous features of
the DG-seq pipeline are a substantially reduced require-
ment for time since it relies on a fast single-alignment
method and does not require multiple realignments per
read: BWA MEM takes 40 to 90 sec to align one sample,
to which 1–30 sec must be added for DG-seq, compared
to 2–15min with the ViReMa pipeline), and easier handling
for noninformatics personnel. Both pipelines can be used
to analyze RNA-seq data produced from other viruses
than IAVs. The primary endpoint of our study was to com-
pare RNA-seqmethods, but the biological control tools we
developed could be used to further compare alignment
procedures, as well as to determine parameter values of
complex algorithms to maximize their reproducibility and
sensitivity on real biological controls rather than on simu-
lated data sets.
In the present study, rather than performing high-MOI

passages to obtain DVG-enriched influenza virus stocks,
we chose to use two PA mutants of A/WSN/33 which,
based on published data (Fodor et al. 2003; Lukarska
et al. 2017), were expected to produce high amounts
of DVGs. The WT and mutant viruses were rescued by re-
verse genetics, plaque-purified and amplified once on
MDCK in parallel, using the exact same procedure. We
confirmed and extended the initial observations by
Fodor et al. (2003) on the PA-R638A mutant, as we found
an increased diversity and frequency of DVGs produced
by the PA-R638A and also to a larger extent by the PA-
K635A mutant virus compared to the wild-type. As these
two mutations specifically induce a strong defect in the
transcription of viral messenger RNAs, one may speculate
that low levels of viral proteins, in particular the nucleo-
protein that encapsidates viral genomic RNAs and the
complementary cRNAs intermediates that serve as tem-
plate for genome replication, may favor the production
of DVGs. Although we focused on deletion DVGs, DG-
seq (along with other algorithm such as DI-tector) can
theoretically detect DVGs that show insertions as well
as copy-back or snap-back DVGs (as the breakpoint end
need not be matched downstream from the breakpoint
start in the reference sequence), which are commonly
found in paramyxoviruses (Vignuzzi and López 2019).
However, insertion, copy-back and snap-back influenza
DVGs were not detected above background levels in
our viral RNA samples, in agreement with previous re-
ports (Nayak et al. 1985; Frensing 2015; Vignuzzi and
López 2019).
Upon preamplification-free RNA-seq of the WT virus,

DVGs with large internal deletions were exclusively detect-
ed in polymerase segments, while with the PA mutants
they were also detected in the HA, NA, and/or NP
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segments. The internal deletions systematically preserved
the 5′ and 3′ ends essential for the packaging of genomic
segments but showed no hotspots, in agreement with pre-
vious characterizations of influenza DVGs (Nayak et al.
1985; Frensing 2015). Our systematic analysis of the
20 nt surrounding the DVG junction site did not reveal
any conserved motif, enrichment in a particular type of nu-
cleotide, or preference for in-frame deletions. Remarkably,
however, we found a significant enrichment in DVGs show-
ing direct sequence repeats at their junction site, mostly
short repeats up to 12 nt in length. Building on the fact
that DG-seq provides for each DVG an uncertainty value
which corresponds to the length in nucleotides of the di-
rect repeat at the junction site, we showed that in all con-
ditions examined the observed frequency of DVGs with an
uncertainty >0 was significantly higher than under the null
hypothesis, consisting in random deletion DVGs derived
from the A/WSN/33 reference sequence. In addition, we
found that the direct repeat sequences present in DVGs
with an uncertainty = 1, ≤2, ≤3 or≤4 were significantly en-
riched in A and T nucleotides.

The presence of direct repeats at DVG junction sites was
observedbyotherswith theA/PR/8/34 virus (Jenningset al.
1983) and more recently with H1N1pdm09 (Saira et al.
2013; Alnaji et al. 2019) and H7N9 (Lui et al. 2019) viruses,
but to our knowledge we are the first to demonstrate a sig-
nificant association between the two features. The fact that
Alnaji et al. did not find such a significant association may
lie in the fact that they grouped uncertainties = 0 and=1
when computing their statistics (Alnaji et al. 2019), thereby
undermining their power to detect a significant enrichment
in uncertainties >0. Differences in the method used to ob-
tain DVG-enriched viral stocks (high MOI passaging versus
DVG-prone mutations) could also contribute to our dis-
crepant findings. Most interestingly, we found that among
the few DVGs that were detected, with the exact same
breakpoints, in two or more distinct stocks, almost all (13
out of 14) showed direct repeat sequences of ≥4 nt. This
highly significant enrichment strongly suggests that, in ad-
dition to a genetic control exerted through the viral poly-
merase subunits (Fodor et al. 2003; Vasilijevic et al. 2017;
and this study) and other viral proteins (Odagiri et al.
1994; Perez-Cidoncha et al. 2014), the presence of A/T-
rich direct repeats in the viral genomemay direct polymer-
ase jumps and control the production of deletion DVGs.
Further investigations are needed to fully understand the
underlying mechanisms, which is of high interest given
the potential of DVGs in influencing infection outcome
and their possible use as a novel antiviral therapyapproach.

MATERIALS AND METHODS

RNA extractions from influenza virus stocks

Recombinant A/WSN/33 influenza viruses (NCBI:txid382835), ei-
ther wild-type or bearing single mutations in the PA polymerase

subunit (PA-K635A and PA-R638A), were used. Genomic vRNAs
were extracted from 150 µL of viral stocks using the QIAamp
Viral RNAMini Kit (Qiagen), eluted in 45 µL of nuclease-free water
and subjected to RT-PCR (from 5 µL) or to cDNA synthesis (from
30 µL) as described below.

In vitro transcription of synthetic pseudo-vRNAs

In order to produce synthetic full-length or defective pseudo-
vRNAs, overlap extension PCR (Higuchi et al. 1988) was per-
formed using the reverse genetics plasmids pPolI-WSN-PB2 or
pPolI-WSN-PB1 (Fodor et al. 1999) as templates. The first step
PCRs were performed using primers complementary to the ex-
tremities of the PB2 or PB1 segment, and primers complementary
to internal sequences surrounding the breakpoint start (BS) and
breakpoint end (BE) of the pseudo-DVGs PB2-424 (BS:207,
BE:2125), PB2-765 (BS:364, BE:1941), PB2-1184 (BS:556,
BE:1714), and PB1-425 (BS: 101, BE: 2018). The second step
PCRs were performed using primers complementary to the ex-
tremities of the PB2 or PB1 segment, the reverse primer being ex-
tended at the 5′ end by a modified sequence of the T7 promoter
(5′-GGAAATTTAATACGACTCACTATA…-3′). The exact se-
quence of all primers can be provided upon request.

Synthetic RNAs corresponding to the eight full-length vRNAs
or the four DVGs were in vitro transcribed (IVT) using 200 ng of
gel-purified PCR product and the MEGAscript Kit (Thermo
Fisher Scientific). RNAs were recovered after lithium chloride pre-
cipitation and quantified using the Qubit RNA HS Assay Kit
(Thermo Fisher Scientific). The eight IVT full-length vRNAs were
mixed at an equimolar ratio of 5×10−3 pmol each and one of
the synthetic DVGs was added in a 1:1, 1:9, 1:99, 1:999 molar ra-
tio, in a total volume of 50 µL. RT-PCR (for preamplification-based
RNA-seq, or RT-PCR-seq) and cDNA synthesis (for preamplica-
tion-free RNA-seq, or RT-seq) were performed on each of these
IVT RNA mixes.

RT-PCR for preamplification-based RNA-seq
(RT-PCR-seq)

RT-PCR reactions were performed according to a protocol
adapted from Watson et al. (2013). Briefly, 5 µL of vRNAs or
5 µL of IVT RNA mixes were amplified using the Superscript
One-Step RT-PCR with Platinium Taq (Thermo Fisher Scientific)
and primers complementary to the extremities conserved in all
viral genomic segments (U12 and U13). PCR products were pu-
rified using the Nucleospin PCR Clean-up Kit (Machery Nagel)
and quantified using the Quant-iT RNA Assay Kit (Thermo
Fisher Scientific).

cDNA synthesis for preamplification-free RNA-seq
(RT-seq)

Briefly, 30 µL of vRNAs or 30 µL of IVT RNA mixes were purified
and concentrated to 10 µL using Agencourt RNAClean XP SPRI
beads (Beckman Coulter) and subjected to first strand cDNA syn-
thesis using the Superscript III First-Strand Synthesis System for
RT-PCR Kit (Thermo Fisher Scientific) and a mixture of random
hexamers and U12–U13 specific primers (see above). The second
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cDNA strand was synthetized using 5 U of E. coli RNase H, 40 U of
E. coli DNA polymerase, and 10 U of E. coli DNA ligase for 2 h at
16°C (New England Biolabs). Double-stranded cDNAs were puri-
fied using Agencourt RNAClean XP SPRI beads (Beckman
Coulter) and quantified using the Quant-iT RNA Assay Kit
(Thermo Fisher Scientific).

Next-generation sequencing

The Illumina library construction and sequencing were performed
by the P2M platform at Institut Pasteur. In brief, the Nextera XT
DNA Library Preparation kit (Illumina) was used for library con-
struction. Upon enzymatic fragmentation, a size selection was
performed using Pippin Prep (Labtech) to retain fragments be-
tween 400 to 700 nt in length. Finally, the pooled libraries were
sequenced on an Illumina NextSeq 500 instrument (150 nt paired
end reads). The resulting fastq files were demultiplexed with the
bcl2fastq Conversion Software v2.20 (Illumina).

Alignment and identification of DVGs

Fastq files were trimmed and aligned using BWA MEM, and sort-
ed bam files were fed to the DG-seq pipeline using R v. 3.4.3 and
the Rsamtools package (Bioconductor). Reads that were not
aligned or did not pass quality control (default thresholds) were
discarded. DG-seq script and example file are provided
(Supplemental Files S1, S2).

Reads containing an SA tag were isolated, and the following in-
formation was used to classify DVGs: CIGAR (c1), SA CIGAR (c2), 0
× 10 flag (s1, indicating whether the alignment is the reverse com-
plement of the sequence), and SA strand argument (s2). Obtained
reads were divided into three categories:

• If s1 = s2 and (c1, c2) = (MH, HM) or (MS, SM), simple deletion or
insertion

• If s1≠ s2 and (c1, c2) = (MH, MH) or (MS, MS), 5′ copy-back DVG

• If s1≠ s2 and (c1, c2) = (HM, HM) or (SM, SM), 3′ copy-back DVG.

In addition, simple deletions, detected as c1 =MDMwithout SA
tags, were added.

Breakpoint positions were computed accordingly and filtering
was performed to avoid duplicate entries. Overlapping align-
ments were detected as potential uncertainty junctions and the
leftmost breakpoint start was used, while reads with unaligned
middle sequences were discarded.

Except for background noise computation, deletions of length
<10were discarded. Read counts nwere normalized as 5/3× n/N,
whereN denotes themean of the 2% highest coverage values per
position.

In Figures 4–7, data from Expt 1 are shown and analyzed. For
the quantitative analyses performed in Figures 5 and 6, data
points consisted of unique (breakpoint start, breakpoint end)
pairs.

Uncertainties

Uncertainties were computed for each start i and end j positions
(with j≥ i+1), using the reference sequence, giving rise to a ma-

trixM. When the uncertainty computed by length of the overlap-
ping sequences in the two alignments were in disagreement with
the uncertainty computed using the reference sequence (from
M ), the latter was used.
To determine the null probability for random polymerase

jumps, suppose the polymerase jumps from position a to position
b (Fig. 6B). There is uncertainty≥1 if (and only if) either positions a
+1 and b share the same nucleotide, or if positions a and b−1
share the same nucleotide. In other words,

Ua,b ≥ 1 ⇔ Sa+1 = Sb or Sa = Sb−1,

where Si is the nucleotide at position i in the reference sequence,
Ui,j the uncertainty for a jump from i to j. Similarly,

Ua,b ≥ 2 ⇔
Sa+1�a+2 = Sb�b+1 or

Sa�a+1 = Sb−1�b or
Sa−1�a = Sb−2�b−1

⎧
⎨

⎩

where Si→j denotes (Si,…, Sj) (Fig. 6B). Therefore,

Ua,b ≥ n ⇔ ∃k [ {0, . . . , n− 1}, Sa+k�a+k+n = Sb+k−1�b+k+n−1.

In other words, the uncertainty is ≥n if and only if, within a win-
dow of 2n around a, one can find a sequence of size nwhich is ex-
actly similar to one centered on b−1 of the same size. So the
probability that U≥n is the probability qn of n consecutive suc-
cesses in a sequence of 2n Bernouilli trials with a probability =
1/4 of winning (the odds that two random nucleotides are equal
are 1/4). Feller (2008) showed that when n→∞,

qn � 1− 1− px
(n+ 1− nx)qx2n+1 , (F)

where p=1/4, q=1−p, and x is the root of f (x) = 1− x+qpnxn+1

that is not 1/p. This asymptotical approximation is extremely
good, even for small n’s.
To determine the uncertainty distribution of random sequenc-

es, either formula (F) (using the function uniroot.all of package
rootSolve to determine the roots of f ), or all entries of matrix M,
were used.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.
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