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Abstract Benzimidazoles represent common chemical moieties in bio-
active compounds. The synthesis of this heterocycle often involves a
condensation of an ortho-phenylenediamine with a carboxylic acid de-
rivative. The observed dialkylation of the starting ortho-phenylenedi-
amine is avoided by opening of lactones or lactams. This strategy can
directly yield 1H-benzimidazoles substituted at the 2-position by a func-
tionalized chain. We present herein a study of the effect of different
electron-withdrawing or electron-donating groups at the 4-position of
ortho-phenylenediamines on the opening of lactones or lactams to syn-
thesize benzimidazol-2-yl alkanols and benzimidazol-2-yl alkylamines.

Key words 2-benzimidazol-2-yl alkanols, 2-benzimidazol-2-yl alkyl-
amines, ortho-phenylenediamines, lactones, lactams

Benzimidazoles represent a common chemical moiety
in bioactive compounds such as antimicrobials, food preser-
vatives, antiulcer, antiviral and anti-cancer agents (Figure
1).1–3 The synthesis of this heterocycle often involves con-
densation of an ortho-phenylenediamine with a carbonyl
derivative (Scheme 1)4,5 and, most recently, with ortho-
esters.6 The dialkylation of the starting ortho-phenylenedi-
amine with a carboxylic acid, aldehyde, acid anhydride, acid
chloride, or nitrile (Scheme 1, path A), can be avoided by
ring-opening of lactones or lactams under acidic conditions
(Scheme 1, path B).7–14 Advantageously, path B directly
yields 1H-benzimidazoles substituted at the 2-position by a
functionalized chain and these are of particular interest in
synthesis. In fact, as part of the synthesis of a bioactive
chemical library in our team, we used this efficient path-

way to afford different benzimidazol-2-yl alkanols and ben-
zimidazol-2-yl alkylamines as synthetic stating materials.
We focused on exploring the effect of different substituents
at the 4-position of the monosubstituted ortho-phenylene-
diamine in the reaction with different lactones or lactams.

2-Substituted 1H-benzimidazoles with a side chain con-
taining either a hydroxyl group or a primary amine were
obtained by a one-pot reaction under acidic conditions of
ortho-phenylenediamine with a lactone or a lactam, respec-
tively. One equivalent of 4-(tert-butyl)benzene-1,2-diamine
reacts with an excess (4–6 equivalents, adjusted to obtain a
full reaction) of a lactone or a lactam in 4N HCl at reflux in a
sealed tube during 12–24 hours or until disappearance of
the limiting reagent monitored by TLC (experimental con-
ditions A).15 This reaction was initially explored with lac-
tones and lactams of different size (Table 1). The benzimid-
azol-2-yl alkanols were obtained in very good yields (69–

Scheme 1  Principal synthetic pathways to obtain 1H-benzimidazoles
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93%). The reaction yield with -butyrolactone (entry 1) was
slightly better than those obtained with higher homologues
(entries 2 and 3). The benzimidazol-2-yl alkylamines were
obtained in lower yields, from 9 to 49% (entries 4–6). Use of
-butyrolactam seems to adversely affect the yield of 2a,
possibly due to the relatively poor stability of the starting
five-membered lactam.

Experimental conditions A were then applied to explore
the impact on the reaction of donating groups (t-Bu, Me,
OMe, OH) and withdrawing groups (Cl, CF3, NO2, CN) at the
4-position of the ortho-phenylenediamine. The six-mem-
bered lactone (-valerolactone) and lactam (-valerolact-
am), the most stable rings, were chosen to examine the
scope of the synthesis of benzimidazol-2-yl alkanols and
benzimidazol-2-yl alkylamines (Table 2). We observed that
the isolated yield of the reaction was higher in the presence
of both types of substituents compared to that obtained us-
ing unsubstituted ortho-phenylenediamine (entries 1 and
6), except for 4-chlorobenzene-1,2-diamine (entry 13). This
positive effect of the substituents on the yield has also been
observed at the 3-position of monosubstituted ortho-
phenylenediamines.16 Furthermore, we observed that the
overall average time of reaction was shortened in the pres-
ence of electron-donating groups (EDG). In fact, all elec-
tron-donating substituents at the para-position positively
affect the reactivity of the NH2 (Scheme 2).17–20 Electron-
withdrawing groups (EWG) reduce the nucleophilicity of

the para-NH2 without affecting the nucleophilicity of the
meta-NH2, while electron-donating groups (EDG) increase
the nucleophilicity of the para-NH2 without affecting the
nucleophilicity of the meta-NH2. In both cases, the carbonyl
of the lactone (or lactam) is first attacked by the more acti-
vated of the two amino groups of the ortho-phenylenedi-
amine, followed by the attack of the other amino group. Al-
though the order of attack is not relevant for the re-
giochemical outcome of the reaction, due to tautomerism
of the resulting benzimidazole the presence of electron-do-
nating groups appears to increase the rate of reaction
(Scheme 2C). 4-Chlorobenzene-1,2-diamine shows a reac-
tivity pattern similar to that of the non-substituted ortho-
phenylenediamine, explained by the well-known simulta-
neous withdrawing and donating effect of the chlorine at-
om, common to the other halides.

Further benzimidazol-2-yl alkylamines were also syn-
thesized via a three-step synthesis pathway. Thus, the cor-
responding benzimidazol-2-yl alkanol (1 equiv) previously
obtained under conditions A was engaged in a Mitsunobu
reaction with phthalimide (2 equiv) in the presence of di-
isopropyl azodicarboxylate (DIAD, 2 equiv) and triphenyl-
phosphine (2 equiv) in diethyl ether over 12–20 hours at
room temperature. The phthalimido-derivative thus ob-
tained subsequently reacts with hydrazine monohydrate
(12 equiv) in ethanol over 12 hours at room temperature to
release the corresponding primary amine (experimental
conditions B) (Table 3).21 Diethyl ether was preferred over
THF for the Mitsunobu reaction in order to favor the precip-
itation and removal of triphenylphosphine oxide (Ph3PO)
and to facilitate the isolation of the phthalimido derivative.
In spite of these precautions, the yield of this step remained
low. Thus, the non-isolated phthalimido-derivatives were
directly treated with hydrazine monohydrate, improving
the overall yield. Nevertheless, the desired benzimidazol-2-

Figure 1  Examples of benzimidazole-containing bioactive compounds
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Table 1  Synthesis of 2-Substituted 1H-Benzimidazoles via the Opening 
of Lactones and Lactams

Entry Reactant Time (h) Product Yield (%)a

1 -butyrolactone 12 1a, n = 3 93

2 -valerolactone 12 1b, n = 4 81

3 caprolactone 24 1c, n = 5 69

4 -butyrolactam 12 2a, n = 3  9

5 -valerolactam 24 2b, n = 4 48

6 caprolactam 24 2c, n = 5 49
a Isolated yield.
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yl alkylamines were obtained in lower yields compared to
the one-step synthesis pathway summarized in Tables 1
and 2 (except for Table 3, entry 1), mainly due to the forma-
tion of a side product during the Mitsunobu reaction.
1,2,3,4-Tetrahydro-pyrido[1.2,a]benzimidazole derivatives
3 were observed (Table 3, entries 4, 6, 7) as the main prod-
ucts of this reaction.6,16 This might be the result of an intra-
molecular reaction of the phosphonium intermediate, as
shown in Scheme 3.22 This synthetic pathway could repre-
sent an efficient method of synthesis of these heterocyclic
compounds.

In summary, a range of benzimidazol-2-yl alkylalkanols
and benzimidazol-2-yl alkylamines were prepared in a one-
step synthesis between an ortho-phenylenediamine and a
lactone or a lactam, respectively, in yields ranging from 44
to 90%. The presence of electron-withdrawing or electron-
donating substituents increased the yield of the reaction,
compared to the yield obtained when no substituent or a
group with a positive inductive effect and a negative meso-
meric effect such as chlorine was present. The formation of
benzimidazol-2-yl alkylamines via the lactam opening was
compared to a three-step synthetic pathway, involving a
Mitsunobu reaction on a benzimidazol-2-yl alkanol fol-
lowed by hydrazine treatment of the obtained phthalimido
derivative, which showed very low yields. This confirms the
appeal of this straightforward, efficient one-step formation
of 2-substituted-1H-benzimidazole derivatives through lac-
tone or lactam opening.

Table 2  Synthesis of Benzimidazol-2-yl Alkanols and Benzimidazol-2-yl 
Alkylamines

Entry R Time (h) Product Yield (%)a

 1 H 16 1d 59

 2 t-Bu 18 1b 81

 3 OMe 12 1e 91

 4 CF3 16 1f 68

 5 NO2 16 1g 76

 6 H 18 2d 30

 7 t-Bu 24 2b 48

 8 OMe 12 2e 73

 9 CF3 48 2f 54

10 NO2 40 2g 81

11 Me 48 2h 91

12 OH 48 2i 87

13 Cl  7 2j 44

14 CN 20 2k 90
a Isolated yield.

1b,d–g (Y = OH)
2b,d–k (Y = NH2)
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Scheme 2  Impact of mono-substitution of ortho-phenylenediamine on its nucleophilicity
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1 H, ArH). 13C NMR (75 MHz, DMSO-d6):  = 26.0 (CH2), 30.5
(CH2), 31.7 (t-Bu), 34.3 (Cq), 40.7 (CH2-NH2), 118.8 (3 CHAr),
143.9 (Cq), 160.7 (Cq). HRMS (ESI+): m/z [M + H]+ calculated for
C14H22N3: 232.1808; found: 232.1801. IR: 3041 (NH) cm–1.

(22) Wright, J. B. Chem. Rev. 1951, 48, 397.
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