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ScienceDirect
Recent advances in genomics have uncovered the tremendous

diversity and richness of microbial ecosystems. New functional

genomics methods are now needed to probe gene function in

high-throughput and provide mechanistic insights. Here, we

review how the CRISPR toolbox can be used to inactivate,

repress or overexpress genes in a sequence-specific manner

and how this offers diverse attractive solutions to identify gene

function in high-throughput. Developed both in eukaryotes and

prokaryotes, CRISPR screening technologies have already

provided meaningful insights in microbiology and host-

pathogen interactions. In the era of microbiomes, the versatility

and the functional diversity of CRISPR-derived tools has the

potential to significantly improve our understanding of

microbial communities and their interaction with the host.
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Introduction
The next-generation sequencing (NGS) revolution

opened the genomics era and is now delivering massive

amounts of DNA sequences into databases, enabling the

characterization of microbial communities across Earth

ecosystems. In particular, the human microbiome was

estimated to comprise 500–1000 species per individual,

representing a gene repertoire much more diverse than

the human genome itself (reviewed in Ref. [1]). The

investigation of gene function is now critical to make

sense of this data. Because the vast majority of genes

has no experimental characterization, unravelling new

biological functions and identifying essential genes is

key for our understanding of microbial ecosystems as

well as for biotechnology and drug discovery. Despite

significant advances in comparative genomics, novel

experimental methods are still required to characterize

gene function in a high-throughput manner.
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The discovery of CRISPR systems as bacterial and

archaeal adaptive immune systems [2] was a true

paradigm shift in microbiology and genomics. CRISPR

systems provide acquired resistance to invading genetic

elements by cleaving their target (DNA or RNA) in a

sequence-specific manner. CRISPR-Cas systems show a

remarkable diversity in their mode of action and genetic

components [3]. The type-II effector Cas9 was the first

characterized single-component nuclease that can specif-

ically cleave DNA upon base pairing between a guide

RNA and the target sequence [2]. Thanks to its portabil-

ity and specificity, the Cas9 nuclease from Streptococcus
pyogenes was quickly repurposed into a variety of program-

mable tools to inactivate genes [4,5] or change their

expression [6–8] (Figure 1). Taking advantage of the

NGS revolution, powerful genetic screens have recently

been developed both in eukaryotes and in prokaryotes. A

range of insightful results have broadened our under-

standing of gene function and host-pathogen interactions

while providing improved design rules for robust

screening. In this review, we define the principles of

CRISPR-based screening techniques and show how

CRISPR screens can provide meaningful insights in

the study of microbial communities.

CRISPR-mediated mutational screening
Shortly after its discovery, the idea of using CRISPR-Cas

as a gene-editing tool rapidly emerged, both in eukar-

yotes [9,10] and in prokaryotes [5]. Upon dsDNA

cleavage, eukaryotic cells are able to repair breaks by

the non-homologous end-joining (NHEJ) pathway, a

highly error-prone process that frequently introduces

indels leading to frameshifts and gene knockout. Using

computational models [11,12], optimized single-guide

RNA (sgRNA) libraries can be designed to target tens

of thousands of genomic locations in order to perform

loss-of-function screens. While the number of available

target positions in a genome would in principle enable

the design of much larger libraries, experimental con-

strains such as the capacity of on-chip oligonucleotide

synthesis, the number of cells and the sequencing depth

required to maintain a good coverage have so far

prevented the use of much larger libraries. Transfection

of such libraries results in a population where each cell

has a different mutation [13–15]. The sgRNA serves

both as an editing tool and as a DNA barcode to monitor

the abundance of each mutant by deep sequencing. The

variation in sgRNA distribution over a selection step is

used as a proxy for the fitness of each mutant in the

tested condition. CRISPR/Cas9 screens were used to

decipher how pathogenic bacteria interact with

their host through the identification of host genes
www.sciencedirect.com
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CRISPR-based tools amenable to high-throughput screening. The Cas9 nuclease can be used to introduce mutations in a target sequence

through error-prone DNA repair by the NHEJ pathway or through homologous recombination with a custom DNA template. The dCas9 protein can

be used to inhibit gene expression by binding DNA and blocking the RNA polymerase. Transcription can be activated by fusing dCas9 with a

transcription activator domain. New base-editing technologies modify nucleotides without introducing DNA breaks by exploiting the fusion of

dCas9 or Cas9 nickase (nCas9) to an adenine or cytosine deaminase. Another method uses a retron system to produce multi-copy single-

stranded DNA (msDNA) used as an editing template. Finally, prime editing uses an engineered guide RNA and a fusion between nCas9 and a

reverse transcriptase to introduce mutations encoded in the guide sequence.
required for bacterial invasion [16�,17] and susceptibility

to toxins and secretion systems from various pathogens

[15,18–22,23�]. As an example, a pool of CRISPR-edited

epithelial cells was infected with enterohemorrhagic

Escherichia coli (EHEC), a shiga-toxin-producing strain

expressing a type-III secretion system [16�]. While most

wild-type epithelial cells are killed, resistant mutants are

enriched after several rounds of infection. Mutations in

genes involved in the synthesis of the shiga-toxin

receptor globotriaosylceramide (Gab3) provided strong

resistance. This screen also identified two proteins

of unknown function that were demonstrated to be

required for Gab3 biosynthesis.
www.sciencedirect.com 
In contrast with eukaryotic cells, cell death is the main

outcome of DNA cleavage in prokaryotes rather than

gene knockout mediated by NHEJ [5,24]. Editing by

homologous recombination requires the use of a template

DNA harboring the desired mutation which limits the

ease-of-use of this approach in high-throughput. This

was nevertheless achieved in E. coli in a method called

CRISPR-enabled trackable genome engineering (CRE-

ATE) based on the parallel automated design of tens of

thousands of recombination cassettes [25]. This method

was used to generate saturated mutant libraries of genes

of interest in order to identify mutations that confer an

increased resistance to antibiotics or chemicals.
Current Opinion in Microbiology 2020, 57:70–77
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CRISPRi screening in bacteria
Beyond its potential for genome editing, the CRISPR-

Cas9 system was repurposed as a DNA-binding nucleo-

protein complex by abrogating the nuclease catalytic

functions of Cas9, yielding dead-Cas9 (dCas9) [6–8]. As

a result, dCas9 can bind its target and block either the

initiation of transcription or the passage of the RNA

polymerase, resulting in a sequence-specific gene silenc-

ing tool called CRISPR-interference (CRISPRi) [26].

Note that the protospacer adjacent motif (PAM) of

CRISPR effectors varies in terms of GC content and

complexity. Since the PAM dictates the target frequency

in a given genome, different Cas effectors may be used to

increase the possible target space in organisms with

various GC content. As a consequence of the polycistronic

structure of bacterial mRNAs, dCas9-mediated repres-

sion of a gene in an operon is polar towards downstream

genes. While this can be seen as a limitation of CRISPRi

in bacteria, genes from an operon often belong to the

same metabolic pathway or protein complex, making

CRISPRi a valuable tool for the study of multi-gene

pathways. Note that the degradation of prematurely

terminated transcripts can in some cases lead to a reverse

polar effect where the repression of a target gene also

reduces the expression level of upstream genes. The

strength of this effect seems to depend on the organism

but appears to be typically small to non-detectable [26].

Libraries of sgRNAs can be custom-designed to target an

entire genome or a subset of genes of interest (Figure 2a).

The analysis of the first genome-wide screens enabled the

investigation of the properties of CRISPRi and provided

design rules to optimize CRISPRi screens in bacteria. In

particular, a surprising sequence-specific toxicity of S.
pyogenes dCas9 termed ‘bad-seed’ effect was identified

in E. coli [27��]. Guides sharing specific 5-nucleotide

motifs in their seed sequence are toxic regardless of

the rest of the guide for a reason that remains to be

elucidated. Another study observed that a high level of

dCas9 expression induces morphological defects [28].

This toxicity is however alleviated by tuning down dCas9

concentration [27��,29] while maintaining a strong

on-target activity. Genome-wide screens also showed that

some sgRNAs can direct dCas9 to bind other genomic

positions sharing partial homology to the sgRNA

sequence in a mechanism called off-target activity. While

off-targets are a major caveat in mammalian cells, the

probability of such events is much lower in bacteria due to

a �1000-fold difference in genome size. This makes it

easy in bacteria to design sgRNAs that lack any extensive

complementarity to an off-target position. However,

while extensive complementarity is required for Cas9

cleavage, dCas9 is able to block the expression of an

off-target gene with as little as 9 nucleotides of identity to

its promoter [27��]. Care should thus still be taken when

designing sgRNAs for dCas9 in bacteria, and it is prefera-

ble to rely on multiple guides per gene. Apart from dCas9,
Current Opinion in Microbiology 2020, 57:70–77 
a CRISPRi screen was also recently performed to

identify the determinants of dCas12a binding at off-target

positions [30].

CRISPRi screens have also revealed an important vari-

ability in the repression efficiency mediated by different

guides and can be used to identify determinants of

sgRNA activity [31�]. These design rules enable a reduc-

tion in the library size that is required to obtain robust

screening results by ensuring the selection of guides with

high activity and specificity. Using libraries of 104 to 105

sgRNAs, CRISPRi screens can perform comparably to

transposon sequencing-based approaches (Tn-seq), a

gold standard in high-throughput functional genomics,

which typically require libraries larger by an order of

magnitude to obtain a good genome coverage [32��,33��].
Smaller libraries make it easier to run multiple

experiments in parallel and to avoid population

bottlenecks, while decreasing sequencing costs.

An interesting feature of CRISPRi is that the level of

repression can be modulated through the introduction of

mismatches between the guide and the target in order to

explore the entire range of protein expression [7,34,35�].
In a recent study in E. coli and Bacillus subtilis, a model

was built to predict how specific mismatches affect the

repression efficiency of a guide [35�]. A library of mis-

matched sgRNAs targeting essential genes was then used

to investigate the relationship between their expression

level and bacterial fitness.

CRISPRi screens have now provided insightful results in

microbiology and have been performed in a few bacterial

species. The first CRISPRi screens in bacteria [36,37]

were performed in array, that is, by measuring the phe-

notype of each knockdown individually (Figure 2b). In

this case, a large set of readouts are accessible such as

growth characteristics or morphology, and knockdowns of

interest can easily be retrieved for further study. CRIS-

PRi components are typically expressed in an inducible

manner so that the library can be maintained in a non-

induced state, enabling the study of essential genes.

Reports in B. subtilis [36], in Streptococcus pneumoniae
[37] and more recently in Mycobacterium smegmatis [38]

combined growth measurements with high-throughput

microscopy to study the morphological defects associated

with the depletion of essential proteins. In addition, the

target of a compound inducing cell wall damage in

B. subtilis could be identified [36]. Another study in Vibrio
cholerae analyzed the phenotypes associated with lipopro-

tein transport depletion [39]. Finally, an arrayed CRISPRi

screen was also used in E. coli to identify phosphatases

which repression increases terpenoid production [40].

The individual cloning and phenotyping of each library

member naturally limits the scale of arrayed CRISPRi

screens. In contrast, pooled screens are typically
www.sciencedirect.com
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Figure 2
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Overview of CRISPRi screening methods in bacteria. An sgRNA library is computationally designed to target a whole genome or a subset of genes

of interest (a). A number of design rules can be taken into account such as the predicted repression efficiency and off-target activity. Each sgRNA

can be synthesized and cloned individually, resulting in an arrayed library of CRISPRi knockdowns. Alternatively, large libraries are synthesized on-

chip and cloned at once, yielding a pooled library of CRISPRi knockdowns. In the case of arrayed libraries, each knockdown is assayed

individually (b). Growth capacity can be measured with growth curves or colony size measurement in various conditions and the cell morphology

can be obtained by high-throughput microscopy. In the case of pooled screens, cells compete in various conditions and next-generation

sequencing of the sgRNA library is used as a readout (c). The bacterial population can be grown in various media or selected with different

stresses. The fitness of each sgRNA is obtained by comparing the read counts before and after the experiment or with and without dCas9

induction.Cells can also be sorted by the expression level of a fluorescent reporter. The impact of sgRNAs on reporter expression can be

estimated from their distribution in each bin. Finally, cells can be imaged inside a microfluidic chamber before in situ genotyping by FISH.

www.sciencedirect.com Current Opinion in Microbiology 2020, 57:70–77
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conducted on a larger scale since the use of NGS as a

readout enables a significant increase in throughput. All

cells compete against each other in a defined growth

condition or stress. Alternatively, one can screen pheno-

types linked to the expression of a fluorescent reporter

through cell sorting followed by sequencing (Figure 2c).

In the most straightforward assay, a pooled library can be

grown in rich medium to identify essential genes. This

approach was recently used in E. coli, both in the lab strain

K-12 [31�,32��,33��,41] and in a collection of natural

isolates [42�], as well as in Synechocystis [43��], in myco-

bacteria [44] and in Vibrio natriegens [45�] where Tn-seq

was not applicable because of a low transposon insertion

rate. In pooled genetic screening approaches, the identi-

fication of enriched genotypes (positive selection) is

typically easier than that of depleted genotypes (negative

selection). Indeed, under negative selection, the effect

size is limited by the initial coverage which can be quite

low when using large libraries, while under positive

selection there is no limitation to the effect size which

can become very large when a strong selection is applied.

To improve the sensitivity of negative selection screens, a

method using a TIMER fluorescent protein was

developed to enrich and isolate slow-growing bacteria

through cell sorting [46].

Other phenotypes can also be investigated. Screens

performed in E. coli identified host factors facilitating

infection by bacteriophages, that is, host genes providing

phage resistance once inactivated [33��]. Pooled CRIS-

PRi screens were also used in the identification of genes

influencing the tolerance or production of chemicals of

biotechnological interest [32��,43��], or decoupling bacte-

rial growth from protein production [47]. Current limita-

tions of pooled approaches include the difficulty to

retrieve individual knockdowns and to study cooperative

phenotypes. This caveat has recently been tackled using

droplet microfluidics to identify knockdowns that

increase L-lactate production yield in cyanobacteria

[43��]. Another study combined microfluidics with in situ
genotyping to assess complex phenotypes of individual

knockdowns in high-throughput [48��]. The authors

performed time-lapse microscopy on a pooled library of

235 knockdowns to determine their division size and

track the replication fork in each cell. After phenotyping,

the genotype of each cell can be determined by sequen-

tial FISH to a RNA barcode.

All pooled screening approaches rely on on-chip oligo

synthesis, a process that limits the available library size for

technical and economic reasons. A new method was

recently developed to generate crRNA libraries directly

inside cells by repurposing the CRISPR adaptation

machinery from S. pyogenes [49��]. Comprehensive

and extremely large libraries can easily be produced at

a low cost and were employed to explore aminoglycoside

resistance in Staphylococcus aureus.
Current Opinion in Microbiology 2020, 57:70–77 
A significant challenge now lies in making CRISPRi

screens available to most bacterial species. An important

challenge will be to ensure the transfer of large libraries to

bacteria of the microbiome without introducing bottle-

necks. Significant progress was made with the develop-

ment of Mobile-CRISPRi [50��], a toolbox of modular

CRISPRi components that can be transferred by conju-

gation with a broad host range and integrated at conserved

genomic sites in the chromosome of diverse bacteria. This

system paves the way for the study of non-model gut

bacteria and was recently used in vivo [51]. A strategy

currently used to link genes to colonization/virulence

phenotype in high-throughput relies on the gavage of

transposon mutant libraries in mice, followed by the

analysis of depleted insertions from bacteria recovered

in feces. This systematic investigation of bacterial gene

function in vivo has already yielded important insights

(recently reviewed in Ref. [52]), showing that many genes

dispensable for growth in vitro are necessary in the animal

gut, and that the genes necessary for fitness in vivo
strongly depend on the other bacteria present in the

environment. However, the engraftment and mainte-

nance of a dense transposon library with a sufficient

coverage remains challenging. CRISPRi screens should

provide an interesting alternative thanks to the decrease

in library size. In this context, a recent study reports

the first in vivo CRISPRi screen in S. pneumoniae to

investigate bottlenecks occurring during infection in mice

and identified genes whose essentiality differs between in
vivo and in vitro conditions [53�].

Conclusions and perspectives
CRISPR-based screening tools are currently gaining pop-

ularity in bacterial genomics. In particular, CRISPRi

screens are becoming widely used for loss-of-function

screening owing to several key advantages over previous

techniques: CRISPRi is inducible, tunable to intermedi-

ate levels and can be multiplexed to repress multiple

loci simultaneously [7,34,36,54]. In addition, libraries are

custom-designed and smaller than with previous techni-

ques, resulting in a substantial decrease in sequencing

cost. A diversity of phenotypes are becoming available for

screening, and recent progress in microfluidics-based

phenotyping and in situ genotyping should address the

current caveats of arrayed approaches.

In eukaryotes, the CRISPR-Cas system has also been

used to perform gain-of-function screens through the

activation of transcription by a dCas9 variant fused with

an activator domain, in a method known as CRISPRa

(CRISPR-activation) [6,18,55]. CRISPRa was also devel-

oped in bacteria [7] but this system has been limited by its

average performance and by the very narrow sequence

window in which dCas9 needs to bind to activate a

downstream promoter. Recent improvements [56–59]

could soon make CRISPRa available for genome-wide

gain-of-function screening of bacterial operons.
www.sciencedirect.com
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While Cas9-mediated DNA breaks are toxic in bacteria,

new CRISPR-derived tools introduce mutations without

DNA cleavage and have great potential for high-through-

put screening. In particular,base-editing can introduceC�T
or A�G mutations through the fusion of dCas9 or a

Cas9 nickase (nCas9) to a cytosine or adenine deaminase

respectively [60,61] (Figure 1). The system has already

been adapted to several bacterial species [62–68]. Another

approach was recently proposed using a retron system

[69,70] to generate single-stranded DNA templates that

can recombine and modify the target. More recently, prime

editing exploits the fusion of nCas9 to a reverse transcrip-

tase to directly introduce a mutation programmed in the

guide sequence [71]. Finally, two studies recently

described the natural association of CRISPR systems with

a transposition machinery. These systems catalyze the

RNA-guided transposition of DNA in the target region

[72,73]. We envision that this system will soon be

repurposed to specifically insert DNA in high-throughput,

not only enabling the generation of targeted gene

knockouts but also the insertion of functional elements

such as promoters or reporters.

The development of high-throughput genomics for non-

model bacteria is just starting to explore the biodiversity

of the microbial world and its incredible potential for

biotechnological and medical applications. The ease-of-

use and cost-efficiency of CRISPR screens in bacteria

should encourage microbiologists to take part in this

exciting exploration.
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