

Molecular Characterization and Serology of Leptospira kirschneri (Serogroup Grippotyphosa) Isolated from Urine of a Mare Post-Abortion in Brazil

C. Hamond, G. Martins, S. Bremont, M. A. Medeiros, Pascale Bourhy, W.

Lilenbaum

▶ To cite this version:

C. Hamond, G. Martins, S. Bremont, M. A. Medeiros, Pascale Bourhy, et al.. Molecular Characterization and Serology of Leptospira kirschneri (Serogroup Grippotyphosa) Isolated from Urine of a Mare Post-Abortion in Brazil. Zoonoses and Public Health, 2015, 63 (3), pp.191-195. 10.1111/zph.12224 . pasteur-02945392

HAL Id: pasteur-02945392 https://pasteur.hal.science/pasteur-02945392

Submitted on 22 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

1	Molecular characterization and serology of Leptospira kirschneri (serogroup
2	Grippotyphosa) isolated from urine of a mare post-abortion in Brazil
3 4 5 6 7	Camila Hamond ^a , Gabriel Martins ^a , Sylvie Bremont ^c , Marco Alberto Medeiros ^b , Pascale Bourhy ^c , Walter Lilenbaum ^a
8 9	^a Laboratory of Veterinary Bacteriology, Department of Microbiology and Parasitology, Universidade Federal Fluminense. Niterói-RJ. Brazil
10 11	^b Bio-Manguinhos, Oswaldo Cruz Foundation, Brazilian Ministry of Health, Rio de Janeiro-RJ, Brazil
12	^c Institut Pasteur, Unité de Biologie des Spirochètes, National Reference Center, Paris,
13	France.
14	• · · ·
15	Impacts
16 17 18	• Strains of <i>L. kirschneri</i> have apparently never been recovered from horses.
19 20 21	• Grippotyphosa has been shown to be genetically stable in various hosts and geographical zones.
22 23 24	• Horses may become unapparent carriers of this organism and shed leptospires in urine.
25	Correspondence:
26	W. Lilenbaum, Department of Microbiology and Parasitology, Universidade Federal
27	Fluminense, Rua Hernani de Melo 101, Niterói-RJ, 24210-130, Brazil
28	E-mail: <u>mipwalt(a)vm.uff.br</u>
29 30	

31 SUMMARY

32	A strain of Leptospira kirschneri (serogroup Grippotyphosa) was cultured from
33	urine of a mare post-abortion in Brazil, and characterized by serogrouping, MLVA,
34	PGFE, and sequencing of genes <i>rrs</i> and <i>secY</i> . Strains of <i>L</i> . <i>kirschneri</i> have apparently
35	never been recovered from horses in tropical area, only in Europe and USA. Knowledge
36	of local epidemiology is important to interpret genetic profiles of leptospires circulating
37	in an area.
38	
39	Keywords: Leptospira kirschneri; Grippotyphosa; Horse
40	
41	

42 Introduction

43 Leptospirosis is an important infectious disease in livestock caused by spirochetes belonging to the genus Leptospira, which is reported worldwide, particularly in tropical 44 countries (Martins and Lilenbaum, 2013). Infected animals (as cattle, sheep, goats, pigs 45 and horses) often present a chronic form, with impaired fertility, abortion, stillbirth, and 46 decreased milk production. Although most reported cases of urban leptospirosis in 47 humans in Brazil are caused by Leptospira interrogans, particularly serovar 48 Copenhageni (Silva et al., 2009), infection in livestock seems to be majorly determined 49 by other serogroups, as Sejroe for ruminants and Australis for horses (Martins and 50 51 Lilenbaum, 2013). Leptospirosis regarded as a zoonosis, humans become infected through either direct contact with the urine or other biological materials from the 52 infected animals or indirect contact with water, soil and vegetation polluted with urine 53 54 from animals harbouring pathogenic leptospires (Foronda et al. 2009). Leptospirosis is considered a neglected zoonosis. Since leptospirosis 55 transmission to humans can occur through contact with urine of animal reservoirs or 56 exposure to an environment contaminated with leptospires, the contemporary concept of 57 58 "One Health" is particularly appropriate for these organisms, due to its epidemiology, 59 especially in tropical countries (Chappel and Smythe, 2012). In that regard, increases 60 and expansion of human populations, including encroachment on wildlife habitat, increase opportunities for animal-human interactions. Various biomes and ecosystems 61 62 promote exposure to various Leptospira strains, as rural and urban environments. Furthermore, global climate change is also apparently promoting the spread of 63 leptospirosis. In that regard, increased temperatures may enhance survival of leptospires 64 in neoformed environments and may result in an expansion of the habitats occupied by 65 animal reservoirs of the bacterium (Lau et al. 2010). 66

Leptospiral infection can be host-maintained, if transmitted readily among 67 members of host species, or incidental when such transmission does not normally occur. 68 Incidental infections are usually more severe than those in maintenance hosts (Chappel 69 and Smythe, 2012). Detecting carrier animals is vital to understanding enzootic and 70 epizootic leptospirosis in a particular environment (Foronda et al., 2009). Generally the 71 incidence in various hosts as well as the infecting serovars varies considerably among 72 geographical regions (Arent et al., 2013; Chappel and Smythe, 2012; Verma et al., 73 2013). 74

Horses may become unapparent carriers and shed leptospires in urine, thereby 75 76 serving as reservoirs and sources of infection for other animals, including humans 77 (Hamond et al., 2013). The reproductive syndrome of equine leptospirosis was recently reviewed; the most common serogroup recovered from equine abortions was Pomona, 78 79 whereas other serogroups (Australis, Icterohaemorrhagiae, Sejroe) have also been isolated from aborted equine fetuses in several countries (Verma et al., 2013; Hamond 80 et al., 2014). However, Leptospira kirschneri serogroup Grippotyphosa has apparently 81 never been recovered from horses in tropical area. 82

Therefore, the purpose of this study was to describe recovery and characterization of *Leptospira kirschneri* (serogroup Grippotyphosa) from urine of a mare post-abortion (and the aborted fetus), as well as serological findings in this mare and her herd mates.

86

87 Methods

88 Study Design

Twelve mares (aged 7-12 y) from the same herd (extensive breeding) in the state of Rio de Janeiro, Brazil, were studied. These mares had a history of reproductive problems (mainly abortions) and had not been vaccinated and nor treated for

leptospirosis. Blood samples for serology were collected (jugular venipuncture) into 92 evacuated tubes (Vacutainer[®], BD Diagnostics, Franklin Lakes, NJ, USA). 93 Additionally, urine samples were collected by probing (Human nasogastric probe nº 18 94 - Embramed, São Paulo, SP, Brazil) and put into 50 mL sterile vials (BD, Franklin 95 Lakes, USA) and immediately inoculated into 5 mL culture media tubes (EMJH). A 2 96 mL aliquot was chilled and transported to the laboratory for PCR. During the study, one 97 mare (age 8 y), originating from Europe and living in Brazil for the last 2 y, aborted 98 (seventh month of pregnancy). The fetus was necropsied on the following day; it had 99 jaundice and widespread petechial haemorrhages. Samples of kidney and liver were 100 101 collected for culture and PCR.

102 Serology

For detection of anti-*Leptospira* antibodies, a microscopic agglutination test (MAT) was used, with a complete panel (28 serovars representing 24 serogroups; Institute Pasteur - Paris, France), according to international standards (World Organization for Animal Health, 2012). The serogroup (serovar) with the highest titre was regarded as infective. Samples were considered reactive when for titers \geq 200, and whereas titres \geq 800 were considered strongly reactive and indicative of an acute infection (Martins and Lilenbaum, 2013).

111 Bacteriological Culture

112 A few drops of urine from each of the 12 mares and the fetal kidney and liver were 113 immediately inoculated into tubes containing 5 mL of EMJH liquid media (Difco

114 Laboratories, Franklin Lakes, NJ, USA) and 5 mL semisolid Fletcher media (Difco

Laboratories). At the laboratory, tubes were incubated at 28 °C and examined under

116 darkfield microscopy once weekly for 20 wk (Faine et al., 2000).

117 PCR protocol

118	All DNA samples (urine from the 12 mares and liver/kidney from the aborted
119	foal) were extracted using the Promega Wizard SV Genomic DNA Purification System®
120	(Promega, Madison, WI, USA). Primers used were targeted to the <i>lipL32</i> gene
121	(regarded as present only in pathogenic leptospires) as described (LipL32_45F - 5'AAG
122	CAT TAC TTG CGC TGG TG 3' and LipL32_286R - 5'TTT CAG CCA GAA CTC
123	CGA TT 3'), which generate a 242 bp fragment (Stoddard et al. 2009). Briefly, primers
124	were used in a concentration of 0.6 $\mu M,$ 1.0 U Taq polymerase, 2.4 μM MgCl2, and 0.3
125	mM dNTP in a final volume of 2 5 μ L. One cycle of initial denaturation at 94 °C for 2
126	min, was followed by 35 cycles of denaturation at 94 °C for 30 s, annealing the primers
127	to 53 °C for 30 s, 1 min extension at 72 °C, and a final extension cycle at 72 °C for 5
128	min. Strain Leptospira interrogans serovar Copenhageni, Fiocruz L1-130 (ATCC BAA-
129	1198) was used as a positive control. To minimize false-negative results, an internal
130	DNA control was designed and synthesized (IDT – Integrated DNA Technologies,
131	Coralville, IA, USA). The synthetic gene had a 121 bp portion of the lipL32 gene in
132	each extremity, whereas in the middle has a gene part of the sequence ligB, yielding a
133	total DNA sequence of 754 bp (Hamond et al., 2014).
124	

134

135 Characterization of the isolate

The isolate was serogrouped using a panel of 32 specific antisera provided by the
Royal Tropical Institute (KIT, Amsterdam; Faine et al., 2000). Furthermore, its DNA
was extracted and a partial sequence of the *rrs* (Merien et al., 1993) and *secY* genes
(Ahmed et al., 2006) were amplified by PCR and sequenced. The latter procedure was
done at the Genotyping of Pathogens and Public Health Platform (*Institut Pasteur*,
Paris, France). All molecular epidemiological data were stored and analyzed with

142 Bionumerics software (Version 6.5; Applied-Maths, Sint-Martens-Latem,

143 Belgium). Genotyping was also performed by multiple-locus variable-number tandem

repeat analysis (MLVA) using the loci VNTR4, VNTR7, and VNTR10, as described

145 (Salaun et al., 2003). According to the analysis of partial sequencing of the gene secY,

146 PFGE was conducted using *Not* I restriction enzyme (Herrmann et al., 1992), to

147 compare DNA of the isolate to that of other strains of the same species and serogroup.

148

149 **Results**

Four of the 12 (33%) tested sera were reactive, all of them against serogroup
Grippotyphosa (sv. Grippotyphosa). The mare that had aborted had a titre of 400,

152 whereas the three others had titres of 200.

In this study, PCR detected leptospiral DNA in the urine of three of 12 (25%)
mares, of which two were seroreactive, although the remaining mare was seronegative.
From those mares, only the urine of the mare that had aborted yielded a pure culture of
leptospires.

Based on serogrouping, the isolate belonged to Grippotyphosa serogroup (titre
12,800), whereas sequencing products of *rrs* and *secY* partial genes characterized it as *Leptospira kirschneri* genomospecies. Furthermore, based on *secY* nucleotide sequences
(Fig. 1), it was similar to sv Grippotyphosa strains Moskva V (isolated from humans in
Russia) and 200901480_Mayotte (from humans in Mayotte), as well as to sv
Vanderhoedeni strain Kipod 179 (from a hedgehog in Israel).
Furthermore, MLVA-VNTR 4 (497 bp), VNTR 7 (372 bp) and VNTR 10 (830

bp) analysis also confirmed that our isolate was sv Grippotyphosa (Fig. 2), with a

165 profile closely related to the reference strain Moskva V. Finally, PFGE of the isolate

with other L. kirschneri/Grippotyphosa strains, such as Moskva V and Grippotyphosa 166 167 strain 200901480, showed a very close profile among the three strains (Fig 3).

168

Discussion 169

The occurrence of anti-Leptospira agglutinins for serogroup Grippotyphosa was 170 171 unexpected, since horses from the same region are typically seroreactive for serogroups 172 Icterohaemorrhagiae or Australis (Hamond et al. 2013), as are many humans in Brazil (Silva et al., 2009). 173

174 It is not clear if the mare that had aborted has acquired the infection in Brazil or 175 if it was a chronic infection acquired in Europe, at least 2 y before the abortion occurred. Nevertheless, that mare had already delivered a healthy foal in the past year, 176 177 and that other mares from the same herd also seroreacted against that serovar, we 178 inferred it was more likely to be a locally acquired infection. Although common in Europe (Arent et al., 2013), Grippotyphosa serogroup is not the most prevalent in 179 tropical regions, where members of Icterohaemorrhagiae serogroup seem to be 180 predominant, as well as serogroup Australis (sv Bratislava), regarded as adapted to 181 182 horses (Hamond et al., 2014). Grippotyphosa is usually associated with environmental 183 contamination, and is maintained by various wildlife species (de Carvalho et al., 2014). There are reports regarding isolation of that serogroup from animals, including 184 abortions in sheep in Canada (Kingscote, 1985), cattle in the USA (Hanson et al., 1964), 185 horse with uveitis in Europe (Hartskeerl et al., 2004) and abortion in US (Erol et al., 186 2015). 187 188 Although bacteria cultures were negative, PCR detected leptospiral DNA from

the kidney of the aborted foal, thereby confirming the cause of the abortion. 189

Furthermore, L. kirschneri was detected by PCR in the tissues of a premature foal 190

(Vemulapalli et al., 2005), but recovery of that species in pure culture, as well as
molecular characterization of the isolate, has apparently never been reported in horses in
tropical area.

194 Sequencing of *secY* in DNA extracted from the clinical isolates samples allowed a simple and rapid first-line screening and identification of the presumptive serovar. It 195 196 has already been conducted on isolates from human origin (Bourhy et al., 2013). 197 Although analysis based on a phylogenetic tree of *secY* fragments is very useful for identifying the presumptive serovar, it has not commonly been performed on isolates 198 from animal origin and therefore, should be encouraged in future studies. 199 200 The MLVA analysis is a simple and rapid PCR-based method for identification of most serovars of L. interrogans and L. kirschneri (Bourhy et al. 2013; Zilber et al. 201 202 2014). Therefore, its use should also be encouraged for a fast and simple DNA-based 203 characterization of leptospiral isolates. The PFGE analysis of Not I-digested genomic DNA revealed a very close profile 204

among the three strains, as Moskva V and Grippotyphosa strain 200901480, which is
remarkable, given the distances (South America, Russia and Indian Ocean) and distinct
hosts (man and horse). Notwithstanding, that finding reinforces the One Health concept
regarding human/animal leptospirosis, which should be considered in future approaches
regarding the diagnosis and control of leptospirosis worldwide.

In conclusion, this was apparently the first report *of L. kirschneri* to have been
isolated from a horse in tropical area. In addition, it is noteworthy that characterizing the
genetic profile of the leptospirosis strains circulating in an area is very important to
interpret local epidemiology of this organism.

214

216 Acknowledgements

- 217 This study was supported by CAPES, CNPq and FAPERJ. WL and MAM are CNPq
- 218 fellows. The authors thank C.P. Pestana and R. Lawson-Ferreira (Fiocruz) for their
- assistance. The authors are thankful for the English editing and critical review
- 220 performed by Prof. John Kastelic, form University of Calgary.
- 221

230

241

242

243

244

245

222 **References**

- Adler, B., de La Peña Moctezuma, A., 2010. *Leptospira* and leptospirosis.
 Veterinary Microbiology 27, 287-96.
 Ahmed, N., Devi, S.M., Valverde, M.L., Vijayachari, P., Machang'u, R.S., Ellis,
 W.A., Hartskeerl, R.A., 2006. Multilocus sequence typing method for
 identification and genotypic classification of pathogenic *Leptospira* species.
 Annals of Clinical Microbiology and Antimicrobials 23, 28-44.
 Arent, Z.J., Kędzierska-Mieszkowska, S., 2013. Seroprevalence study of
 - 3. Arent, Z.J., Kędzierska-Mieszkowska, S., 2013. Seroprevalence study of leptospirosis in horses in northern Poland. Veterinary Record 172, 269-270.
- Bourhy, P., Collet, L., Lernout, T., Zinini, F., Hartskeerl, R.A., Van der Linden,
 H., Thiberge, J.M., Diancourt, L., Brisse, S., Giry, C., Pettinelli, F., Picardeau,
 M., 2012. Human leptospira isolates circulating in Mayotte (Indian Ocean) have
 unique serological and molecular features. Journal of Clinical Microbiology 50,
 307-311.
- Bourhy, P., Herrmann Storck, C., Theodose, R., Olive, C., Nicolas, M.,
 Hochedez, P., Lamaury, I., Zinini, F., Brémont, S., Landier, A., Cassadou, S.,
 Rosine, J., Picardeau, M., 2013. Serovar diversity of pathogenic *Leptospira* circulating in the French West Indies. PLOS Neglected Tropical Diseases 7,
 e2114.
 - 6. Chappel, R.J., Smythe, L.D., 2012. Leptospirosis importance of a One Health approach. Microbiology Australia 11, 155-156.
 - de Carvalho, S.M., Mineiro, A.L., Castro, V., Genovez, M.E., Azevedo, S.S., Costa, F.A.. 2014. Leptospirosis seroprevalence and risk factors for sheep in Maranhão state, Brazil. Tropical Animal Health and Production 46, 491-494.
- 8. Erol, E., Jackson, C.B., Steinman, M., Meares, K., Donahoe, J., Kelly, N.,
 Locke, S., Smith, J.L., Carter, C,N., 2015. A diagnostic evaluation of real-time
 PCR, fluorescent antibody and microscopic agglutination tests in cases of equine
 leptospiral abortion. Equine Veterinary Journal 47, 171-174.
- Faine, S., Adler, B., Bolin, C., Perolat, P., 2000. *Leptospira* and leptospirosis.
 Medisci, Melbourne.
- 10. Foronda, P., Martin-Alonso, A., Del Castillo-Figueruelo, B., Feliu, C., Gil, H.,
 Valladares, B. 2011. Pathogenic *Leptospira* spp. in wild rodents, Canary Islands,
 Spain. Emerging infection Diseases 17, 1781-1782.
- 11. Hamond, C., Martins, G., Lawson-Ferreira, R., Medeiros, M.A., Lilenbaum, W.,
 2013. The role of horses in the transmission of leptospirosis in an urban tropical area._Epidemiology & Infection 141, 33-35.

258	12.	Hamond, C., Martins, G., Loureiro, A.P., Pestana, C., Lawson-Ferreira, R.,
259		Medeiros, M.A., Lilenbaum, W., 2014. Urinary PCR as an increasingly useful
260		tool for an accurate diagnosis of leptospirosis in livestock. Veterinary Research
261		Communications 38, 81-85.
262	13.	Hamond, C., Pinna, A., Martins, G., Lilenbaum, W., 2014. The role of
263		leptospirosis in reproductive disorders in horses. Tropical Animal
264		Health and Production 46, 1-10.
265	14.	Hanson, L.E., Ellinghausen, H.C., Marlowe, R., 1964. Isolation of Leptospira
266		grippotyphosa from a cow following an abortion. Proceedings of the Society for
267		Experimental Biology and Medicine 117, 495-497.
268	15.	Hartskeerl, R.A., Goris, M.G., Brem, S., Meyer, P., Kopp, H., Gerhards, H.,
269		Wollanke, B., 2004. Classification of leptospira from the eyes of horses
270		suffering from recurrent uveitis. Journal of Veterinary Medice B Infection
271		Diseases Veteterinary Public Health 51, 110-115.
272	16.	Herrmann, J.L., Bellenger, E., Perolat, P., Baranton, G., Saint Girons, L. 1992.
273		Pulsed-field gel electrophoresis of <i>NotI</i> digests of leptospiral DNA: a new rapid
274		method of serovar identification. Journal of Clinical Microbiology 30, 1696–
275		1702
276	17	Kingscote B 1985 Leptospirosis in sheep in Western Canada Canadian
270	17.	Veterinary Journal 26 165-168
277	18	Tulsuiani S.M. Lau C.L. Graham G.C. Van Den Hurk A.F. Jansen C.C.
270	10.	Smythe I D McKay DB Craig SB 2010 Emerging tropical diseases in
275		Australia Part 1 Lentospirosis Annals of Tropical Medicine and Parasitology
200		104 543-556
201	10	Marting G. Lilenhaum W. 2013 The paparama of animal lentospirosis in Rio
202	19.	de Janeiro, Brazil, regarding the seroepidemiology of the infection in tropical
205		regions BMC Veterinary Research 9, 237
204	20	Marian E Amouriaux D Daralat D Daranton C Saint Cirona L 1002
285	20.	Delumerase abain reaction for detection of Lantogning sup in clinical semples
200		Lournal of Clinical Microbiology 20, 2210, 2224
287	21	Dinna A.E. Marting C. Harrand C. Lilanhaum W. Madairas M.A. 2011
288	21.	Plinia, A.E., Martins, G., Hamond, C., Litenbaum, W., Medenos, M.A., 2011.
289		important. Vataring my Migraphialo av 152, 412
290	22	Salain I. Minim F. Corrigness S. Dementary C. Disandary M. 2006
291	22.	Salaun, L., Merlen, F., Gurlanova, S., Baranton, G., Picardeau, M., 2006.
292		Application of multilocus variable-number tandem-repeat analysis for molecular
293		typing of the agent of leptospirosis. Journal of Clinical Microbiology 44, 3954-
294	~~	$\frac{3962}{2}$
295	23.	Silva, E.F., Cerqueira, G.M., Seyffert, N., Seixas, F.K., Hartwig, D.D.,
296		Athanazio, D.A., Pinto., LS, Queiroz, A., Ko, A.I., Brod, C.S., Dellagostin,
297		O.A., 2009. Leptospira noguchii and human and animal leptospirosis, Southern
298		Brazil. Emerging Infection Diseases 15, 621-623.
299	24.	Stoddard, R.A., Gee, J.E., Wilkins, P.P., McCaustland, K., Hoffmaster, A.R.,
300		2009. Detection of pathogenic <i>Leptospira</i> spp. through TaqMan polymerase
301		chain reaction targeting the <i>lipL32</i> gene. Diagn Microbiology Infection Diseases
302		64, 247- 255.
303	25.	Vemulapalli, R., Langohr, I.M., Sanchez, A., Kiupel, M., Bolin, C.A., Wu, C.C.,
304		Lin, T.L., 2005. Molecular detection of <i>Leptospira kirschneri</i> in tissues of a
305		prematurely born foal. Journal of Veterinary Diagnosis Investigation 17, 67-71.
306	26.	Verma, A., Stevenson, B., Adler, B., 2013. Leptospirosis in horses. Veterinary
307		Microbiology 29, 61-66.

- 27. Zilber, A.L., Picardeau, M., Ayral, F., Artois, M., Demont, P., Kodjo, A.,
- 309Djelouadji, Z., 2014. High-resolution typing of *Leptospira interrogans* strains by310multispacer sequence typing. Journal of Clinical Microbiology 52, 564-571.
- 311

- Fig 1. Phylogenetic tree of leptospiral *secY* partial gene sequences of reference strains
- of *L. kirschneri* species, including the isolate obtained from a mare post-abortion (UC5).

316

- Fig 2. PCR analysis of the polymorphism of two representative VNTR loci.
- Amplification was performed on the VNTR4, VNTR7 and VNTR10 loci of *L*.
- 319 *kirschneri* sv Grippotyphosa Moskva V and isolate UC5 indicates *Leptospira* serovars

M- 100pb DNA ladder 1-UC5; 2-*L.kirschneri* sv Grippotyphosa Moskva V; NC- Negative Control; PC – Positive control (*L.interrogans* sv Canicola)

320

- Fig 3. PFGE (using *Not* I restriction enzyme) from the recovered sample (UC5)
- 323 compared to other *Leptospira kirchneri* serogroup Grippotyphosa, as Moskva V and
- **324** strain 200901480.
- 325

326	200901480	10		MILLI		COMPONENTS -
327	Moskva V				11111	0000000000
328	UC5		1			0.0000000000000000000000000000000000000
	Marker					