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ABSTRACT The world is facing a global pandemic of COVID-19 caused by the SARS-CoV-2 coronavirus.
Here we describe a collection of codon-optimized coding sequences for SARS-CoV-2 cloned into Gateway-
compatible entry vectors, which enable rapid transfer into a variety of expression and tagging vectors. The
collection is freely available. We hope that widespread availability of this SARS-CoV-2 resource will enable
many subsequent molecular studies to better understand the viral life cycle and how to block it.
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A global pandemic of the coronavirus disease COVID-19, a severe
respiratory illness caused by a novel virus from the family Corona-
viridae (SARS-CoV-2), has infected millions and caused hundreds of
thousands of deaths (World Health Organization 2020a). COVID-19

manifestation in patients can range from a lack of symptoms to severe
pneumonia and death (Huang et al. 2020). Person-to-person spread
through respiratory droplets has been identified as a major source of
transmission of the virus (Yu et al. 2020). Various measures, from
social distancing to nationwide lockdowns, have been imposed to
contain and control the transmission of SARS-CoV-2 (Cohen and
Kupferschmidt 2020). Despite these measures, the number of
confirmed COVID-19 cases has continued to rise (World Health
Organization 2020a), highlighting the need for an effective vaccine
and antiviral agents. Furthermore, the extrapolations concerning
the evolution of the pandemic are particularly alarming (Ferguson
et al. 2020). It is therefore of intense and pressing interest to better
understand this virus and its interaction with host cells on a
molecular level.

Shortly after the outbreak, the complete genome of two SARS-
CoV-2 strains were published (Chan et al. 2020; Wu et al. 2020).
Using the genome sequence as a reference, Chan et al. identified
12 viral open reading frames (ORFs), including one encoding
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ORF1AB, a large polyprotein which is post-translationally pro-
cessed into 16 proteins (Chan et al. 2020). More recently, Wu et al.
discovered two additional viral ORFs (ORF9Bwu and ORF10wu)
with unclear functions (Wu et al. 2020). Progress on molecular
characterization has been made on several viral proteins (Walls
et al. 2020; Zhang et al. 2020), providing valuable insights into host-
virus interaction, but more research is necessary. The Gateway
system offers efficient and high-throughput transfer of the viral
coding sequences (CDSs) into a large selection of Gateway-com-
patible destination vectors used for protein expression in many
biological systems, e.g., Escherichia coli, Saccharomyces cerevisiae,
insect, or mammalian cells (Walhout et al. 2000). Broad availability
of a collection of SARS-CoV-2 CDSs has the potential to enable

many downstream biochemical and structural studies and thus a
better understanding of processes within the viral life cycle, in-
cluding scalable assays for screening drug candidates that could
potentially disrupt these processes.

MATERIALS AND METHODS

Synthesis of viral coding sequences
Based on the published annotation of the genome sequence of the
HKU-SZ-005b (GenBank MN975262; Chan et al. 2020) and Wuhan-
Hu-1 (GenBank MN908947; Wu et al. 2020) isolates of SARS-CoV-2,
we requested the synthesis of viral coding sequences (GenScript and
Integrated DNA Technologies), including termination codons and

n■ Table 1 The genome-scale SARS-CoV-2 coding sequence clone collection

Gene Symbol CDS Name Putative Function/Domain AA Length

Clone Status

STOP NO STOP TEV

ORF1AB NSP1 Suppress antiviral host response 180 ✓ ✓ ✓

NSP2 Unknown 639 ✓ ✓ ✓

NSP3 Putative PL-pro domain 1,946 ✓ ✓ ✓

NSP3-Cys857Ala Putative PL-pro domain (with Cys857Ala variant) 1,946 ✓ ✓ NA
NSP4 Complex with NSP3 & 6 for DMV (double-membrane

vesicle) formation
501 ✓ ✓ ✓

NSP5 3CL-pro domain 307 ✓ ✓ ✓

NSP5-Cys146Ala 3CL-pro domain (with Cys146Ala variant) 307 ✓ ✓ NA
NSP6 Complex with NSP 3 & 4 for DMV formation 291 ✓ ✓ ✓

NSP7 DNA primase subunit 84 ✓ ✓ ✓

NSP8 DNA primase subunit 199 ✓ ✓ ✓

NSP9 RNA/DNA binding activity 114 ✓ ✓ ✓

NSP10 Complex with NSP14: Replication fidelity 140 ✓ ✓ ✓

NSP12 RNA-dependent RNA polymerase 919 ✓ ✓ ✓

NSP13 Helicase 602 ✓ ✓ ✓

NSP14 ExoN: 39-59 exonuclease 528 ✓ ✓ ✓

NSP15 XendoU: poly(U)-specific endoribonuclease 347 ✓ ✓ ✓

NSP16 2’-O’-MT: 2’-O-ribo methyltransferase 299 ✓ ✓ ✓

S S Spike glycoprotein trimer that binds to host cell
receptors (e.g., ACE2)

1,273 ✓ ✓ ✓

S S-24nt Spike glycoprotein trimer (minus 8 amino acids) 1,265 ✓ ✓ NA
S S-frag1 Entire Ectodomain 1,213 NA ✓ NA
S S-frag2 Entire Ectodomain without the signal peptide 1,199 NA ✓ NA
S S-frag3 N-term fragment after the furin cleavage 686 NA ✓ NA
S S-frag4 N-term fragment after the furin cleavage without the

signal peptide
672 NA ✓ NA

S S-frag5 C-terminal Ectodomain from the furin cleavage site 528 NA ✓ NA
S S-frag6 C-terminal Ectodomain from the Tmpress 2 priming site 399 NA ✓ NA
ORF3A 3A Induce inflammatory response and apoptosis 275 ✓ ✓ ✓

ORF3B 3B Induce inflammatory response and inhibit the
expression of IFNb

58 ✓ ✓ ✓

E E Envelope protein pentamer 75 ✓ ✓ ✓

E E-27nt Envelope protein pentamer (minus 9 amino acids) 66 ✓ ✓ NA
M M Membrane protein 222 ✓ ✓ ✓

ORF6 6 Antagonize STAT1 function and IFN signaling, and
induce DNA synthesis

61 ✓ ✓ ✓

ORF7A 7A Induce inflammatory response and apoptosis 121 ✓ ✓ ✓

ORF7B 7B Induce inflammatory response 43 ✓ ✓ ✓

ORF7B 7B-trunc Induce inflammatory response (with N terminus
truncated)

20 ✓ ✓ NA

ORF8 8 Induce apoptosis and DNA synthesis 121 ✓ ✓ ✓

N N Facilitate viral RNA packaging 419 ✓ ✓ ✓

ORF9B 9B Induce apoptosis 98 ✓ ✓ ✓

ORF9Bwu 9Bwu Unknown 73 ✓ ✓ NA
ORF10wu 10wu Unknown 38 ✓ ✓ NA

✓ indicates that clone is available; NA indicates that the clone was not available the time of this writing.
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attB recombination sequences, with optimization of codon usage to
reduce GC content and optimize expression in human and insect
cells. A start codon was added to NSP2–16 to allow independent
transcription and translation, as the endogenous products are derived
from ORF1AB by post-translational processing. ORF9Bwu, an alter-
native ORF within the N gene from SARS-COV-2 (Wu et al. 2020),
was subsequently amplified by polymerase chain reaction (PCR) from
the viral N gene with primers listed in Table S1.

Generation of Gateway-compatible viral coding
sequence clone collections
Synthesized viral coding sequences were incorporated into Gateway
Entry plasmids: either pDONR207 (Invitrogen Cat #12213013) or
pDONR223 (Rual et al. 2004). To enable C-terminal fusion con-
structs, we also generated an equivalent set of Gateway-compatible
clones without termination codons. These clones were made by either
PCR-amplifying the whole plasmid with primers that eliminated the
stop codon, or by amplifying CDS regions from the first collection,
using downstream primers with complementary regions that were
internal to each stop codon, and which simultaneously incorporated
the flanking sequences necessary for incorporation into a Gateway
Entry plasmid [pDONR207, pDONR221 (Invitrogen Cat #12536017)
or pDONR223].

Expression clones with N-terminal fusion tags (e.g., for purifica-
tion) can be produced simply by preparing the appropriate Gateway-
compatible Destination vector. However, to enable the subsequent
removal of such N-terminal fusion tags, we generated an additional
set of clones containing, at the N-terminus of the ORF, a recognition
sequence for nuclear inclusion protease from tobacco etch virus
(TEV). TEV sequences were incorporated by amplifying CDS regions
from the first collection using forward primers that also provide TEV
sequences with the original reverse primers.

Each SARS-CoV-2 CDS bacterial clone (DH5a E. coli strain, NEB
Cat# C2987) was isolated from a single colony, and its inserted CDS
was confirmed by full-length Sanger sequencing (The Centre for
Applied Genomics, Toronto, Canada). All clones with a pDONR221
or pDONR223 backbone were sequenced with M13F and M13R
primers. Clones with a pDONR207 backbone were sequenced with
customized forward and reverse primers. All primer sequences are
available in Table S1.

Data availability
Clones are available through Addgene. Table S1 contains all primers
used. Table S2 contains detailed descriptions of clones in the collec-
tion and links to the clone resource available from Addgene. Sup-
plemental material available at figshare: https://doi.org/10.25387/
g3.12725096.

RESULTS AND DISCUSSION
A total of 98 clones (Table 1) are currently included in the
Gateway-compatible collection, covering 28 out of 29 total an-
notated CDSs in the SARS-CoV-2 genome. NSP11 was omitted
due to the incompatibility of its 36 base pair length with the
Gateway cloning system (Cheo et al. 2004). All 28 of these CDS
regions are available as clones with and without termination
codons. The ‘no-stop’ collection was further extended to include
six clones encoding different cleaved products of the spike (S)
protein— “S-fragment” 1–6. We also included two CDS variants
with in-frame deletions (“S-24nt” and “E-27nt”), one truncated
CDS variant (“ORF8B-truncated”), that were each detected by
recent viral transcriptome mapping efforts (Davidson et al. 2020,

Kim et al. 2020) and two missense catalytic variants (NSP3
C857A and NSP5 C146A; Gordon et al. 2020).

Although our collection facilitates tagging of SARS-CoV-2 pro-
teins for various functional studies, certain applications require re-
moval of tags at some stage, for example, after protein purification.
Fusion proteins can potentially interfere with the yield, structure, and
function of purified proteins, such as during large scale production
and crystallography studies (Booth et al. 2018). To address this we
expanded our collection to include clones containing an N-terminal
recognition sequence for the nuclear inclusion protease from tobacco
etch virus (TEV; Carrington and Dougherty 1987; Carrington and
Dougherty 1988). The TEV sequence is one of the best characterized
and widely used endoproteolytic reagents due to its stringent se-
quence specificity, ease of production, and ability to tolerate a variety
of residues at the P1’ position of its recognition site (Waugh 2011).
We note that our clones are not expression vectors in and of
themselves, and we have not yet assessed the expression of any of
our clones after moving to a Gateway Destination expression vector.
However, we note that our Gateway-compatible collection allows
users the flexibility to conveniently move any of the SARS-CoV-2
ORFs into any Gateway Destination expression vector with any
preferred N-terminal or C-terminal fusion.

To promote open-access dissemination of the collection, all
clones have been deposited to the non-profit organization Addgene
(Kamens 2015), and are freely available from the authors under
circumstances where Addgene cannot be used. Table S2 summarizes
all CDSs in the collection, together with their nucleotide sequences,
nucleotide and amino acid lengths and links for ordering clones.

We hope that this SARS-CoV-2 CDS-clone collection will be a
valuable resource for many applications, including study of how
coronaviruses can exploit host cellular processes for the viral replication
cycle (de Wilde et al. 2018), understanding virus-host protein-protein
interactions (Gordon et al. 2020; Lasso et al. 2019), production of
recombinant virus proteins for structural studies (Edavettal et al. 2012),
mapping of protein subcellular localization using N-terminal fluores-
cent reporters (Tanz et al. 2013), or development of vaccines or other
therapeutics (Jing et al. 2012; McDonald et al. 2007).
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