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Abstract: Objective: Type 2 diabetes (T2D) occurs by deterioration in pancreatic β-cell function
and/or progressive loss of pancreatic β-cell mass under the context of insulin resistance. α7 nicotinic
acetylcholine receptor (nAChR) may contribute to insulin sensitivity but its role in the pathogenesis
of T2D remains undefined. We investigated whether the systemic lack of α7 nAChR was sufficient
to impair glucose homeostasis. Methods: We used an α7 nAChR knock-out (α7−/−) mouse model
fed a standard chow diet. The effects of the lack of α7 nAChR on islet mass, insulin secretion,
glucose and insulin tolerance, body composition, and food behaviour were assessed in vivo and
ex vivo experiments. Results: Young α7−/− mice display a chronic mild high glycemia combined
with an impaired glucose tolerance and a marked deficit in β-cell mass. In addition to these
metabolic disorders, old mice developed adipose tissue inflammation, elevated plasma free fatty acid
concentrations and presented glycolytic muscle insulin resistance in old mice. Finally, α7−/− mice,
fed a chow diet, exhibited a late-onset excessive gain in body weight through increased fat mass
associated with higher food intake. Conclusion: Our work highlights the important role of α7 nAChR
in glucose homeostasis. The constitutive lack of α7 nAChR suggests a novel pathway influencing the
pathogenesis of T2D.
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1. Introduction

Type 2 diabetes (TD2) is a major health problem that will affect 592 million people in the world
by 2035 [1]. T2D is characterized by an inability to control glucose homeostasis in response to
metabolic demand. The pathogenesis of T2D is mainly caused by insulin resistance and pancreatic
β cell dysfunction [2]. In patients suffering pre-diabetes or diabetes, insulin resistance affects glucose
uptake in response to insulin mainly in their skeletal muscle, liver and adipose tissue, leading to
development of high glycemia [3]. T2D only occurs by deterioration in pancreatic β-cell function and/or
progressive loss of pancreatic β-cell mass under the context of insulin resistance [4]. Thus, reduction
of functional β-cell mass is a fundamental feature of T2D. Nevertheless, the factors promoting β-cell
mass dysfunction in patients at different stage in their adult lives are poorly understood.

The release of acetylcholine (ACh), from parasympathetic vagal innervations of pancreatic islets,
potentiates the glucose-stimulated insulin secretion [5] and is among several signals that modulate the
β-cell proliferation [6]. ACh exerts its effects through muscarinic (mAChRs) and nicotinic acetylcholine
receptors (nAChRs). The M3 mAChR subtype, widely expressed in pancreatic islets [7], is known
as being the effector of cholinergic signaling in insulin secretion [8]. Nicotine is the exogenous
agonist of nAChRs. Interestingly, experimental studies showed that nicotine impacts insulin secretion
through nAChRs on β cell from isolated islets [9,10] and in pancreatic β cell line models [10,11].
These studies support clinical studies showing that chronic exposure to nicotine can lead to a reduction
of β-cell function in smokers [12]. More recently, it has been reported that human polymorphisms,
identified in the Chrnb4 gene encoding for the β4 nicotinic subunit, can affect susceptibility to T2D [13].
Together, these observations suggest a contribution of nicotinic cholinergic signalling in insulin
secretion. However, the mechanisms implying the nicotinic system in impaired insulin secretion are
not yet determined.

Nicotinic receptors belong to a family of ionotropic receptor proteins formed by a dozen different
nAChR subunit proteins [14]. These subunits are subdivided into α and β subfamilies, which form
pentameric ion channels composed by either a single type of α subunit (homopentamers) or a
combination of α and β subunits (heteropentamers) [15]. Pancreatic β cells express α3, α4, α5, α7, β2,
and β4 subunits of nAChRs [9–11]. The homopentamer α7 nAChR is characterized by an elevated
Ca2+ permeability [16] and has been involved in several important biological processes such as cell
proliferation [17], apoptosis [18] and inflammation [19]. In humans, α7 nAChR expression in adipocytes
has been negatively correlated with obesity [20]. On the other hand, pharmacological activation of α7
nAChR reduces body weight as well as food intake, and improves insulin sensitivity in db/db obese
mice [21,22] by regulating inflammation in adipose tissue [23]. These results suggest a potential role of
α7 nAChR in insulin sensitivity and in the pathogenesis of obesity. Interestingly, α7 nAChR is also
expressed on pancreatic α cells [24]. However, the role of α7 nAChR in glucose homeostasis remains
largely unknown.

Given that α7 nAChR is expressed in insulin target tissues, dysfunction of this receptor could
affect glucose homeostasis. Here, we have addressed this issue by analyzing the systemic α7 nAChR
knock-out in mice (α7−/−) fed a standard chow diet. We found that α7−/− mice develop a metabolic
sequence of events over time, which leads to a pre-diabetic state and a reduction in both α- and β-cell
mass. Integrative analysis by combining a metabolic phenotyping study and transcriptome analysis
in pancreatic islets from 6 mouse strains, including C57Bl6/J, the strain of α7−/− mice, fed a high-fat
diet, unveiled a significant and negative correlation between the expression of chrna7 gene and fasting
glycemia as well as basal insulinemia, validating our experimental data. Strikingly, old α7−/− mice
exhibited insulin resistance and a late-onset excessive gain in body weight through increased fat mass
associated with higher food intake.
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2. Experimental Procedures

2.1. Mice

Animal use and procedures were approved by the Ethics committee of the University
of Paris Diderot (approval CEB-03-2016) and by the French Ministry of Research (approval
4189-2016012707493002v3). α7 nAChR−/− (α7−/−), and Wild-Type (WT) C57BL/6J male mice
(Charles River Laboratories, France) were housed in specific pathogen-free biosafety level 2 animal
facility in a standard 12 h on/off light cycle (the lights are on from 8:20 PM to 8:20 AM), according to
institutional guidelines. Mice were fed a standard chow diet for rodents (R03-10, Safe, France) and
were provided with water and food ad libitum.

Pregnant females. Crosses were performed by caging a female (WT or α7−/−) with a male (WT or
α7−/−) mouse for one night. The next morning, the presence of sperm in the vaginal smear was
confirmed and this was taken as day 0.5 of pregnancy (E0.5). This female mouse was weighted
and transferred to a separate cage. On day 18.5 of gestation (E18.5), pregnant mice (WT/WT and
α7−/−/α7−/−) were weighted and their corresponding fetuses (f-WT/WT and f-α7−/−/α7−/−) were used
in this study. Experiments were performed without previous fasting of the mothers. On day E18.5,
maternal blood glycemia was measured from the tail vein. Then, the pregnant mice were anesthetized
with pentobarbital (60 mg/kg).

Fetuses. Fetuses connected to the mother by their placenta and umbilical cord were successively
exteriorized from the uterus, and weighted. Fetuses were euthanazied by decapitation and,
after excision, whole fetal pancreases of f-WT/WT (n = 4–5) and f-α7−/−/α7−/− (n = 4–5) were immediately
weighed and either stored at −80 ◦C for mRNA extraction either fixed in aqueous Bouin’s solution
(1 h at room temperature), incubated in gelose, and embedded in paraffin. Each fetal pancreas
was serially sectioned (5 µm) throughout its length and then mounted on slides for β- and α-cell
immunohistochemistry and histomorphometry.

Adults. Adult male animals were killed by cervical dislocation at 10 and 25 weeks old.
Different sets of mice, labeled set 1 to set 8, are depicted in Scheme 1 and assigned to the experiments

described in Table 1. Half of the pregnant mice in set 1 were kept alive to collect 1-week-old mice.
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Scheme 1. Schematic representation indicating the set of animals studied over time. Set 1 = pregnant
mice; Set 2 = E18.5 fetuses; Set 3 = pups (1 week old); Set 4 = 10-weeks-old mice; Set 5 = 14-weeks-old
mice; Set 6 = 18-weeks-old mice; Set 7 = 20-weeks-old mice and Set 8 = 24/25-weeks-old mice.
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Table 1. Distribution of experiments by set of animals.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

Body weight X X X X X
Pancreas weight X X X

Non-fasting glycemia X X X X
IPGTT, GSIS, ITT X X

IPPTT X
2DG Uptake X
Food intake X X X X
EchoMRI X X X

β- and α- cell mass X X
Insulin content X

Static incubation X
Hepatic glycogen content X

Plasma NEFA X
qPCR X X X

2.2. Cell Culture

The rat insulinoma β-cell line, INS-1 832/13, was used between passages 20 and 40. Cells were
cultured at 5% CO2 and 95% air at 37 ◦C in RPMI 1640 medium containing 11 mM d-glucose
supplemented with 10% (vol/vol) heat-inactivated fetal bovine serum, 100 U/mL penicillin-streptomycin,
10 mM HEPES, 1 mM sodium pyruvate, 2 mM L-Glutamine and 50 µM beta-mercaptoethanol
(Invitrogen, Saint Aubin, France).

The mouse adenoma α-cell line, α-TC1, was kindly provided by Y. Gosmain (Faculté de Médecine,
Université de Genève, Genève, Switzerland) and was cultured in dulbecco’s modified eagle’s medium
(11885084, ThermoFisher Scientific, Bleiswijk, Netherlands) supplemented with 10% fetal bovine serum
(F7524, Sigma-Aldrich, Darmstadt, Germany), 15 mM HEPES (H0887, Merck, Darmstadt, Germany),
0.1 mM non-essentiel amino acids (1114050, ThermoFisher Scientific, Bleiswijk, The Netherlands),
0.02% bovine serum albumin (A8531, Merck, Darmstadt, Germany), 1.5 g/L sodium bicarbonate
(27778.293, VWR, Fontenay-sous-Bois, France), and 2 g/L glucose (A2494001, ThermoFisher Scientific,
Bleiswijk, The Netherlands).

2.3. Intraperitoneal Glucose, Insulin and Pyruvate Tolerance Tests

Glucose tolerance tests (GTT) were first performed in awake 10- and 25-weeks-old mice.
GTT were performed by intraperitoneal injection of d-glucose (1.5 g/kg body weight, 24379.294,
VWR, Fontenay-sous-Bois, France) in normal saline (0.9% NaCl) on overnight fasted mice. One week
later, Insulin tolerance tests (ITT) were performed in these same mice by intraperitoneal injection
of insulin (0.70 U/kg body weight; Actrapid, NovoNordisk, Bagsvaerd, Denmark) in normal saline
(0.9% NaCl) after 6 h of food restriction. Similarly, Pyruvate tolerance tests (PTT) were performed
in awake 25-weeks-old mice by intraperitoneal injection of sodium pyruvate (1 g/kg body weight;
P2256, Sigma-Aldrich, Saint-Quentin Fallavier, France) in normal saline (0.9% NaCl) after 6 h of food
restriction. Blood samples were collected from the tail vein for immediate glycemia measurement
using a hand-held glucometer (Accu-Chek Performa, Roche, France). Glycemia was determined at
0, 15, 30, 45, 60, 90, and 120 min after glucose or insulin or pyruvate load. All AUC values were
normalized as follows: AUCnormalized = AUCtotal—(the baseline value * 120).

2.4. In Vivo 2-Deoxyglucose Uptake Measurement

Twenty-five-week-old mice were fasted for 6 h and then were intraperitoneally injected with
insulin at 0.70 U/kg body weight (Actrapid, NovoNordisk, Bagsvaerd, Denmark) and 2-deoxy-d-[1–14C]
glucose (2DG) (5 µCi, Amersham). Blood was collected from the tail vein 0, 15, 30, 45, 90, and 120 min
post injection. Animals were euthanized subsequently. Plasma d-[14C] 2DG concentration was
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determined from total blood after deproteinization with a Zn(OH)2 Ba(OH)2. Tissue d-[14C] 2DG and
d-[14C] 2DG-6-phosphate content were determined as previously described [25]. Briefly, a piece of
each tissue was weighed, dissolved in 1 M NaOH at 55 ◦C for 60–120 min, and then neutralized with
1 M HCl. d-[14C] 2DG and d-[14C] 2DG-6-phosphate were differentially precipitated by the use of a
zinc hydroxide solution (0.3 M) or a perchloric acid solution (6%). Radioactivity was determined with
a Packard Tri-Carb 460C liquid scintillation system.

2.5. Body Composition

Whole body composition (fat and lean mass) was measured in the morning using an Echo Medical
Systems EchoMRI 100 (Whole Body Composition Analyzer, EchoMRI, Houston, TX, USA) in 18-, 20-
and 23-weeks-old mice.

2.6. Food Intake and Body Weight Measurement

Food intake was measured from 14 until 24 weeks of age whereas body weight was measured
between 18 and 23 weeks of age. For this, mice were housed individually and pre-weighed food
(R03-10, Safe, France) was provided in standard stainless steel hoppers. Once a week, mice were
briefly removed from their cages and weighed, and the amount of food remaining was measured
to calculate the amount of food remaining. Intake was calculated as the weight (in grams) of food
provided less that recovered. The result was divided by 7 to obtain average food intake per day per
mouse (g/day/mouse).

2.7. Plasma Insulin Levels

On the day of IPGTT, plasma were obtained from whole blood collected (70 µL/sample) from the
tail vein on heparin capillaries, then placed on ice, and centrifuged (3000 g, 5 min, 4 ◦C) to be directly
frozen. Whole blood was collected at 0, 15, 60, and 120min in awake mice. Plasma insulin concentrations
were measured at 0, 15, 60, and 120 min after glucose injection using ultra-sensitive mouse insulin
ELISA kit (80-INSMSU-E01, Alpco, Eurobio, Les Ulis, France) according to the manufacturer’s protocol.

2.8. Pancreatic Insulin Content

Pancreatic tissues from 10-week-old α7−/− and WT C57BL/6J mice stored at −20 ◦C in an
acid-ethanol (1.5% HCl 12N, 75% ethanol, 23.5% distilled water) were homogenized with Polytron
(PT 1600E, Kinematica AG, Littau-Lucerne, Switzerland) and centrifuged at 4 ◦C in the acid-ethanol
solution (1.5% HCl 12N, 75% ethanol, 23.5% distilled water). Insulin concentrations in clarified
supernatant were determined by using ultra-sensitive mouse insulin ELISA kit (80-INSMSU-E01,
Alpco, Eurobio, Les Ulis, France) according to the manufacturer’s protocol.

2.9. Islet Isolation

Pancreata from 10-week-old α7−/− and WT C57BL/6J mice were distended with a Hank’s solution
containing liberase TL (5401020001, Roche, Mannheim, Germany), dissected free fat and digested in a
37 ◦C water bath for 17 min. Digestion was stopped by the addition of Hank’s solution supplemented
with BSA and the pancreatic tissue was sedimented for 5 min. Undigested fragments and supernantant
were carefully removed by vaccum. This step was repeated four times. After washing with Hank’s/BSA
solution, islets were hand-picked under stereomicroscope and divided into different batches to be used
for insulin secretion tests or to be stored at −80 ◦C for subsequent mRNA extraction.

2.10. Static Incubation for Insulin Test

After isolation, batches of 10 size-matched islets fromα7−/− and WT control mice were hand-picked
and first maintained in Krebs-Ringer bicarbonate HEPES (KRBH) buffer (1 mL), containing 0.1%
fatty-acid-free BSA and 2.8 mM glucose, in an incubator at 37 ◦C with humidified atmosphere and
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5% CO2 for 1 h. Then batches of 10 size-matched islets were incubated for 1h at 37 ◦C in KRBH-0.1%
BSA buffer (1 mL) containing 2.8 mM or 16.7 mM glucose. The supernatant (300 µL) was immediately
collected and stored at −20 ◦C. Islets were centrifuged at room temperature (300 RPM, 1 min) and dry
pellets were stored at −80 ◦C for DNA normalization assay. Insulin concentration was measured by
using ultra-sensitive mouse insulin ELISA kit (80-INSMSU-E01, Alpco, Eurobio, Les Ulis, France).

2.11. Plasma Non-Esterified Fatty Acid Levels and Hepatic Glycogen Content

Plasma non-esterified fatty acids (NEFAs) levels were measured using the NEFA-HR (2)
kit (Wako Diagnostics, Mountain View, CA, USA) according to the manufacturer’s protocol.
For determination of hepatic glycogen content, livers from 25-week-old α7−/− and WT control mice
were collected, weighed and homogenized with Polytron (PT 1600E, Kinematica AG, Littau-Lucerne,
Switzerland). Then, total hydrolysis of the glycogen into glucose was performed by using
α-amyloglucosidase (10115-6G-F, Sigma-Aldrich, Saint-Quentin Fallavier, France) in a water-bath
at 55 ◦C for 30 min. Glucose was precipitated by centrifugation at 4000 rpm for 5 min at 4 ◦C.
The supernatants were collected and stored at −20 ◦C. Finally, the glucose concentration was
determinated using a Glucose GOD-PAP assay kit (80009, Biolabo, Maizy, France) according to
the manufacturer’s instructions.

2.12. Histomorphometric Studies

After dissection, whole pancreata from E18.5 fetuses were fixed in aqueous Bouin’s solution
and embedded in paraffin. Each pancreatic block was serially sectioned (5 µm). For 10-week-old
male mice, whole pancreata were carefully cut in half lengthwise to obtain two equal fragments.
To avoid any bias due to differences in islet distribution or cell composition in the tail region of the
pancreas compared to the head, each half consists of the head and tail of pancreata. Each fragment
was weighted. One half was fixed in aqueous Bouin’s solution and embedded in paraffin. For each
pancreas, 10 sections were randomly chosen at a fixed interval through the block, a procedure that has
been shown to ensure that selected sections are representative of the entire pancreas [26]. The other
half was homogenized and centrifuged at 4 ◦C in an acid-alcohol solution. The supernatant was stored
at −20 ◦C until assayed. For histologic analysis, sections were stained only with eosin and hematoxylin
while for morphometric analysis, sections were immunostained as previously described [26]. Briefly,
sections were treated with hydrogen peroxide (3%) in TRIS-1X buffer for 15 min at room temperature
to block endogenous peroxidase activity. After blocking in 10% goat serum, sections were incubated
with rabbit anti-insulin (sc-8033, Santa-Cruz Biotechnology, Dallas, TX, USA) or rabbit anti-glucagon
(K79bB10, Boster Biological Technology, Pleasanton, CA, USA) primary antibodies overnight at 4 ◦C.
Then, sections were washed in TRIS-1X and incubated with an horseradish peroxidase conjugated goat
anti-rabbit IgG (111-035-144, Jackson ImmunoResearch, Cambridge, UK) for 1 h at room temperature.
The activity was revealed with 3,3′-diaminobenzidine-tetra-hydrochloride using a peroxidase substrate
kit (DAB, Biosys-Vector, Compiègne, France). After staining, sections were mounted in Eukitt. Images
were acquired on an Olympus BX60 microscope connected via a color video camera (XCD-U100CR,
Sony, Tokyo, Japan) to a Compac PC computer. The relative β- or α-cell area in pancreatic sections and
their respective cell mass were assessed by using Histolab software v.10.1 (Microvision instruments,
Evry, France) as previously described [27]. For example, after insulin staining, the relative surface
area of insulin-positive cells over the total pancreatic tissue was evaluated by morphometric method.
The β-cell mass was then calculated by multiplying the relative β-cell fraction by the pancreas weight

2.13. RNA Extraction and Real-Time Quantitative RT-PCR

Different organs were harvested from mice that had never been tested in vivo. After dissection,
RNA was extracted from fetal pancreata (E18.5), pancreatic islets of 10-weeks-old mice, liver of 10- and
25-weeks-old mice, muscle of 25-weeks-old mice, and adipose tissue of 10- and 25-weeks-old mice
using the RNeasy mini kit (74104, Qiagen, Hilden, Germany) according to the manufacturer’s protocol.
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cDNA of each RNA sample was synthesized with M-MLV Reverse Transcriptase (28025013, Invitrogen,
Saint Aubin, France) using random hexamer primers. The primers used for qPCR were designed from
mouse sequences and using OLIGO primer analysis software v.7. The sequence of the primers used is
provided in Table 2. Real-Time quantitative PCR (RT-qPCR) amplification reactions were carried out
in a LightCycler 480 detection system (Roche Diagnostics, Mannheim, Germany) using LightCycler
480 SYBR Green I Master mix (04887352001, Roche Diagnostics, Mannheim, Germany) as previously
described. mRNA transcript levels of four housekeeping genes (cyclo A, HPRT, TBP and RPL19) were
assayed. On the base on the stability of the different genes, cyclo A was retained for normalization of
transcripts in skeletal muscle and fetal pancreas, HPRT in αTC-1 cell line, TBP in adipose tissue and
liver, as well as RPL19 in islets.

Table 2. Genes analyzed by Real-Time PCR and primer sequences.

Gene Polarity Sequence (5′ to 3′) Genebank Number

M3 mAChR
Forward ACCAGGCCACTCACTTACCG

12671Reverse CCCAAGCCAGACCAACCCTCATCACAC

α3 nicotinic subunit
Forward ATATGAAAGCACAGAATGTAGCCA 110,834
Reverse TGCACACCAGGATGAAAACCCA

α5 nicotinic subunit
Forward TGATCAAGCATTCAATCTATGGGT 110,835
Reverse CACAAAAGCCATTCCATATTGCC

α6 nicotinic subunit
Forward CGAGAGTGTTCAATTCATAGCAGA 11,440
Reverse GACTTTCCTGTGTTCCCAAGCA

α7 nicotinic subunit
Forward TATCCCTGTAGCTGTCGGTC 11,441
Reverse CCTGCCGAGTACAATGATATGCC

β2 nicotinic subunit Forward TTGAAATCTACTAAGCCCCACAAC 11,444
Reverse TTCCCTGCTTCAAAACTTTTCCC

β4 nicotinic subunit Forward CCTTGCCCATTAAAGTCTATGCTC 11,438
Reverse CACACACTCCGACCCTTG

BAD
Forward TTCCAGATCCCAGAGTTTGAGCC 12,015
Reverse CTGTAGCACTAGCGTCTTCC

BAX
Forward CACCAAGAAGCTGAGCGAGT 12,028
Reverse CCCCAGTTGAAGTTGCCATCA

BCL2
Forward AGCGGATATACCTTTCTTACCCT 12,043
Reverse CTTGATTCTGGTGTTTCCCCGTTG

CXCL1
Forward CCGAAGTCATAGCCACACTCA 14,825
Reverse TCAGAAGCCAGCGTTCACCA

F4/80 Forward CCAAGCCTATTATCTATACCCTCC 13,733
Reverse CCAAGTTTGCCATCCGGTT

GLUT 2
Forward TCTGTTACCTTTCCTCGGCTTC 20,526
Reverse ACAGCTAAGAACAACTCAAGCATT

IGF 2
Forward ACCCAGTGTTAATATGCCTCGT 16,002
Reverse AAGACAGTAGGGAAGAGACAAGA

IL-1β Forward CCTGTGTTTTCCTCCTTGCCT 16,176
Reverse TCTCAGCTTCAATGAAAGACCTC

IL-6
Forward GAGACTTCCATCCAGTTGCC 16,193
Reverse AAGTAGGGAAGGCCGTGGTT

IL-15
Forward CTTGCTTATTTTTAATTTATTGCT 16,168
Reverse AAAATATCCATACAACTTTATTCCAC

TLR4
Forward CAGCAGGTGGAATTGTATCGC 21,898
Reverse TGCTCAGGATTCGAGGCTTT

TNFα
Forward AGCACAGAAAGCATGATCCG 21,926
Reverse ACCCCGAAGTTCAGTAGACAG

Cyclophilin A Forward CGTGGCCAACGATAAGAAGAA 268,373
Reverse GTCTCCACCCTGGATCATGAA

HPRT
Forward TCCTCCTCAGACCGCTTTT 15,452
Reverse CCTGGTTCATCATCGCTAATC

RPL19
Forward GGGCAGGCATATGGGCATA 19,921
Reverse GGCGGTCAATCTTCTTGGATT

TBP
Forward GGGGAGCTGTGATGTGAAGT 21,374
Reverse CCAGGAAATAATTCTGGCTCA
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2.14. Correlation Studies in Mice Islets

Correlations between the expression of α7 nAChR in mouse islets and metabolic phenotypes
were carried out on the basis of the database developed within the framework of the European
programmes IMI Imidia and Rhapsody and according to a previously described methodology [28].
Briefly, male mice from six commonly used non-diabetic mouse strains were fed a high fat or regular
chow diet for 3 months. Pancreatic islets were extracted and phenotypic measurements (basal glycemia
and insulinemia, oral GTT, ITT) were performed at 2 days, 10 days, 30 days, and 90 days to assess
diabetes progression. RNA-Seq was performed on islet tissue at each time-point and integrated with
the phenotypic data in a network-based analysis [28].

2.15. Statistical Analysis

Statistical significance was determined between two groups by using the non-parametric two-tailed
Mann–Whitney test, parametric two-tailed Multiple t tests and Two-Way Repeated Measures (RM)
ANOVA from GraphPad Prism version 8.0 software (San Diego, CA, USA). A p value < 0.05 was
considered statistically significant. Data are represented as mean ± SEM, and the number of cases is
found in the figure legends.

3. Results

3.1. The Lack of α7 nAChR Induces a Chronic Mild High Glycemia in Mice Fed a Standard Chow Diet

Using RT-qPCR, we found that mouse adipose tissue, liver, and pancreatic islets expressed the
α7 nAChR (Figure 1a–c). In addition, α7 nAChR mRNA expression was detected in αTC-1 and
INS1 cell lines, which are respectively pancreatic α- and β-cell models (Figure 1d,e). Interestingly,
IGF-2 mRNA expression was significantly decreased in α7−/− islets compared to control WT islets
(Figure 1f), while GLUT2 glucose transporter mRNA expression was significantly increased (Figure 1g).
However, M3 muscarinic acetylcholine receptor (mAChR) expression was not changed (Figure 1h).
We measured non-fasting glycemia in α7−/− and WT control mice at different ages. Non-fasting
blood glucose concentration was significantly higher in α7−/− mice compared with WT control mice
(Figure 1i) from the beginning of the study (1 week of age), thus reflecting elevated glucose levels in
response to the lack of α7 nAChR. Indeed, 10- and 25-week-old α7−/−mice displayed glycemia reaching,
respectively, a mean of 170.5 ± 8.21 and 175.83 ± 11.13 mg/dL, whereas age-matched WT control mice
had mean values of 132.83 ± 4.61 and 136.5 ± 3.98 mg/dL. Although this difference was maintained until
25 weeks of age, non-fasting blood glucose levels in α7−/− mice did not exceed 200 mg/dL, a glycemic
value considered as diabetic in mice. Similarly, fasting glycemia (107.67 ± 3.54 mg/dL in α7−/− mice
versus 79.34 ± 4.54 mg/dL in WT mice) was significantly increased in 10-week-old α7−/− mice when
compared with age-matched WT control mice (Figure 1j). This difference has become more pronounced
at 25 weeks of age (Figure 1j), reaching an average value of 197.75 ± 24.14 mg/dL in α7−/− mice and
116,50 ± 9.30 mg/dL in WT control mice. Comparison of mean values of homeostatic model assessment
for β-cell function (HOMA-β) index between 10-week-old α7−/− and WT control mice indicates that
α7−/− β-cell function tends to be lower (Figure 1k). Together, these observations highlight that α7
nAChR deficiency leads to the development of a mild chronic hyperglycemic state, which is defined as
a pre-diabetes [29].
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Figure 1. The constitutive lack of α7 nAChR induces a mild hyperglycemic state in male mice fed
standard chow diet. mRNA expression of the α7 nicotinic subunit was measured in visceral adipose (a)
and hepatic (b) tissues, and pancreatic islets (c). Gene expression levels were normalized to RPL19



Biomolecules 2020, 10, 1057 10 of 28

(for islets) and TBP (for adipose and hepatic tissues) gene expression. Nicotinic subunits expressed in
mouse α-TC1 (d; n = 5) and rat INS-1 832/13 cells (e; n = 5). Gene expression levels were normalized
to HPRT gene expression. mRNA expression of IGF-2 (f), GLUT2 (g) and M3 mAChR (h) were
measured from isolated islets from 10-week-old α7−/− mice compared with age-matched WT controls.
Gene expression levels were normalized to RPL19 gene expression. Non-fasting blood glucose level
was measured in male mice at 1, 10 and 25 weeks old (i), and fasting glycemia were measured at
10 and 25 weeks old (j). Comparison of mean values of homeostatic model assessment for β-cell
function (HOMA-β) index between 10-week-old α7−/− and WT control (k). Each symbol represents
a mouse (grey dots for WT mice and green squares for α7−/− mice). All data are presented as
mean ± SEM. Symbols *, ** and *** indicate a significant difference compared to control WT using
unpaired Mann–Whitney two-tailed test (f–h,k; n = 5–7/group, * p < 0.05 and ** p < 0.01) and Multiple
t tests (i,j, n = 5–6/group, * p < 0.05; ** p < 0.01; *** p < 0.001).

3.2. Glucose metabolism Is Altered in α7−/− mice Fed a Standard Chow Diet

To explain chronic mild high glycemia observed in α7−/− mice, we first performed a glucose
tolerance test (GTT) to assess their ability to regulate glucose metabolism in response to an
intraperitoneal injection of glucose. This test revealed significantly higher blood glucose concentrations
after glucose administration in 10- and 25-week-old α7−/− mice (Figure 2a,b, respectively) when
compared with age-matched WT control mice. At 10 and 25 weeks of age, α7−/− mice had impaired
glucose tolerance, as shown by a significantly higher area under the blood glucose curve during the GTT
(Figure 2c,d). To understand how glucose metabolism is disturbed in α7−/− mice, we next evaluated
glucose-stimulated insulin secretion (GSIS) in these mice. Our results showed that in vivo insulin
secretion was significantly lower in 10-week-old α7−/− mice at 0 and 60 min (Figure 2e) when compared
with age-matched WT control mice. This could explain glucose intolerance and chronic mild high
glycemia observed in Figures 1i and 2a. However, there was no significant difference between areas
under the curve (Figure 2g), suggesting an overall rate of insulin secretion, following an intraperitoneal
glucose challenge, similar in both groups. Similarly, GSIS measured in 25-week-old α7−/− mice was
not different when compared with age-matched WT control mice (Figure 2f,h), except at 0 min. On the
other hand, fed and fasting insulinemia were significantly higher in 25-week-old α7−/− mice than WT
control mice (Figure 2i,j). This observation suggests the development of insulin resistance, which could
explain why basal glycemia rose in 25-week-old α7−/− mice compared with 10-week-old α7−/− mice
(Figure 1j).
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Figure 2. Glucose metabolism is impaired in α7−/− mice fed a standard chow diet. All experiments in
this figure were carried out in 10- and 25-week-old male WT control and α7−/− mice. Glucose tolerance
test was performed in overnight fasted mice with intraperitoneal injection of glucose (IPGTT) at 1.5 g/kg
of body weight (a,b). Blood samples were taken at the time indicated from the tail vein of the same
animals, and the area under the corresponding curve of blood glucose levels was calculated during
120min (c,d). Glucose-stimulated insulin secretion during IPGTT was analyzed at 0, 15, 60 and 120 min
(e,f), and the area under the corresponding curve plasma insulin levels was calculated during 120min
(g,h). Blood insulin levels under fed (i) and fasted (j) conditions in 25-week-old α7−/− and WT control
mice. Each dot represents a mouse (grey dots for WT mice and green squares for α7−/− mice). All data
are presented as mean ± SEM. Symbols *, **, *** and **** indicate a significant difference compared to
control WT using Two-Way RM ANOVA (a,b,e,f; n = 6–7/group, * p < 0.05; ** p < 0.001; *** p < 0.0005;
**** p < 0.0001) and unpaired Mann–whitney two-tailed test (c,d,g–j; n = 4–7/group, * p < 0.05). AUC,
area under curve.

3.3. 25-Week-Old α7−/− Mice Develop Insulin Resistance

Impact on insulin sensitivity. We then performed an intraperitoneal insulin tolerance test (ITT).
Surprisingly, the results revealed a strong trend (p = 0.0667) towards increased insulin sensitivity in
10-week-old α7−/− mice compared with age-matched WT control mice (Figure 3a). Although this
difference was also not statistically significant (Figure 3c), these observations indicate that 10-week-old
α7−/−mice seem to be more insulin sensitive than WT controls, likely to compensate for insulin secretion
as previously described in rats with mild insulin deficiency induced by neonatal streptozotocin [30].
The course of the curve in 10-week-old α7−/− mice seems to increase between 45 and 120 min compared
to WT control mice, suggesting probably a glucagon counterregulatory response to prevent further
glucose reduction. As expected, 25-week-old α7−/− mice revealed an insulin resistance during insulin
tolerance test (Figure 3b), as shown by a significantly higher area over the curve compared with those
of WT control mice (Figure 3d).
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Impact on insulin target tissues. Because insulin resistance is defined as an inability of peripheral
tissues, such as the skeletal muscle, liver, and adipose tissue, to increase glucose uptake in response to
insulin, we further investigated which of these tissues had become insulin resistant in 25-week-old
α7−/− mice. Measurements of radiolabeled 2-deoxyglucose uptake, a glucose analog, allowed us to
show that only insulin-stimulated glucose uptake in the EDL skeletal muscle was significantly reduced
in 25-week-old α7−/− mice as compared with age-matched WT mice (Figure 3e). It is well established
that elevated plasma non-esterified fatty acid (NEFA) levels decrease insulin-stimulated glucose uptake
in the skeletal muscle [31,32]. We subsequently quantified plasma NEFA concentrations. The analysis
showed that plasma NEFA levels in 25-week-old α7−/− mice were significantly higher than those of
age-matched WT mice (Figure 3f).

Impact on neoglucogenesis. Since elevated circulating NEFA levels have direct effects on hepatic
glucose stores as well as on neoglucogenesis [33,34], we then wanted to investigate whether 25-week-old
α7−/−mice could display an impaired hepatic glucose homeostasis. We found that absence ofα7 nAChR
had no effect on hepatic glycogen content in mice (Figure 3g). However, when mice were challenged
with pyruvate, a gluconeogenic precursor, the lack of α7 nAChR impaired pyruvate tolerance as
represented by a significant increase in AUC (Figure 3h,i). It is important to note that glycemia
was very similar during 30 min following the pyruvate bolus injection in both groups (Figure 3h),
reflecting an unaltered glucose production in α7−/− mice. Nevertheless, unlike WT control mice,
blood glucose levels in α7−/− mice continued to rise until 45 min after injection and then progressively
decreased (Figure 3h). As glucose uptake was reduced in α7−/− mice, the clearance of glucose from
gluconeogenesis was delayed, thus explaining the significant increase in AUC observed in α7−/−

mice (Figure 3i). Therefore, this effect reflects insulin resistance rather than hepatic dysfunction in
25-week-old α7−/− mice. Taken together, these results show that glucose dyshomeostasis observed in
α7−/− mice worsened over time.
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Figure 3. Twenty-five-weeks-old α7−/− mice develop insulin resistance. All experiments in this figure
were carried out in 10- and 25-week-old male WT control and α7−/− mice. Insulin tolerance tests
(0.75 U/kg) were performed in mice fasted 6h (a,b). Blood samples were taken at the time indicated
from the tail vein of the same animals and the area over the curve of blood glucose levels was calculated
during 120min (c,d). Insulin-stimulated 2DG uptake in epididymal (Epidi), subcutaneous (Wsc) and
visceral (Wv) adipose tissues, livers, and soleus as well as EDL muscles from 25-week-old WT control
and α7−/−mice (e). Comparison of plasma NEFA concentration from 25-week-old WT control and α7−/−

mice (f) and of hepatic glycogen content (g). Blood glycemia was measured following intraperitoneal
injection of 1g/kg sodium pyruvate (h) and the area under the corresponding curve was calculated (i).
Each dot represents a mouse (grey dots for WT mice and green squares for α7−/− mice). All data are
presented as mean ± SEM. Symbols * and *** indicate a significant difference compared to control WT
using unpaired Mann–Whitney two-tailed test (c,d,f–h n = 4–9/group, * p < 0.05; *** p < 0.001) and
Multiple t tests (e, n = 5–7/group, * p < 0.05). AOC, area over curve.

3.4. α7 nAChR Deficiency Is Associated to a Reduction in β-cell Mass in Mice

Given that fed and fasting glycemia were significantly higher in 10-week-old α7−/− mice, we
investigated the effects of α7 nAChR deficit on pancreatic islet mass in 10-week-old mice. Interestingly,
morphometric measurements showed that β- and α-cell mass were significantly reduced in α7−/− mice
compared with WT control mice by approximately 48% (Figure 4a–c) and 46% (Figure 4a,b,d),
respectively. Moreover, pancreatic insulin content was also significantly decreased in 10- and
25-week-old α7−/− mice (Figure 4e,f), suggesting that β-cell mass is still reduced in 25-week-old
α7−/− mice. Since it has been reported that the cholinergic anti-inflammatory pathway was regulated by
α7 nAChR [19], we then asked if significant reduction in pancreatic islet mass identified in 10-week-old
α7−/− mice was caused by islet inflammation. Hematoxylin and eosin staining of pancreatic sections
from 10-week-old α7−/− mice revealed neither inflammation nor islet fibrosis (Figure 4g). Moreover,
mRNA expression quantification by RT-qPCR from isolated α7−/− islets indicated that apoptotic marker
and pro-inflammatory cytokine levels were not different compared to WT control islets (Figure 4h–j),
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confirming the absence of pancreatic inflammation in 10-week-old α7−/− mice. Overall, these data
suggest that impaired glucose homeostasis in α7−/− mice is related to a reduced islet mass, which is
not a secondary consequence of inflammation, thus highlighting a novel role for α7 nAChR in islet
mass homeostasis.
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Figure 4. α7 nAChR deficiency is associated with a reduction in β-cell mass in mice. Pancreata were
harvested from 10-week-old male α7−/− and WT control mice. α-and β-cell mass were measured by
morphometric analysis after glucagon or insulin immunostaining. Illustrative images of insulin
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and glucagon immunostaining from a WT control (left) and α7−/− (right) mouse at 10 weeks of age
(Scale bar = 1 mm) (a), pancreas weight (b), β-cell mass (c), and α-cell (d) per pancreas of four
animals in each group at 10 weeks of age. Insulin content per pancreas was significantly reduced
in 10- and 23-weeks-old α7−/− mice compared with WT controls (e,f). Representative hematoxylin
stained pancreatic section from a WT control (left) and α7−/− (right) mouse at 10 weeks of age
(Scale bar = 30µm) (g). mRNA expression of characteristic pro-inflammatory cytokines (TNFα and
IL-1β) (h,i) and pro-apoptosis markers as Bax, Bad and Bcl2 (j) were measured from isolated islets
from 10-week-old α7−/− mice compared with age-matched WT controls. Gene expression levels were
normalized to RPL19 (for inflammatory cytokines) and HPRT (for apoptosis markers) gene expression.
Each dot represents a mouse (grey dots for WT mice and green squares for α7−/− mice). All data are
presented as mean ± SEM. Symbols * and ** indicate a significant difference compared to control WT
using unpaired Mann–Whitney two-tailed test (c–f,h–j, n = 4–9/group, * p < 0.05; ** p < 0.005) and
Multiple t tests (j, n = 4/group).

3.5. α7 nAChR Deficiency Is Associated to Embryonic Remodeling of Pancreatic Islet Mass

Since we observed that the lack of α7 nAChR induced a pronounced reduction of islet mass, higher
non-fasting blood glucose levels in 1-week-old α7−/− mice led us to measure islet mass at embryonic
day 18.5 (E18.5) and to investigate whether α7−/− mice were born with a deficit of islet mass. Unlike
what we have observed in adulthood, β-cell mass (Figure 5a,b,e) was significantly higher in E18.5 α7−/−

fetuses than E18.5 WT control fetuses. In contrast, α-cell mass was similar in both groups (Figure 5c–e).
In addition, there was no difference in pro-inflammatory cytokine expression in both groups (Figure 5f),
thereby reinforcing the idea that α7 nAChR could be involved in islet mass homeostasis. It is important
to note that body and pancreas weight from E18.5 α7−/− fetuses were significantly higher than those
from WT fetus (Figure 5g,h), suggesting that these fetuses are macrosomic. Measurements of maternal
weight and glycemia at day 18.5 of the pregnancy revealed that α7−/− pregnant mothers exhibit an
mild hyperglycemic intrauterine environment (Figure 5i,j).

Biomolecules 2020, 10, x FOR PEER REVIEW 18 of 31 

 

Insulin 

WT α7
-/-

 

WT α7-/-
0.00

0.05

0.10

0.15

0.20

0.25

β 
ce

ll m
as

s 
(m

g/
g 

pa
nc

re
as

) *

Glucagon 
WT α7

-/-
 

TLR4

WT α7-/-
0.006

0.007

0.008

0.009

0.010

m
R

N
A 

R
el

at
iv

e 
ex

pr
es

si
on

 
(C

yc
lo

 N
or

m
al

iz
at

io
n)

TNFα

WT α7-/-
0.000

0.001

0.002

0.003

IL-1β 

WT α7-/-
0.0000

0.0005

0.0010

0.0015

E18.5

WT α7-/-
0.0

0.5

1.0

1.5

Fe
ta

l w
ei

gh
t (

g)

**

WT

α7-/-

E0 E18.5
0

10

20

30

40

50

M
at

er
na

l b
od

y 
w

ei
gh

t (
g)

***

E0 E18.5
100

120

140

160

180

200

220

M
at

er
na

l g
ly

ce
m

ia
 (m

d/
dL

) *

WT α7-/-
0

5

10

15

Fe
ta

l p
an

cr
ea

tic
 w

ei
gh

t (
m

g) ****

E18.5

a b 

c d 

e 

g 

f 

h 

i j 

Fetus E18.5  WT α7-/- 

Pancreatic weight 

(mg) 
5.2 ± 0.3808 8.06 ± 0.2542 

Values are expressed as mean ± SEM (n = 5-6/group).   

Figure 5. Cont.



Biomolecules 2020, 10, 1057 16 of 28

Biomolecules 2020, 10, x FOR PEER REVIEW 18 of 31 

 

Insulin 

WT α7
-/-

 

WT α7-/-
0.00

0.05

0.10

0.15

0.20

0.25

β 
ce

ll m
as

s 
(m

g/
g 

pa
nc

re
as

) *

Glucagon 
WT α7

-/-
 

TLR4

WT α7-/-
0.006

0.007

0.008

0.009

0.010

m
R

N
A 

R
el

at
iv

e 
ex

pr
es

si
on

 
(C

yc
lo

 N
or

m
al

iz
at

io
n)

TNFα

WT α7-/-
0.000

0.001

0.002

0.003

IL-1β 

WT α7-/-
0.0000

0.0005

0.0010

0.0015

E18.5

WT α7-/-
0.0

0.5

1.0

1.5

Fe
ta

l w
ei

gh
t (

g)

**

WT

α7-/-

E0 E18.5
0

10

20

30

40

50

M
at

er
na

l b
od

y 
w

ei
gh

t (
g)

***

E0 E18.5
100

120

140

160

180

200

220

M
at

er
na

l g
ly

ce
m

ia
 (m

d/
dL

) *

WT α7-/-
0

5

10

15

Fe
ta

l p
an

cr
ea

tic
 w

ei
gh

t (
m

g) ****

E18.5

a b 

c d 

e 

g 

f 

h 

i j 

Fetus E18.5  WT α7-/- 

Pancreatic weight 

(mg) 
5.2 ± 0.3808 8.06 ± 0.2542 

Values are expressed as mean ± SEM (n = 5-6/group).   

Figure 5. α7 nAChR deficiency is associated to embryonic remodeling of pancreatic islet mass.
Pancreata were harvested from α7−/− and WT control fetuses at E18.5, and α- and β-cell mass were
measured by morphometric analysis after glucagon or insulin immunostaining. Illustrative images
of insulin (a) or glucagon (c) staining in pancreas from a WT control (left) and α7−/− (right) fetus at
E18.5 (Scale bare = 30 µm). β-cell mass (b,d) α-cell mass in pancreatic sections of α7−/− fetuses at E18.5
are shown compared with WT controls. Pancreas fetal weight used to quantify β- and α-cell mass
are expressed as mean ± SEM (e). At E18.5, fetal pancreas were analyzed for mRNA expression of
pro-inflammatory markers such as TLR4, TNFα and IL-1β (f). Gene expression levels were normalized
to Cyclophilin A gene expression. Body (g) and pancreas (h) weight were measured in α7−/− and WT
control fetuses at embryonic day 18.5 (E18.5). Maternal weight (i) and glycemia (j) were measured the
morning on which a vaginal plug (E0.5) was present and at day 18.5 (E18.5) of the pregnancy. Each dot
represents a mouse (grey dots for WT mice and green squares for α7−/− mice). All data are presented as
mean ± SEM. Symbols *, **, *** and **** indicate a significant difference compared to control WT using
unpaired Mann–Whitney two-tailed test (b,d,f–h, n = 4–25/group, * p < 0.05; ** p < 0.01; *** p < 0.001
and **** p < 0.0001) and Multiple t tests (i,j, n = 4–9/group, * p < 0.05, *** p < 0.001).

3.6. Body Weight and Food Intake Are Disturbed in α7−/− Mice Fed a standard Chow Diet

Literature reports that increased body weight and adiposity are hallmarks of insulin resistance [35].
Given that α7−/− mice develop insulin resistance over time, we evaluated the progression of their body
weight with age. As expected, body weight was significantly increased in 18- and 23-week-old α7−/−

mice compared with age-matched WT control mice (Figure 6a). Besides, body weight at 10 weeks of age
was similar (25.34 ± 0.34 g for WT group versus 26.29 ± 0.62 g for α7−/− group, p > 0.3) in both groups
(Figure 6a). Higher body weight (2.74 ± 0.12 g for WT group versus 3.30 ± 0.08 g for α7−/− group,
p < 0.002) seen in 1-week-old α7−/− pups (Figure 6a) is likely a consequence of mild hyperglycemic
intrauterine environment (Figure 5h,j), as previously described [36]. This is agreed with higher body
and pancreatic fetal weight in E18.5 α7−/− fetuses (Figure 5f,g), reflecting a macrosomic phenotype that
has been maintained during at least the first postnatal week and has returned to normal weight at
10 weeks of age (Figure 6a). Given their more important growth rate, assessment of body composition
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changes was performed in 18-, 20- and 23-week-old mice. Strikingly, the percentage of relative fat mass
at the different ages showed that α7−/− mice gained more weight as fat mass than WT control mice
(Figure 6b). More importantly, fat mass gain between weeks 18 and 23 was more pronounced in α7−/−

mice (Figure 6b). On the other hand, 18-, 20- and 23-week-old α7−/− mice lost significantly more lean
mass compared with age-matched WT control mice (Figure 6c). This difference was also more marked
between weeks 18 and 23 in α7−/− mice than in WT control mice (Figure 6c). In addition, α7−/− mice
exhibited a disturbed food behavior as shown by average food intake significantly higher than WT
control mice between weeks 18 and 23 (Figure 6d). However, their food efficiency was not different
as compared to WT control mice (Figure 6e), indicating that food assimilation did not contribute to
body weight gain. In summary, insulin-resistant α7−/− mice increased their body weight due to their
higher food consumption, which led to an increase in fat mass, a known factor to contribute in the
pathogenesis of T2D.
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Figure 6. Body weight and food intake are disturbed in α7−/− mice fed a standard chow diet. Body
weight was measured in WT control and α7−/− mice at 1, 10, 18, and 23 weeks of age (a). The percentage
of fat (b) or lean (c) mass relative to body weight was assessed by EchoMRI in 18-, 20- and 23-week-old
in WT control and α7−/− mice. Cumulative average daily food intake between 14 and 24 weeks of age
in α7−/− mice compared with age-matched WT controls (d). Evaluation of food efficiency rate was
calculated as weight gain (g/day) over food intake (g/day) from 14 to 24 weeks old in α7−/− and WT
control mice (e). Each dot represents a mouse (grey dots for WT mice and green squares for α7−/−

mice). All data are presented as mean ± SEM. Symbols *, ** and *** indicate a significant difference
compared to control WT using unpaired Mann–whitney two-tailed test (a–e, n = 4–13/group, * p < 0.05;
** p< 0.01 and *** p < 0.001).
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3.7. Adipose Tissue in 25-Week-Old α7−/− Mice Exhibits Higher Expression of Pro-Inflammtory Genes

We showed increased body weight gain and adiposity in old α7−/− mice. As it is now well
established that inflammation, and particularly in adipose tissue, is a hallmark of insulin resistance and
obesity [37,38], we thus reasoned that inflammation also could occur in adipose and peripheral tissues
and be associated with the overweight and insulin-resistant phenotype we observed. We studied
this possibility by measuring pro-inflammatory gene expression such as TNFα, IL-1β and IL-6. As
shown in Figure 7, adipose tissue in 25-week-old α7−/− mice had significantly higher expression of
genes encoding for TNFα, IL-6, F4/80 and IL-15 as well as CXCL1 (Figure 7a), which are associated
with obesity [39,40]. IL-6 mRNA expression level was significantly enhanced in liver tissue whereas
TNFα mRNA expression markedly trended to be higher (p = 0.055) in 25-week-old α7−/− mice than
age-matched WT mice (Figure 7b). However, expression of IL-1β gene, in adipose tissue (Figure 7a)
and liver (Figure 7b), was similar in both groups of mice. In muscle tissue, IL-1β and F4/80 mRNA
expression were significantly increased from 25-week-old α7−/− mice compared with age-matched
WT control mice (Figure 7c), whereas IL-15 mRNA expression tended to be higher (p = 0.065) in
25-week-old α7−/− mice (Figure 7c). We concluded that levels of pro-inflammatory markers were
much higher in adipose tissue than muscle tissue and liver in 25-week-old α7−/− mice, supporting an
association of insulin resistance and body weight gain with increased inflammation.
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Figure 7. Cont.
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Figure 7. Twenty-five-week-old α7−/− mice develop adipose inflammation. mRNA expression of
characteristic pro-inflammatory marker TNFα, IL-6, IL-1β F4/80, cytokine IL-15 and chemokines CXCL1
were measured in visceral adipose (a), in hepatic (b) and muscle tissues (c) from 25-week-old α7−/− mice
compared with age-matched WT controls. Gene expression levels were normalized to TBP (for adipose
and hepatic tissues) and Cyclophilin A (for muscle tissue) gene expression. Each dot represents a mouse
(grey dots for WT mice and green squares for α7−/− mice). All data are presented as mean ± SEM.
Symbol * indicates a significant difference compared to control WT using unpaired Mann–Whitney
two-tailed test (a–c, n = 5–6/group, * p < 0.05).

3.8. Correlation between the Expression of α7 nAChR in Mouse Islets and Fasting Glycemia and Insulinemia

In parallel, metabolic phenotyping measurements in high-fat-fed male mice from six commonly
used non-diabetic mouse strains, including C57Bl6/J strain, were recorded at 2 days, 10 days, 30 days,
and 90 days to evaluate diabetes progression. To identify metabolic phenotype-related genes,
RNA sequencing was performed on pancreatic islets from these mice, which express α7 nAChR.
Transcriptomic analysis was performed at each time-point and integrated with the phenotypic data.
Our results identified Chrna7 gene, encoding for the α7 subunit of nAChR, as being one of several
genes related to fasting glycemia and fasting insulinemia (Figure 8a,b). Its expression in islets was
significantly and negatively correlated with fasting glycemia (r = −0.58, p value = 1.7 × 10−5) (Figure 8a)
and fasting insulinemia (r = −0.46; p = 0.001) (Figure 8b), thus confirming our results observed in
25-week-old α7−/− nAChR mice (Figures 1j and 2i). Next, we studied insulin secretion, in freshly
isolated islets from 10-week-old mice, in response to 2.8 mM and 16.7 mM Glucose. In agreement with
our transcriptomic data, we found that basal insulin secretion in 2.8 mM glucose was significantly
increased by approximately 3-fold in freshly isolated α7−/− islets when compared with WT controls
(Figure 8c). However, the difference was not significant at 16.7 mM Glucose (Figure 8c). The fold change
by glucose at 16.7 mM over that at 2.8 mM glucose was not statistically significant but exhibited a trend
for decrease in isolated α7−/− islets (Figure 8d), indicating the onset of deterioration of β-cell function.
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Figure 8. Correlation between the expression of α7 nAChR in mouse islets and fasting glycemia and
insulinemia. Scatter plots showing that chrna7 gene expression, encoding for the α7 nicotinic subunit,
from islets is negatively correlated with fasting glycemia (a); Spearman’s r = −0.58, p-value = 1.7 × 10−5

(all samples) and with fasting insulinemia (b); Spearman’s r = −0.46, p value = 0.001 (all samples).
Glucose-induced insulin secretion was measured in isolated islets from 10-week-old α7−/− and WT
control mice (c). Insulin released at 2.8 mM and 16.7 mM glucose was determined as described in
Experimental procedures. The fold change in insulin secretion in response to 16.7 mM glucose was
measured after 1-h static incubations (d). Each dot represents a mouse (grey dots for WT mice and
green squares for α7−/− mice). All data are presented as mean ± SEM. Symbol * indicates a significant
difference compared to control WT using unpaired Mann–Whitney two tailed test (c,d, n = 5–6/group,
* p < 0.05). 2.8Glu: 2.8 mM glucose; 16.7Glu: 16.7 mM glucose.

4. Discussion

The present study was undertaken to examine the role of α7 nAChR in glucose homeostasis.
In contrast to previous studies that employed pharmacological approaches, we have here used
transgenic mice lacking the α7 nAChR and fed a normal chow diet to address this question. Evaluation
of glucose homeostasis revealed that 1/ the lack of α7 nAChR in 10-week-old mice leads to a reduced
β-cell mass and chronic mild high glycemia without islet inflammation; 2/10-week-old α7−/− mice
exhibit impaired glucose tolerance and a tendency for higher insulin sensitivity, whereas 25-week-old
α7−/− mice showed both glucose intolerance and skeletal muscle insulin resistance, and 3/10 to
25-week-old α7−/− mice gained more weight through a marked increase of fat mass associated with
higher food intake. Together, our findings provide several lines of evidence that the lack of α7 nAChR is
a significant factor in the pathogenesis of chronic high glycemia and suggest that α7 nAChR contributes
to regulate glucose homeostasis.

In T2D, reduction in β-cell mass is a consequence of excessive apoptosis and/or inadequate
proliferation (through replication and/or neogenesis) of β-cells [41,42]. It has been demonstrated that
the pancreatic branch of the vagus nerve releases acetylcholine (ACh) to regulate β-cell secretory
function [43], β-cell proliferation [6,44,45], and survival signals [46,47]. The effects of ACh are mediated
through muscarinic (mAChR) and nicotinic receptors. Although M3 mAChR is the main subtype
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expressed in β-cell [48], its absence in mice did not change β-cell mass [49] and the lack of α7 nAChR
did not modify its expression (Figure 1h), indicating that M3 mAChR is not involved in the regulation
of β-cell mass. Here, we found that β-cell mass was increased in E18.5 α7−/− fetuses and decreased in
10-week-old α7−/− mice, reflecting thus the progressive loss of β-cell mass in response to the deletion
of α7 nAChR in islets. On the other hand, β-cell α7 nAChR stimulation, in the multiple low-dose
streptozotocin-induced mouse T1D model, preserved β-cell mass by increasing survival signals [46].
However, our findings showed that pancreata from α7−/− fetuses or islets from 10-week-old α7−/−

mice displayed no evidence of apoptosis or inflammation (Figures 4h–j and 5f), suggesting instead
a defective β-cell proliferation. Moreover, over-expression of IGF-2, specifically in β-cells, led to an
increased β-cell mass in transgenic mice [50], whereas a reduced pancreatic expression of IGF-2 was
associated to a decreased β-cell mass [51]. Since islets from 10-week-old α7−/− mice (Figure 1f) exhibit
a significant reduction of IGF-2 mRNA expression, one could speculate that the lack of α7 nAChR
in β-cell associated to downregulation of IGF-2 mRNA levels could, among other factors, contribute
to reduce β-cell mass. Future studies are required to determine if there is a relationship between α7
nAChR and IGF-2. We found that α7−/− mice exhibited a reduction of α- and β-cell mass. Whether the
α7 nAChR dysfunction is a result of an impairment of replication, neogenesis or even a dedifferentiation
with a reduced α- and β-cell mass remains to be elucidated. Together, these observations suggest that
islet cholinergic signaling through α7 nAChR may play an essential role in mechanisms controlling α-
and β-cell mass.

The absence of α7 nAChR in pregnant female mice could promote insulin resistance, which
could contribute to higher levels of blood glucose (Figure 5j). It is now well accepted that fetuses
in response to a mild hyperglycemic intrauterine environment exhibit compensatory increases in
β-cell mass [52], pancreatic insulin content [52] and hyperinsulinemia [52]. Moreover, expression of
IRS-2 [53], pancreatic IGF-1 [54], and islet IGF-1R [54] are also increased. At this stage, insulin and
IGF-1 act as growth factors on fetuses resulting in macrosomia [36]. Since the intrauterine environment
of α7−/− mothers is mildly hyperglycemic (Figure 5i,j), it is not surprising that β-cell mass is increased
in α7−/− fetuses, which are macrosomic (Figure 5b,g). This suggests that remodeling of β-cell mass in
α7−/− fetuses is likely attributable to mild hyperglycemic intrauterine environment, which triggered
mechanisms of compensatory β-cell expansion in spite of the lack of α7 nAChR. Thus, we conclude
that changes in β-cell mass observed in α7−/− fetuses are likely attributable to both mild high glycemia
in utero and the absence of α7 nAChR. Another possible explanation is that the lack of α7−/− nAChR
in β-cells prevented their expansion in response to mild hyerglycemic intrauterine environment.
To compensate this defective proliferation, α-cells could be reprogrammed into β cells, in accordance
with what has been reported by previous experimental studies [55,56].

In humans, the gradual decline of functional β-cell mass rises glycemia and ultimately leads to
T2D. Here, we observed that the decline of α7−/− β-cell mass was paralleled by progressive increase in
glucose levels (in 1-week-old mice) leading to a chronic mild high glycemia state in 10- to 25-week-old
mice. Importantly, insulin sensitivity was not significantly different between 10-week-old α7−/− and WT
control mice. Ten-week-old α7−/− mice displayed a tendency higher insulin sensitivity. Consequently,
blood glucose levels increase at 10 weeks of age cannot be due to insulin resistance but rather to a
reduction in α7−/− islet mass. Our findings in vivo and in vitro showed that α7−/− islets increased basal
insulin secretion, which is likely to maintain a normal GSIS, thus revealing a compensatory α7−/− β-cell
adaptation to prevent or delay the onset of T2D [57]. Moreover, mRNA expression of GLUT2 glucose
transporter in pancreatic islets from 10-week-old α7−/− mice was significantly increased (Figure 1g),
which is another compensatory α7−/− β-cell adaptation likely to maintain a normal GSIS. Therefore,
implementation of these compensatory pathways, in an attempt to improve glucose homeostasis,
resulted in chronic mild high glycemia not exceeding 200 mg/dL in 10-week-old α7−/− mice, which can
be considered as a pre-diabetic state in mice [58]. Nevertheless, we observed that the fold change in
insulin secretion, in response to 16.7mM glucose, tended to decrease in α7−/− islets from 10-week-old
mice, reflecting the onset of insulin secretion dysfunction from β-cells to respond to elevated glucose
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levels. This is supported by the HOMA-β index, which tends to be lower in 10-week-old α7−/− mice
(Figure 1k). These data are consistent with previous studies showing that β-cell chronic exposure to
mild high glycemia may induce their dysfunction over time [59–61].

Insulin resistance is a significant metabolic disorder in both pre-diabetic and diabetic patients [62].
Interestingly, it has been reported that pharmacological activation of α7 nAChR enhances insulin
sensitivity [23]. We report here that the lack of α7 nAChR leads to insulin resistance in 25-week-old mice
as shown by markedly reduced insulin-stimulated glucose uptake in EDL skeletal muscle, supporting
α7 nAChR involvement in insulin sensitivity. As skeletal muscle insulin resistance acts a central role in
the pathogenesis of T2D [63,64], it is possible that α7−/− mice with age or exposed to high fat diet may
develop T2D.

Our study suggests that weight gain observed here may be mediated by the lack of α7 nAChR
in peripheral tissues (Figure 1a–c). Indeed, the lack of α7 nAChR significantly increased fat mass
gain and food intake, whereas pharmacological activation of α7 nAChR in db/db obese mice decreased
weight gain and food intake [21]. Therefore, α7 nAChR activation by specific agonists or by nicotine,
an exogenous ligand, could potentially improve metabolic disorders such as obesity and diabetes.
Thus, nicotine treatment increased insulin sensitivity in obese rats [65], improved glucose homeostasis
in db/db obese mice and reduced cytokine and NEFA levels in WT mice [22]. Moreover, α7 nAChR
activation by a specific agonist in db/db obese mice decreased weight gain and food intake. Besides,
previous studies support that chronic inflammation, particularly in adipose tissue, may be a molecular
mechanism involved in obesity [66,67]. Interestingly, pharmacological activation of α7 nAChR in db/db
obese mice suppressed inflammation in adipose tissue by stimulating the cholinergic anti-inflammatory
pathway [21,22]. On the other hand, we found that insulin-resistant α7−/− mice exhibit an excessive
inflammation in adipose tissue (Figure 7a), which is probably in response to enhanced plasma NEFA
levels (Figure 3f), which are known factors causing inflammation and insulin resistance [22]. Together,
these observations support the idea that α7 nAChR expressed in peripheral tissues is involved in body
weight regulation. However, we cannot rule out the possibility that metabolic effects observed are
also attributable to the lack of α7 nAChR in hypothalamic nuclei, which regulate food intake [68].
Indeed, it is believed that activation of hypothalamic α7 nAChRs trigger mechanisms for appetite
suppression [69], leading to a reduced food intake [70]. Thus, we believe that α7 nAChRs expressed in
peripheral tissues and hypothalamic nuclei are essential players involved in molecular mechanisms
related to obesity.

α7 nAChR is widely expressed in both peripheral tissues (Figure 1) and hypothalamus [71].
Therefore, one inherent weakness of our study is the use of a constitutive KO mouse model, which does
not allow us to pinpoint precisely the anatomically relevant site or sites related to metabolic disorders
observed in α7−/− mice. In addition, results from our mouse model are difficult to extrapolate to human
because the total lack of α7 nAChR has never been reported. On the other hand, dupα7, a hybrid gene
(CHRFAM7A), was identified, resulting from the fusion of a partial duplication of CHRNA7 gene with
the novel FAM7A gene [72]. It has been reported that dupα7 exerts a negative effect on α7 nAChR
activity when co-expressed in oocytes [73], but to date there is no experimental study reporting the
functional role of dupα7 in eukaryote cells. It is possible that moderate downregulation of α7 nAChR
may exert only a moderate impact on glucose homeostasis in human compared to mouse. However,
our study suggests that α7−/− mouse may be a suitable model for the typical human late onset obesity
when fed a standard chow. Indeed, this mouse model mimics human obesity because it is characterized
by a slow and gradual mass fat accumulation over the time (Figure 6). Interestingly, α7 nAChR
expression levels were significantly lower in subcutaneous adipocyte tissue of obese subjects compared
with that of normal-weight subjects [20]. Its expression was also downregulated at protein level in these
obese patients [20]. Moreover, α7−/− mouse also shows diabetes-like syndromes, such as a reduction
in β-cell mass, chronic mild high glycemia, glucose intolerance, and insulin resistance; the metabolic
phenotypes greatly resembling those observed in pre-diabetic and mild diabetic patients as well as
in heavy smokers [12]. It is now believed that the overall effect of sustained smoking may result in
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nAChR desensitization and that chronic smoking maintains this desensitization [74]. The α7 nAChR
has been shown to be particularly susceptible to desensitization [75,76]. Therefore, α7−/− mouse may
be considered as a model mimicking heavy smokers. Thus, inactivation of peripheral and central
α7 nAChRs, as a consequence of either down-regulated expression or desensitization by prolonged
nicotine exposure in smokers [77], could alter their glucose homeostasis, as observed in α7−/− mice.
Thus, our study also unveils the α7−/− mouse model as a powerful tool to study the mechanisms
leading to impaired glucose homeostasis related to smoking.

5. Conclusions

In summary, our results show that the lack of α7 nAChR is associated with a chronic mild
high glycemia, glucose intolerance, as well as reduction in α- and β-cell mass in young male mice.
Despite a deficit in β-cell mass, these male mice display a normal GSIS and tend to have better insulin
sensitivity compared with control male mice, likely to compensate the deficit in β-cells. As the mice
age, they develop insulin resistance, increase their fasting insulin secretion and accumulate more
fat mass, thus emphasizing their fasting glycemia. Our study highlights a novel and essential role
of α7 nAChR in glucose homeostasis in mice and identify its total absence as a predisposing factor
in the pathogenesis of chronic high glycemia. Our findings also suggest that α7 nAChR could be a
new therapeutic target for strategies to treat diabetic patients and smokers exhibiting an impaired
glucose homeostasis.
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Abbrevation

AOC Area Over Curve
AUC Aera Under Curve
Chrna7 Cholinergic receptor nicotinic alpha7
Cyclo A Cyclophilin A
EDL Extensor Digitorum Longus
GSIS glucose-stimulated insulin secretion
GTT Glucose tolerance test
HPRT Hypoxanthine phosphoribosyl transferase
ITT Insulin tolerance test
IGF-1 Insulin-like growth factor-1
IGF-1R Insulin-like growth factor-1 receptor
IGF-2 Insulin-like growth factor-2
IRS 2 Insulin receptor substrate 2
mAChRs muscarinic acetylcholine receptors
M-MLV Moloney-murine leukemia virus
nAChR nicotinic acetylcholine receptor
NEFAs Non-esterified fatty acids
PTT Pyruvate tolerance test
RPL19 Ribosomal protein L19
TBP TATA-box binding protein
T1D type 1 diabetes
T2D type 2 diabetes
WT Wild-Type
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