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Key Points

•CD41 and CD81

T cells with a T memory
stem cell–like pheno-
type are expanded at
the onset of aGVHD.

•Molecular profiles of
T cells at aGVHD onset
are characterized by
decreased TGF-b and
increased NF-kB
signaling.

The cellular and molecular processes involved in acute graft-versus-host disease (aGVHD)

development early after allogeneic hematopoietic cell transplantation (HCT) in humans

remain largely unknown. We have performed multiparameter immunophenotyping and

molecular profiling of CD41 and CD81 T cells in 2 independent cohorts of patients

undergoing HCT, as well as in their HLA-identical sibling donors. Cellular profiling using

spectral flow cytometry showed an incomplete reconstitution of the T-cell compartment in

recipients without aGVHD early after transplantation, as well as a shift toward an effector

memory phenotype, paralleled by depletion of the naive T-cell pool. Molecular profiling of

T-cell populations in donors vs recipients without aGVHD revealed increased pathway

activity of .40 gene modules in recipients. These pathways were associated in particular

with T-cell activation, adhesion, migration, and effector functions. Cellular profiles from

recipients developing aGVHD displayed an enrichment of cells with a T memory stem

cell–like phenotype compared with recipients without aGVHD. Comparison of gene profiles

from these recipients revealed that transforming growth factor-b (TGF-b) signaling was

most significantly downregulated, whereas the pathway activity of NF-kB–associated

transcription factors and signaling pathways were increased, at aGVHD onset. This study

suggests that the integration of cellular andmolecular profiles provides new insights into the

development of aGVHD in humans.

Introduction

Allogeneic hematopoietic cell transplantation (allo-HCT) is a curative treatment for many malignant and
nonmalignant hematologic disorders.1-3 However, its success is hindered by graft-versus-host disease
(GVHD), a potentially fatal complication deriving from alloreactive donor T cells attacking recipient
tissues.4 Despite advances in the field of hematopoietic cell transplantation (HCT) and GVHD
prophylaxis, acute GVHD (aGVHD) remains a major contributing factor to nonrelapse morbidity and
mortality, affecting 30% to 50% of allo-HCT patients3,5; it is also a leading cause of death after allo-HCT,
with a mortality of nearly 20%.1 Most of our knowledge about aGVHD pathophysiology derives from
animal models.6,7 The complex and multifactorial nature of aGVHD, together with limited access to
biological specimens, makes the study of the mechanisms involved in the development of human
aGVHD particularly challenging. Although donor T cells are critical to the pathophysiology of acute and
chronic GVHD,3,8-10 the precise mechanisms underlying their functions and the immune evasion leading
to alloreactivity that occurs in allo-HCT recipients, despite immunosuppressive prophylaxis, are unclear.
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Here, we investigated the phenotypic and molecular characteristics
of immune cells in patients after allo-HCT, as well as in their HLA-
identical sibling donors, with the goal of defining the early immune
parameters associated with the development of aGVHD. We
analyzed 2 cohorts of donor-recipient pairs: a multicentric cohort
from 13 French transplantation centers and a monocentric cohort
from the Saint-Louis Hospital. We performed multiparameter
immunophenotyping using spectral flow cytometry to define the
frequencies of different T-cell subpopulations and gene-expression
profiling of T-cell populations involved in aGVHD pathogenesis.

Our data demonstrate that the integrated analysis of the distribution
of different immune cell subsets with spectral flow cytometry,
together with gene-expression profiling, can contribute to elucidate
the processes involved in the early immune reconstitution and
aGVHD development in humans.

Materials and methods

Patients

Two independent cohorts of patients undergoing allogeneic HCT
and their respective identical sibling donors were included in this
study. We recently described the metabolomics serum analyses of
these 2 cohorts.11 Patient and donor characteristics are presented
in Table 1. Cohort 1 includes 38 donor-recipient pairs for whom
peripheral blood mononuclear cells (PBMCs) were provided by the
CRYOSTEM biobank (https://doi.org/10.25718/cryostem-collec-
tion/2018). Cohort 2 includes 37 donor-recipient pairs for whom
PBMCs samples were prospectively collected at Saint-Louis
Hospital and cryopreserved. Blood samples from the donors were
collected before the transplantation procedure, and samples from
the recipients were collected at aGVHD onset or at day 90 post-
HCT, for the patients who did not develop aGVHD. Details about
the HCT procedure and aGVHD diagnosis are provided in
supplemental Material and methods.

All patients gave their written consent for clinical research. This
noninterventional research study, with no additional clinical pro-
cedure, was carried out in accordance with the Declaration of
Helsinki. Data analyses were carried out using a database with all
patient identifiers removed. This study was declared to the
Commission National Informatique et Liberté and was approved
by the local ethics committee and Institutional Review Board (IRB
00003835).

Spectral flow cytometry

Multicolor flow cytometric analysis was performed using a SP6800
Spectral Cell Analyzer (Sony Biotechnology), as described in detail
in supplemental Material and methods. Cells were stained with the
following anti-human monoclonal antibodies: anti-CD95, anti-CD3,
anti-CD45RO, anti-CD8, anti-CD279 (PD1), anti-CD27, anti-
CD196 (CCR6), anti-CD4, anti-CD45RA, and anti-CD122 (in-
terleukin-2RB [IL-2RB]). A dump channel included anti-CD11c,
anti-CD14, anti-CD19, and anti-CD34.

A second antibody panel, including intracellular markers, was used
to analyze regulatory T cells (Tregs) with the following anti-human
monoclonal antibodies: anti-CD25, anti-CD3, anti-CD4, anti-CD8,
anti-CD27, anti-CD279 (PD1), anti-CD45RA, anti-CD278 (ICOS),
and anti-CD127. After permeabilization, cells were stained with anti-
FOXP3, anti-Ki67, and anti-CD152 (CTLA4).

Cell isolation and gene-expression analysis

Gene expression in sorted CD41 and CD81 T cells was assessed
using the nCounter Human Immunology V2 codeset (NanoString
Technologies), as described previously12-14 (see supplemental
Material and methods for details).

Results

The T-cell compartment is skewed toward an effector

memory phenotype early after HCT in patients

without aGVHD

We evaluated the reconstitution patterns of different T-cell subsets
at day 90 after transplantation in 2 independent cohorts of patients
undergoing allo-HCT, as well as in their respective identical sibling
donors. To avoid potential confounding effects related to aGVHD,
only donor-recipient pairs without aGVHD were included in this
analysis. Donor and patient characteristics and the study design are
shown in Table 1 and supplemental Figure 1, respectively.

Cellular profiling of recipients 3 months post-HCT showed an
incomplete reconstitution of the T-cell compartment, with de-
creased CD31 T lymphocytes, compared with their respective
donors. Within the CD31 T-cell population, significantly decreased
frequencies of CD41 T cells and increased frequencies of CD81

T cells were observed in both cohorts (Figure 1A; supplemental
Figure 2A), resulting in an inversion of the normal CD4/CD8 ratio
(Figure 1B; supplemental Figure 2B).

We next assessed whether early T-cell reconstitution was
associated with imbalances in the distributions of naive and memory
T-cell subsets in recipients after transplantation. Compared with
their donors, recipients had a significant reduction in CD41 and
CD81 naive T (TNaive) cells, paralleled by an increase in effector
memory T cells (TEMs), in both cohorts (Figure 1C-D; supplemental
Figure 2C). We also observed an increase in the terminally
differentiated effector memory cells re-expressing CD45RA (TEMRA)
subset in recipients; it was more pronounced within the CD81

population, but it was also present in the CD41 T-cell compartment,
in particular in cohort 2 (Figure 1D; supplemental Figure 2D).
Analysis of Ki-67 expression revealed a strong increase in the
proliferation of CD41 and CD81 TNaive cell and memory T-cell
subsets in recipients compared with their donors (Figure 1E;
supplemental Figure 2D). A significant reduction in CD41 and
CD81 TNaive cells and an increase in effector CD41 T cells were
also observed in recipients at the onset of aGVHD compared with
their donors in both cohorts (supplemental Figure 3).

Increased Treg proliferation and expression of

functional markers in recipients after HCT

Given the importance of Tregs in GVHD prevention and HCT
outcome,13,15,16 we investigated CD41FOXP31 Tregs in recipients
without aGVHD compared with their sibling donors. Recipients
showed a significant increase in CD41FOXP31 Tregs compared
with their donors (Figure 2A), and the CD41FOXP31 Treg subset
displayed increased frequency of Ki-671 cells in the recipients early
post-HCT compared with their donors (Figure 2B). Our data also
revealed an increased frequency of Ki-671 cells within Tregs
compared with conventional CD41 T cells (Tconvs) in recipients
following transplantation (Figure 2C, left panel). These data indicate
that, in the lymphopenic environment of the host, Tconvs and Tregs

3928 LATIS et al 25 AUGUST 2020 x VOLUME 4, NUMBER 16

D
ow

nloaded from
 https://ashpublications.org/bloodadvances/article-pdf/4/16/3927/1755611/advancesadv2019001032.pdf by guest on 20 August 2020

https://doi.org/10.25718/cryostem-collection/2018
https://doi.org/10.25718/cryostem-collection/2018


Table 1. Patient and donor characteristics

Variable

Cohort 1 (multicentric) Cohort 2 (monocentric)

Donors (n 5 39) Recipients (n 5 38) Donors (n 5 42) Recipients (n 5 37)

Age, median (range), y 49.5 (14-65) 46 (17-68) 52.5 (15-67) 53 (22-67)

Sex

Female 18 (46.1) 19 (50) 24 (57.1) 19 (51.4)

Male 20 (51.3) 19 (50) 18 (42.9) 18 (48.6)

Unknown 1 (2.6) — — —

HLA-identical sibling donor, % 100 100

Graft type

Bone marrow 11 (28.9) 3 (8.1)

Peripheral blood 26 (68.5) 34 (91.9)

Unknown 1 (2.6) —

Sex match

Male to male 10 (26.3) 7 (18.9)

Female to female 9 (23.7) 11 (29.7)

Male to female 10 (26.3) 8 (21.7)

Female to male 8 (21.1) 11 (29.7)

Unknown 1 (2.6) —

Conditioning regimen

Reduced intensity 17 (44.8) 32 (86.5)

Myeloablative 20 (52.6) 5 (13.5)

Unknown 1 (2.6) —

Total body irradiation

Yes 12 (31.6) 4 (10.8)

No 25 (65.8) 33 (89.2)

Unknown 1 (2.6) —

Chimerism, median (range), %

No GVHD 100 (86-100) 100 (60-100)

GVHD 100 (81-100) 100 (97-100)

Unknown 4 (10.5) —

GVHD status

GVHD 16 (42.1) 19 (51.4)

No GVHD 22 (57.9) 18 (48.6)

GVHD grade

Grade 1 8 (50) 1 (5.3)

Grade 2 5 (31.1) 16 (84.1)

Grade 3 1 (6.3) 1 (5.3)

Grade 4 1 (6.3) 1 (5.3)

Unknown 1 (6.3) —

Delay sample-graft, median (range), d

Donors 227 (2136 to 0) 227 (2119 to 21)

GVHD onset 29 (12-91) 36 (9-94)

No GVHD 91 (27-108) 90 (77-95)

GVHD prophylaxis

CSA 7 (18.4) 2 (5.4)

CSA1MMF 8 (21.1) 26 (70.3)

CSA1MTX 22 (57.9) 8 (21.6)

None 0 1 (2.7)

Unless otherwise noted, data are n (%).
CMV, cytomegalovirus; CSA, cyclosporine A; D, donor; MMF, mycophenolate mofetil; MTX, methotrexate; R, recipient; —, none; 2, negative; 1, positive.
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undergo strong proliferation compared with healthy donors. The
ratio of proliferating Tregs/Tconvs is higher in donors than in
recipients (Figure 2C, right panel) because of the low proliferation
of Tconvs in donors (Figure 1E). In recipients without aGVHD, an
enrichment of Tregs expressing the functional markers CTLA4,
ICOS, and PD-1 was also observed (Figure 2D), suggesting
a counterbalancing mechanism to suppress alloreactivity and
maintain tolerance in the proinflammatory environment of the host.

Major changes in the T-cell gene-expression profiles

in patients without aGVHD compared with their

sibling donors

To gain insight into the molecular changes associated with T-cell
expansion early after HCT, we performed gene-expression profiling
on sorted CD41 and CD81 T cells from donors before transplant
and on day 90 post-HCT from recipients without aGVHD. Principal
component analysis revealed a clear separation of the CD41 and
CD81 T-cell gene-expression profiles, whereas samples from the 2
cohorts are homogeneously mixed, indicating the absence of “batch
effects” between cohorts (supplemental Figure 4A). Principal
component analysis also showed a clear separation between donor
and recipient samples in CD41 and CD81 T-cell populations
(supplemental Figure 4B).

Differential expression analysis showed that, in recipients, the
majority of the genes analyzed are upregulated and only few genes
are downregulated in the CD41 and CD81 T-cell populations.
Importantly, a high degree of overlap of the differentially expressed
genes between the 2 cohorts was observed, with changes in gene

expression occurring in the same direction (supplemental
Figure 4C-D), demonstrating the robustness of our observations.

A modular transcriptional framework reveals altered

biological pathways and molecular processes in

T cells following HCT

To characterize the signaling pathways and the molecular functions
that are altered in T cells after transplantation, we performed
a pathway analysis on the T-cell gene-expression profiles from
donors and recipients using Quantitative Set Analysis for Gene
Expression (QuSAGE),17 which quantifies gene module activity as
a shift in the mean differential expression of the individual genes
included in the module. We designed 51 gene modules by grouping
genes belonging to specific signaling pathways, associated with
particular cellular phenotypes, or with specific cellular functions,
according to Molecular Signatures Database annotations18 and
based on current knowledge in the literature (supplemental Table 1),
and compared T-cell gene-expression profiles in recipients without
aGVHD and in their sibling donors.

In CD41 T cells, QuSAGE revealed 46 modules with statistically
significantly increased pathway activity in recipients compared with
donors. Conversely, only few gene sets showed decreased
pathway activity, and none of these reached statistical significance
(Figure 3A).

Among the modules with the greatest increase in pathway activity in
recipients and the lowest false discovery rate (FDR), were the “NLR
inflammasome,” the “T helper 1 (Th1) profile,” and the “Memory”

Table 1. (continued)

Variable

Cohort 1 (multicentric) Cohort 2 (monocentric)

Donors (n 5 39) Recipients (n 5 38) Donors (n 5 42) Recipients (n 5 37)

Unknown 1 (2.6) —

Diagnosis

Acute leukemia 17 (44.7) 13 (35.2)

Myeloproliferative neoplasm 3 (7.9) 8 (21.6)

Lymphoma 8 (21.1) 5 (13.5)

Myeloma 2 (5.3) 3 (8.1)

Myelodysplastic syndrome 4 (10.5) 2 (5.4)

Aplastic anemia 1 (2.6) 3 (8.1)

Chronic lymphoid leukemia 1 (2.6) 2 (5.4)

Other diagnosis 2 (5.3) 1 (2.7)

CMV serostatus

Positive 22 (56.4) 20 (52.6) 23 (54.8) 29 (78.4)

Negative 16 (41) 16 (42.1) 19 (45.2) 8 (21.6)

Unknown 1 (2.6) 2 (5.3) — —

CMV status mismatch

D1/R1 13 (34.2) 21 (56.8)

D2/R2 8 (21.1) 7 (18.9)

D1/R2 8 (21.1) 1 (2.7)

D2/R1 7 (18.4) 8 (21.6)

Unless otherwise noted, data are n (%).
CMV, cytomegalovirus; CSA, cyclosporine A; D, donor; MMF, mycophenolate mofetil; MTX, methotrexate; R, recipient; —, none; 2, negative; 1, positive.
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Figure 1. T-cell compartment in recipients without aGVHD after HCT. Shown are results for donor/recipient couples without aGVHD from cohort 1. (A) Frequency of

CD31 T cells within the lymphocyte population (left panel) and frequencies of CD41 (middle panel) and CD81 (right panel) T cells within CD31 T cells. (B) Ratio of CD41/
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module, which includes genes enriched in memory T cells, followed
by gene sets related to T-cell activation and cytotoxicity, interferon
(IFN)-induced genes, genes associated with exhausted cells, and
proapoptotic genes. The modules showing reduced pathway
activity in recipients were the “Naive” module, regrouping genes
upregulated in TNaive cells, and the “WNT signaling” module
(Figure 3A; supplemental Table 2).

QuSAGE of the gene-expression profiles of CD81 T cells
(Figure 3B) showed that 43 gene modules were significantly
different between donors and recipients: 40 had significantly
increased pathway activity and 3 displayed significantly decreased
pathway activity in recipients. Among the gene sets with the
strongest and most significant increases in pathway activity, we
found genes related to T-cell activation and coinhibitory molecules,
IFN-induced genes, genes upregulated in memory T cells, proa-
poptotic genes, and genes upregulated in exhausted cells
(“Exhaustion_up”). Interestingly, in CD81 T cells, we also observed
modules displaying a significant reduction in pathway activity in
recipients compared with donors. In particular, the “WNT signaling”
module, the “Naive” module, and the “Exhaustion_down” module,
including genes downregulated in exhausted T cells, had decreased
pathway activity (Figure 3B; supplemental Table 3). Among the 40
gene modules upregulated in CD81 T cells, 38 were also
upregulated in CD41 T cells, suggesting a large overlap in the
signaling pathways affected by HCT in the 2 T-cell subsets
(supplemental Figure 5).

The pathway activity of the gene modules showed a good
correlation in the 2 cohorts (Figure 3C-D). Moreover, the ranking
of the modules based on the pathway activity is similar (supple-
mental Figure 6A-B; supplemental Tables 2 through 5), indicating
that the gene-expression signature associated with HCT and
immune reconstitution is reproduced in 2 independent cohorts.

Closer inspection of individual genes within enriched modules
showed that CD41 T cells in recipients displayed a gene-
expression profile skewed toward the Th1 phenotype, with
upregulation of genes such as TBX21, IFNG, and CXCR3. We
also observed upregulation of genes involved in T-cell migration,
such as the chemokine receptors CX3CR1, CCR5, CXCR3,
CCR2, andCCR6, as well as many IFN-induced genes (Figure 3E).

Within the CD81 subset (Figure 3F), we noted upregulation of IFN-
induced genes, as well as an enrichment of inhibitory receptors
(HAVCR2, CD160, PDCD1, CTLA4, LAG3, KLRD1, CD244,
KLRG1, SLAMF7) and genes associated with exhausted cells
(HAVCR2, BATF, CD160, PDCD1, CTLA4, EOMES, TBX21,
LAG3, CASP3, CD244, KLRG1, SH2D1A)19-22.

Consistent with the flow cytometry data showing a depletion of the
TNaive cell pool and an increase in cells with an effector memory
phenotype after HCT (Figure 1D), we observed an enrichment of

many genes upregulated in memory cells (eg, CD45R0, CD74,
KLRG1, IL2RB, FAS), whereas TNaive cell–associated genes (eg,
CCR7, LEF1, TCF7)23-27 were underrepresented in recipients
(Figure 3E-F; supplemental Figure 7).

Cellular correlates of aGVHD onset in recipients

following HCT

To identify potential “pathogenic” T-cell subsets associated with
aGVHD onset, we next assessed whether the frequency of the
different T-cell subsets and their proliferative status were altered in
recipients developing aGVHD, before administration of any steroid
therapy, compared with patients without aGVHD.

To increase the power of our analysis, we combined the samples
from the 2 cohorts. We focused our analysis on recipients with
grade 2-4 aGVHD to better identify changes associated with
aGVHD. Compared with recipients without aGVHD (n 5 36), at
aGVHD onset, patients (n 5 22) showed significantly increased
frequencies of CD41 T cells and decreased CD81 T cells
(supplemental Figure 8A), leading to a CD4/CD8 ratio generally
.1 (supplemental Figure 8B). This contrasts with the posttrans-
plant situation in patients without aGVHD, which is characterized by
an inverted CD4/CD8 ratio (Figure 1B).

Analysis of the TNaive cell and memory T-cell subsets revealed that,
at aGVHD onset, recipients have significant increases in cells with
a T memory stem cell-like (TSCM-like) or a central memory T cell (TCM)
phenotype compared with recipients without aGVHD, whereas TEM
cells were decreased in the CD41 and CD81 compartments
(supplemental Figure 8C). Increased cell proliferation was also
observed at aGVHD onset in CD41 and CD81 compartments for
TNaive, TCM, and TEM subsets, as well as within the CD41

compartment for the TEMRA subset (supplemental Figure 8D). Very
similar results were obtained when the recipient/donor ratios of cell
populations were compared for No GVHD couples vs aGVHD
couples (Figure 4). In particular, we noted a significant expansion of
TSCM-like relative to the donor sample in the CD4 and CD8
compartments in aGVHD couples (Figure 4).

T-cell transcriptional profiling at aGVHD onset reveals

upregulation of proinflammatory mediators and

downregulation of genes involved in

immune regulation

The mechanisms underlying the immune escape and alloreactivity
that occur, despite ongoing immunosuppression, and lead to
aGVHD development in humans are still unclear. We performed
gene-expression profiling on sorted CD41 and CD81 T cells from
recipients without aGVHD and at aGVHD onset, before the start of
steroid therapy. We used the same inclusion criteria as for the
previous cellular profiling analysis (Figure 4; supplemental
Figure 8D).

Figure 1. (continued) CD81 T cells in recipients (R) at day 90 post-HCT compared with their respective sibling donors (D). (C) Gating strategy used to identify naive and

memory subsets within the CD41 and CD81 T-cell compartments in donors and recipients after transplantation by polychromatic flow cytometry. (D) Frequencies of TNaive,

TSCM-like, TCM, TEM, and TEMRA cells within the CD41 (upper panels) and CD81 (lower panels) T-cell compartments in recipients (R) at day 90 post-HCT compared with their

respective sibling donors (D). (E) Frequency of proliferating Ki-671 cells in total CD41 and CD81 T cells and in the different naive and memory subsets in CD41 (left panel)

and CD81 (right panel) compartments in donors and recipients. The frequency of Ki-671 cells is represented as the percentage of Ki-67–expressing cells within total CD41 or

CD81 T cells and as the percentage Ki-67–expressing cells within the parent gate for TNaive, TCM, TEM, and TEMRA cell subsets. Horizontal lines indicate the median. P values

were calculated using the Wilcoxon matched-pairs Student t test (donor vs respective recipient). Differences are considered significant for P , .05.
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Gene-expression profiles of CD41 T cells showed differential
expression of 18 genes in patients with aGVHD compared with No
GVHD recipients (FDR , 0.05). Of these, 2 were expressed at
higher levels and 16 were expressed at lower levels in patients with
aGVHD (Figure 5A). QuSAGE revealed 6 modules with significantly
decreased pathway activity at aGVHD onset. Interestingly, genes
associated with “transforming growth factor-b (TGF-b) signal-
ing” were downregulated most significantly (Figure 5B; supple-
mental Table 6). Closer inspection of the differentially expressed

transcripts within this module showed that CD41 T cells from
recipients at aGVHD onset had significantly lower expression levels
of genes encoding TGFBR1, SMAD3, and IGF2R compared with
the No GVHD group (Figure 5C). In contrast, we noticed increased
levels of genes involved in the NF-kB signaling pathway (eg,BCL10
and BCL3) at aGVHD onset. Expression of PSMD7, encoding
a component of the 26S proteasome, and of ICOS (Figure 5D),
a member of the CD28 superfamily, induced in CD41 and CD81

T cells during T-cell activation,28 was also higher at aGVHD onset.
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CD81 T cells from recipients at aGVHD onset showed differential
expression of 134 genes compared with recipients without aGVHD
(FDR , 0.05): higher expression levels for 23 genes and lower
levels for 111 transcripts at aGVHD onset (Figure 6A). Among the
transcripts with higher levels in patients with aGVHD were genes
involved in NF-kB signaling (NFKB1, BCL3) and the negative
regulator NFKBIA. Similarly to CD41 T cells, PSMD7 and ICOS
showed higher expression in patients with aGVHD. In addition,
CD81 T cells displayed increased expression of the costimulatory
molecule CD28, the inflammatory mediator MIF, and the glycolytic
enzyme GAPDH (Figure 6B). The switch from oxidative phosphor-
ylation to aerobic glycolysis is a hallmark of T-cell activation, and
aerobic glycolysis was shown to facilitate full effector status and
IFN-g production in T cells.29

QuSAGE identified 24 gene modules that were significantly
different between patients with and without aGVHD (Figure 6C;
supplemental Table 7). Of these, 23 modules had significantly
decreased pathway activity, and only 1 module had significantly
higher activity, at aGVHD onset. The latter is the “NF-kB–TFs”
module, which includes the NF-kB transcription factors NFKB1,
NFKB2, RELA, and RELB, suggesting an important role for the
NF-kB signaling pathway in alloreactive T cells mediating aGVHD in
humans.

Similarly to CD41 T cells, the “TGF-b signaling” module was most
significantly downregulated in CD81 T cells at aGVHD onset
(Figure 6C; supplemental Table 7; P5 .00005; FDR5 0.002). We
also observed the “Coinhibitory” and “Anti-inflammatory” modules
among those with significantly lower pathway activity. Transcript
levels of representative genes belonging to these modules are
shown in Figure 6D. We found downregulation of genes involved in
TGF-b signaling (TGFBR2, SMAD3, IGF2R), as well as genes
encoding inhibitory receptors (LAIR1, BTLA, KLRG1)30-33 and
molecules mediating immunosuppressive signals (IL10RA),34

suggesting that decreased expression of genes involved in
regulation and dampening of immune responses may be implicated
in the development of aGVHD.

Discussion

In this study, we investigated the cellular and molecular mechanisms
underlying aGVHD development or the absence of significant
aGVHD at 3 months posttransplant in 2 cohorts of patients
undergoing allo-HCT from their HLA-identical sibling donors. We
provide one of the first transcriptional analyses of sorted CD41 and
CD81 T cells showing striking differences between healthy donors
and recipients without aGVHD, as well as noticeable differences in
patients with and without aGVHD. To the best of our knowledge, an
analysis of T-cell gene-expression profiles at steady-state in healthy
donors vs allogeneic recipients without aGVHD in the same system
has not been performed.

Although previous work in an experimental mouse model has
demonstrated that naive cells are more likely to respond to weak- or
low-affinity antigens in lymphopenic conditions,35 and that homeo-
static proliferation of TNaive cells is associated with the acquisition of
a memory-like phenotype in these conditions,36 data on early
immune reconstitution are scarce. The largest cohort analyzed so
far,37 included only the simultaneous study of 5 surface T-cell
markers; most studies aiming to analyze T-cell reconstitution
posttransplantation were performed at a later time point.3,8,16,38

The simultaneous analysis of multiple surface and intracellular
markers of Tregs and Tconvs was facilitated by the use of spectral
flow cytometry, which allowed the analysis of limited numbers of
cells for each patient sample. The introduction of mass cytometry
would allow an even more comprehensive analysis of immune
cells38; however, this technology was not accessible when this
study was designed.

In patients without aGVHD, we found an incomplete reconstitution
of the T-cell compartment after transplant with a bias toward an
effector/memory phenotype and a depletion of TNaive cells
compared with their sibling donors. We noted increased pro-
liferation of all CD41 and CD81 TNaive and T memory subsets
analyzed in recipients compared with donors. In particular, we found
high proliferation of the Treg compartment, confirming our previous
results and those from other investigators.13,16 Increased T-cell
proliferation in recipients after HCT could be driven by increased
availability of the homeostatic cytokines IL-7 and IL-15 after
transplantation,16,39,40 as well as stimulation by the host alloanti-
gens. Tregs in recipients may also acquire increased activity, as
shown by increased expression of CTLA4 and ICOS, molecules of
key importance for their suppressive functions.41,42

To investigate the molecular mechanisms underlying T-cell expan-
sion after HCT, we analyzed gene expression in sorted CD41 and
CD81 T cells from donors before transplant and from patients
without aGVHD on day 90 post-HCT, using nCounter assays. This
approach is well adapted to the analysis of the low T-cell numbers
recovered, in particular in recipients post-HCT, and is very robust
because no enzymatic reaction or polymerase chain reaction
amplification is needed.14,43 Our gene-expression analysis revealed
that HCT is associated with major transcriptional changes in CD41

and CD81 T cells in recipients compared with their donors.

We found that donor T cells react to the environment of the host by
acquiring an activated phenotype with upregulation of genes
associated with T-cell activation and its regulation, adhesion, and
migration, as well as effector functions, especially linked to a Th1
cell profile and cytotoxicity. Consistent with our flow cytometry data,
we observed an enrichment of many genes reported to be
expressed in memory T cells and an underrepresentation of genes
associated with TNaive cells. The increased activation may be
associated with T-cell dysfunction, as suggested by the increased
expression of proapoptotic genes and genes upregulated in
exhausted cells.

Analysis of the different TNaive cell and memory T-cell subsets in
recipients, using spectral flow cytometry, revealed that patients had
a significant increase in CD41 and CD81 cells with a TSCM-like

phenotype at aGVHD onset compared with recipients without
aGVHD. T memory stem cells (TSCM) have been shown to sustain
alloreactive T cells mediating GVHD upon serial transplantation into
allogeneic hosts in mice.27 Gattinoni and colleagues reported the
identification of TSCM in humans,44 but an association between this
cell subset and human aGVHD has not been described. The ability
of TSCM to sustain the generation of all memory and effector T-cell
subsets while maintaining their own pool through self-renewal has
important implications for aGVHD pathophysiology.27,44,45 TSCM

cells could represent a cellular reservoir for alloreactive T cells in
recipients developing GVHD, sustaining the production of allor-
eactive donor T cells in the presence of persistent antigens in hosts.
Further investigation including additional markers for a more
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detailed phenotypic characterization, together with functional
studies, may elucidate the role of this cell subset in aGVHD.

To investigate genes and pathways involved in aGVHD pathogen-
esis, we performed gene-expression profiling of sorted CD41 and
CD81 T cells from recipients without aGVHD and at aGVHD onset,
before the start of steroid therapy. With regard to the cellular
profiling, we focused this analysis on recipients with grades 2-4
aGVHD.

Perreault et al performed CD41 and CD81 T-cell gene-expression
profiling of donors and found that TGF-b signaling and genes
implicated in cell proliferation characterized “dangerous” donors
with regard to the recipient’s risk for developing chronic GVHD.46

Only a few other studies in small cohorts have analyzed the gene-
expression profile associated with aGVHD in humans.47-49 These
studies used microarray analyses of PBMCs47,49 or microbead-
enriched immune cell subpopulations48; the sets of genes that were
up- or downregulated before or at aGVHD onset in the different
studies are not consistent, possibly because of the heterogeneity of
the patient populations.

Our analysis of signaling pathways associated with aGVHD
onset also showed downregulation of genes involved in TGF-b
signaling,46 whereas genes involved in the NF-kB signaling
pathway, which plays a central role in mediating T-cell receptor
signaling and T-cell activation and differentiation,50 were upregu-
lated at aGVHD onset. These data support an important role for the
NF-kB pathway in alloreactive CD41 and CD81 T cells mediating
human aGVHD. Consistently, inhibition of NF-kB was shown to
protect mice from lethal GVHD.51

We noted that the proteasome subunit PSMD7 is expressed at
higher levels in CD41 and CD81 T cells at aGVHD onset.
Proteasome activity has been shown to induce memory at the
expense of effector T-cell differentiation in a mouse model,52

consistent with the downregulation of the gene module “CTL
cytotoxicity” that we observed at aGVHD onset in CD81 T cells.
These data are further corroborated by the higher frequencies of
TSCM-like and TCM subsets and the lower frequencies of TEMs at
aGVHD onset. Together, these findings may suggest an important
role for memory T-cell subsets in aGVHD pathogenesis.
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Finally, we found higher expression of ICOS in CD41 and CD81

T cells at aGVHD onset. This observation may be of particular
interest, because previous studies in mouse models have

established that using neutralizing anti-ICOS antibodies to block
ICOS significantly ameliorated GVHD in multiple strain combina-
tions, even when used in a therapeutic setting (injection 5 days after
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transplantation).53,54 More recently, Burlion and colleagues dem-
onstrated that blockade of human ICOS prevented GVHD in
a xenogeneic GVHD model, in which human PBMCs were
transferred into irradiated immunocompromised NOD.SCID.gc2/2

mice.55 Importantly, ICOS blockade did not reduce the graft-versus-
leukemia effect. Higher ICOS expression in T cells at aGVHD onset
may provide additional evidence to explore ICOS blockade as
a therapeutic strategy for aGVHD treatment.
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Figure 6. CD8
1
T-cell gene-expression signature at aGVHD onset. For this analysis, samples from the 2 cohorts were pooled. All recipients without aGVHD or with

aGVHD grade $2 were included in the analysis (No GVHD, n 5 36; GVHD, n 5 22). (A) Gene-expression profiles of CD81 T cells from 22 patients at aGVHD onset

compared with 36 patients without aGVHD in cohorts 1 and 2. Orange and light blue dots represent transcripts that were significantly up- or downregulated in recipients at

aGVHD onset compared with No GVHD recipients, respectively, with FDR , 0.05. P values were calculated using an unpaired Student t test. Adjusted P values (FDR) were

calculated using the Benjamini-Hochberg method to correct for multiple comparisons. (B) Transcript levels of NFKB1, BCL3, NFKBIA, ICOS, CD28, MIF, and GAPDH in

CD81 T cells from recipients without aGVHD and at aGVHD onset. These genes showed increased expression at aGVHD onset compared with recipients without GVHD

(P , .05; FDR , 0.05). (C) QuSAGE of CD81 T-cell gene-expression profiles in recipients at aGVHD onset compared with recipients without aGVHD from cohorts 1 and 2.

For each pathway, the mean fold change and the 95% confidence intervals are plotted and color-coded according to their FDR-corrected P values compared with 0. Red and

green bars indicate a statistically significant increased or decreased pathway activity, respectively, in recipients at aGVHD onset compared with recipients without GVHD. (D)

Transcript levels of TGFBR2, SMAD3, IGFR2, LAIR1, BTLA, KLRG1, and IL10RA in CD81 T cells from recipients without aGVHD and at aGVHD onset. These genes

showed decreased expression at aGVHD onset compared with recipients without aGVHD (P , .05; FDR , 0.05). P values were calculated using an unpaired Student t test.

Adjusted P values (FDR) were calculated using the Benjamini-Hochberg method to correct for multiple comparisons. Nominal P values are shown in panels C and D. Tfh, T

follicular helper cell.
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This study has some limitations. One issue is how to compare
human immune dysregulation at disease onset. We designed the
study to be able to compare our findings at disease onset with
2 “comparators”: the immune system at “baseline” (ie, data
recovered from the donor samples) and recipients without aGVHD
at day 90. Comparing patients at the onset of aGVHD with those
without aGVHD leads to intrinsic differences between groups of
patients (supplemental Figure 1B). Furthermore, we acknowledge
that using day-90 profiles in patients without aGVHD as a compar-
ator for profiles of patients with aGVHD at disease onset can be
criticized. However, other comparators, such as patients without
aGVHD at the same mean elapse time as those with aGVHD, was
not chosen because these “non-GVHD” controls may eventually
develop GVHD a few days after sampling at a time during which the
processes were already ongoing. This was a discovery-driven study;
future studies may address these potential confounders. In
particular, future studies should be designed to include prospective
phenotypic and molecular evaluation of T-cell subsets (including
TSCM) at different time points (including disease onset) in all
patients, considering for analyses patients classified as “no GVHD,
active GVHD, or before the onset of GVHD” at a given time point.
Other transplant-related factors (including the heterogeneity of
GVHD prophylaxes) may have influenced our results, in particular in
patients without aGVHD. This exploratory study was not designed
or powered to evaluate these factors in multivariate analyses (which
better reflect the multifactorial nature of allo-HCT).

However, this is the first study to integrate spectral flow cytometry
and gene-expression profiling in the investigation of aGVHD at
disease onset. Our data suggest that the integrated analysis of the
distribution of different immune cell subsets with flow cytometry,
together with gene-expression profiling, can contribute to the
elucidation of the processes involved in aGVHD development in
humans. Assessment of other potentially interesting cell subsets
(eg, B-cell subsets, innate lymphoid cells), as well as single-cell
gene expression and epigenetics analyses, will be of particular
importance for future investigations to elucidate disease processes
in humans and guide novel strategies for the prevention and
treatment of GVHD.
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