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Abstract. We conducted a comparative analysis of primate cerebral size and neocortical folding using 

magnetic resonance imaging data from 65 individuals belonging to 34 different species. We measured 

several neocortical folding parameters and studied their evolution using phylogenetic comparative 

methods. Our results suggest that the most likely model for neuroanatomical evolution is one where 

differences appear randomly (the Brownian Motion model), however, alternative models cannot be 

completely ruled out. We present estimations of the ancestral primate phenotypes as well as 

estimations of the rates of phenotypic change. Based on the Brownian Motion model, the common 

ancestor of primates may have had a folded cerebrum similar to that of a small lemur such as the aye-

aye. Finally, we observed a non-linear relationship between fold wavelength and fold depth with 

cerebral volume. In particular, gyrencephalic primate neocortices across different groups exhibited a 

strikingly stable fold wavelength of about 12 mm (± 20%), despite a 20-fold variation in cerebral 

volume. We discuss our results in the context of current theories of neocortical folding. 

Introduction 

The human brain is the largest and most folded of those of extant primates. Much discussion has 

surrounded the question of whether its characteristics are due to a specific selection or to random drift. 

On the one hand, the large human brain may be just an expected result of descent with modification: 

That a primate brain has the volume of ours could not be surprising,  

as it would not be surprising to throw 10 times heads if we toss a coin a large enough number  
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of times. On the other hand, a large and profusely folded brain could be a selected trait, providing a 

significant adaptive advantage – the substrate for the sophisticated cognitive abilities that have 

enabled humans to thrive, multiply, and invest almost all ecosystems on earth. 
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The evolution of human neuroanatomy has been studied for many years, with contradictory results 

regarding the question of a human exception. While several studies have suggested that different 

human neuroanatomical traits are outside the general primate trend (Rilling and Insel 1999, 

Schoenemann et al 2005, Gazzaniga 2008), many others see a continuation (Prothero and Sundsten 

1984, Zilles et al 1989, Semendeferi et al 2002, Herculano-Houzel 2009). A potential issue of most of 

these studies was the lack of an appropriate account of phylogenetic relationships. Phylogenetic 

relationships introduce violations of the assumption of statistical independence of observations: the 

phenotypes of closely related species are expected to be more similar than those of distant species. 

Indeed, even 2 completely random variables can appear as correlated if they are allowed to vary along 

a phylogenetic tree (Felsenstein 1985). 

Phylogenetic comparative methods aim at using information on the development and diversification 

of species – phylogenies – to test evolutionary hypotheses (Nunn and Barton 2001, Nunn 2011). 

Today, gene sequencing allows us to build phylogenetic trees based on the differences across 

homologous genes in various species. It is furthermore possible to use the number of changes 

necessary to match the gene sequences of one species into those of another to estimate their time of 

divergence from a hypothetical common ancestor (Paradis 2012). The lengths of the phylogenetic tree 

branches can then be made to represent the time of the progressive splits of the species at the tips of 

the tree, from a series of common ancestors (the nodes of the tree). 

Given such phylogenetic trees, we can build and test models of the evolution of phenotypic traits 

under different hypotheses. Three influential models of trait evolution are the Brownian Motion 

model (BM), the Ornstein-Uhlenbeck model (OU), and the Early-Burst model (EB). The Brownian 

Motion model supposes that phenotypic changes diffuse randomly along the tree (Cavalli‐ Sforza and 

Edwards 1967, Felsenstein 1973, 1985). The phenotype of two species having split early from their 

common ancestor will then be less similar than that of species having recently split. The Ornstein-

Uhlenbeck model supposes that phenotypic changes are not completely random, but tend towards 

specific values (Lande 1976, Hansen 1997, Cooper et al 2015). These could be values which are 

particularly advantageous and have therefore a higher probability of being selected. Finally, the Early-

Burst model (Harmon et al 2010) considers the possibility that phenotypic changes are initially faster 

(when a new adaptive regime is first invested), and then slow-down. 

Several recent studies have adopted phylogenetic comparative analysis methods to study the evolution 

of primate neuroanatomy (Smaers et al 2011, Barton and Venditti 2013a, Lewitus et al 2014, Miller et 

al 2019). In particular, a series of reports have considered the question of the exceptionality of the size 

of the human prefrontal cortex relative to other primate species (Smaers et al 2011, 2017, Barton and 

Venditti 2013a, b). Some of these reports suggest an exceptionally large and significantly more 

asymmetric prefrontal cortex (Smaers et al 2011, 2017, Smaers 2013), whereas others find it to be as 

large as expected (Barton and Venditti 2013a, b, Miller et al 2019). The problem does not appear to be 

settled, but the availability of published data on prefrontal grey and white matter volume has allowed 

researchers to contrast their different methodological approaches using the same data. 

Here we present a phylogenetic comparative analysis of primate neuroanatomy based on a sample of 

magnetic resonance imaging (MRI) data from 65 specimens coming from 34 different primate 

species. We acquired and made openly available high-resolution MRI data for 33 specimens from 31 

different species. This is part of an ongoing effort to digitise the Vertebrate Brain Collection of the 
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National Natural History Museum of Paris. The remaining 33 specimens come from different openly 

accessible sources. All the data has been indexed in the collaborative neuroimaging website BrainBox 

(http://brainbox.pasteur.fr, Heuer et al. 2016), to facilitate access and foster community-driven data 

analysis projects. This dataset can be used to perform detailed analyses of neocortical anatomy, 

beyond volumetric measurements. We looked at several global measurements of neocortical folding, 

including estimations of global gyrification, total folding length, average fold wavelength and average 

fold depth. After considering various alternative evolutionary models, our results indicate that the BM 

model provided the best fit to the data, suggesting that random change may be a main force in primate 

neuroanatomical evolution. Based on the BM model, we provide estimations of the ancestral values 

for the different phenotypes under study, as well as estimations of the evolutionary rates of 

phenotypic change. All our analyses scripts have been made available in an accompanying GitHub 

repository: https://github.com/neuroanatomy/34primates. 

Methods 

Data Sources 

Magnetic resonance imaging (MRI) data was obtained for 66 individuals across 34 different primate 

species. Thirty one brains from 29 species were obtained from the Vertebrate Brain Collection of the 

National Museum of Natural History (MNHN) of Paris (see information on Data Acquisition below). 

Eleven MRI datasets were downloaded from our Brain Catalogue website (https://braincatalogue.org): 

one crab-eating macaque, one gorilla, and 9 chimpanzees donated by the National Chimpanzee Brain 

Resource (NCBR, kindly provided by Chet Sherwood and William D. Hopkins, 

http://www.chimpanzeebrain.org). The bonobo, gibbon and a second gorilla were downloaded from 

NCBR, from within the data provided by James Rilling and Thomas Insel (Rilling and Insel, 1999). 

Three further macaque datasets, one rhesus macaque and two crab-eating macaques, were kindly 

provided by the Pruszynski Lab and downloaded from Zenodo (Arbuckle et al 2018). 8 additional 

macaque datasets, 4 rhesus and 4 crab-eating macaques, were downloaded from the IoN site of 

PrimeDE (Milham et al 2018). Finally, the surfaces from 10 human brains were selected and 

downloaded from the New York site of the ABIDE 1 dataset, through the ABIDE preprocessed 

project (http://preprocessed-connectomes-project.org/abide, Craddock et al 2013). These subjects 

were unaffected controls, 20 to 30 years old, and had a good quality surface reconstruction upon 

expert visual examination. A list of the included species can be found in Table 1. Scripts to 

automatically download these datasets are available in the accompanying GitHub repository: 

https://github.com/neuroanatomy/34primates. 

Data Acquisition 

The 31 brains from the Vertebrate Brain Collection of the MNHN were scanned at the Center for 

Neuroimaging Research (CENIR) of the Institut du Cerveau et de la Moëlle Épinière (ICM, Paris, 

France). High resolution MRI images were acquired using either a 3T Siemens Tim Trio system, a 3T 

Siemens Prisma, or an 11.7T Bruker Biospec. Each dataset was acquired with a 3D gradient-echo 

sequence (FLASH). Parameters (Field of View, Matrix size, TR, TE) were adjusted so as to obtain the 

highest resolution possible with our scanner (from 100 to 450 µm isotropic). TR and TE were always 

chosen as minimum. Flip angle was fixed to 20° at 3T and 10° at 11.7T. The number of averages was 

chosen to maintain a scanning time below 12 hours. 

http://brainbox.pasteur.fr/
https://github.com/neuroanatomy/34primates
https://braincatalogue.org/
http://www.chimpanzeebrain.org/
http://preprocessed-connectomes-project.org/abide
https://github.com/neuroanatomy/33primates
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Data Preprocessing 

The MRI data from the MNHN was converted to Nifti 1 format (Cox et al 2004) using FLS 5.0.10 

(Jenkinson et al 2012, https://fsl.fmrib.ox.ac.uk) and dcm2niix (Chris Rorden, version v1.0.20170724, 

https://www.nitrc.org/projects/mricrogl/). We used our web tool Reorient 

(https://github.com/neuroanatomy/reorient) to rotate the brains so that the sagittal plane was always 

straight, the superior/inferior directions were respected (we cannot verify whether the left/right 

orientations are correct, we only assume they are, and we visually check that no flips were introduced 

by our analysis pipeline), and the axis of the corpus callosum is horizontal. We also used Reorient to 

crop the brains. All this MRI data was uploaded to Zenodo (https://zenodo.org), and the links are 

provided in the accompanying GitHub repository. 

The chimpanzees, the bonobo, the gibbon and the gorilla from the NCBR were converted to Nifti 1 

format, and we used the DenoiseImage tool included in ANTs (Avants et al 2009) to improve the 

signal-to-noise ratio. The data was then reoriented and cropped using Reorient, contrast 

inhomogeneities were corrected using N4BiasFieldCorrection from ANTS (Tustison et al 2010), and 

finally the intensity range was manually limited to prevent regions with high intensity from affecting 

the global contrast (usually the optic nerves). The chimpanzee data was processed using Freesurfer 

(Dale et al 1999, Fischl et al 2001) using the script recon-all-chimps.sh in the accompanying GitHub 

repository. 

Data quality control 

Our data comprise post mortem as well as in vivo MRI scans and vary in tissue conservation, 

resolution and signal-to-noise ratio. Some of the MRIs include only the extracted brain, others include 

the brain and the skull, and finally a few others include the entire body of the animal. We generated 

images of one coronal, axial and sagittal slice using Nilearn (Abraham et al 2014) to perform a first 

visual quality control. A thorough visual quality control was later performed during the manual 

segmentation stage. 

Quantitative indications of data quality were obtained by measuring signal-to-noise ratios: We 

computed the ratio of the signal of interest divided by the standard deviation of the background 

(region without signal). The background region of interest was automatically detected by identifying 

the first peak in the MRI's histogram. 

The signal of interest was defined based on the histogram of the MRI after removing the voxels from 

the background. We then detected the histogram's peak and selected the position of maximum density. 

When several peaks were detected, we excluded the first one – most often related to CSF or the 

fixative fluid in ex vivo brains – and used the average position of the remaining peaks as the mean 

signal of interest. The results are provided in Supplemental Table S1. 

Manual segmentation and surface reconstruction 

All the MRI data, except for the chimpanzees and the humans, were segmented using BrainBox 

(Heuer et al 2016, http://brainbox.pasteur.fr), a Web application for the visualisation, annotation and 

real-time collaborative segmentation of MRI data. Offline, we used StereotaxicRAMON, 

Thresholdmann, Segmentator and ITK-SNAP to generate a first mask of the cerebrum. 

StereotaxicRAMON (https://github.com/neuroanatomy/StereotaxicRAMON) provides manual editing 

https://fsl.fmrib.ox.ac.uk/
https://www.nitrc.org/projects/mricrogl/
https://github.com/neuroanatomy/reorient
https://zenodo.org/
http://brainbox.pasteur.fr/
https://github.com/neuroanatomy/StereotaxicRAMON
https://github.com/neuroanatomy/StereotaxicRAMON
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tools, a series of topology-preserving mathematical morphology operators, as well as a real-time 3D 

visualisation of the manual segmentations. Thresholdmann 

(https://github.com/neuroanatomy/thresholdmann) enables the generation of binary segmentation 

masks by using a threshold that can be adjusted locally: the value of the threshold at intermediate 

points is then interpolated using radial basis functions. Segmentator (Gulban et al 2018a, b, 

https://github.com/ofgulban/segmentator) enables the generation of binary segmentation masks 

through the interactive manipulation of a 2-D histogram where the x-axis represents grey level and the 

y-axis represents the magnitude of the gradient at each point of the image. Finally, ITK-SNAP 

(Yushkevich et al 2006, http://www.itksnap.org) is a general tool for manual medical image 

segmentation. 

The semi-automatically obtained masks were uploaded to BrainBox, where we created a project 

centralising all the data. The BrainBox project can be accessed here: 

http://brainbox.pasteur.fr/project/BrainCataloguePrimates. The main manual segmentation tasks 

performed in BrainBox involved removal of the cerebellum, brainstem and optic nerves; delineation 

of sulci missed by the automatic segmentation; and reconstruction of damaged tissue parts (see Figure 

1 for examples). After manual segmentation was finished and reviewed by at least one more person, 

we implemented a script in Python 3.6 to download all the data using BrainBox’s RESTful API (the 

script is included in the accompanying GitHub repository). The manually segmented masks were then 

transformed into triangular meshes using the CBS tools (Bazin et al 2014, 

https://www.nitrc.org/projects/cbs-tools). The workflow included the following steps: mask 

binarisation, transformation of the mask into a probability function, and extraction of an isosurface 

using the connectivity-consistent Marching Cubes algorithm (Han et al 2003). 

All meshes were then processed using the following steps: soft Laplacian smoothing to remove the 

shape of voxels, decimation down to 3 vertices per mm
2
 (https://github.com/cnr-isti-

vclab/vcglib/tree/master/apps/tridecimator), removal of isolated vertices, and non-shrinking Taubin 

smoothing (Taubin 1995), implemented in our tool Mesh Geometry 

(https://github.com/neuroanatomy/meshgeometry), to remove further geometric artefacts. 

Figure 1. Examples of segmentation tasks. (a) Cerebrum masks were obtained using different semi-automatic 

methods. These masks often failed to properly segment sulci, as pointed by the white arrow. (b) Manual 

segmentation of the cerebrum involved the removal of the cerebellum, brainstem and optic nerves, and the 

exclusion of the sulci, (c) as well as reconstructing damaged tissue parts as pointed by the arrow.  

https://github.com/neuroanatomy/thresholdmann
https://github.com/neuroanatomy/thresholdmann
https://github.com/ofgulban/segmentator
http://www.itksnap.org/
http://brainbox.pasteur.fr/project/BrainCataloguePrimates
https://www.nitrc.org/projects/cbs-tools
https://github.com/cnr-isti-vclab/vcglib/tree/master/apps/tridecimator
https://github.com/cnr-isti-vclab/vcglib/tree/master/apps/tridecimator
https://github.com/neuroanatomy/meshgeometry
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Neuroanatomical measurements 

We used Mesh Geometry to compute the volume, surface, absolute gyrification index, folding length, 

and estimated number of sulci for each mesh. We define the absolute gyrification index as the ratio 

between the surface of a cerebral hemisphere mesh and the surface of a sphere of the same volume as 

the hemisphere’s volume. Because the sphere is the solid with the least surface for a given volume, 

this provides an absolute index of the “excess” of surface of a cerebrum: A sphere has then an 

absolute gyrification index of 1 (the minimum), and in our measurements a human cerebrum has an 

absolute gyrification index of about 4. The folding length measures the total length of the curves 

dividing sulci from gyri (as measured using a mean curvature map). This measurement is conceptually 

similar to the gyral length measurement used by Prothero and Sundsten (1984) or the sulcal lengths 

referenced by Zilles et al (1989), however, those measurements were performed only on the surface or 

even in endocasts. The estimated number of sulci is obtained by counting all the regions with negative 

mean curvature (the sulci). 

We use the cerebrum mesh surface area (S), volume (V) and the folding length (L) to estimate the 

average wavelength (W) and depth of the folds (D) in a cerebrum (see Figure 2). The total surface of a 

cerebrum mesh can be thought as the multiplication of its total folding length times the average 

profile of a fold (the curve that goes from an inflexion point, up to the gyral crest, down to the sulcal 

fundus, and up to the next inflexion point). Furthermore, we can use the convex hull of each 

hemisphere – scaled to have the same volume V as the hemisphere – to estimate the total surface of its 

hypothetical unfolded version. In this unfolded version of the hemisphere the profile of a fold is 

simply the wavelength of the fold (as the sulcal depth is 0). The average wavelength (W) of folding in 

the cerebrum can be estimated as the ratio between the surface area of the convex hull (Sh) and half 

the total folding length (L): 

     . 

Figure 2. Neuroanatomical measurements. (a) Absolute gyrification index as the “excess” of the cerebral 

surface over the surface of its convex hull, normalised to have the same volume. Here illustrated over the 

surface of a bonobo brain. (b) Folding length – the total length of the curves dividing sulci from gyri, shown as 

dashed lines over the surface of a bonobo brain. (c) Schematic illustration of the neuroanatomical measurements 

used in our equations.  
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If we further approximate, as Prothero and Sundsten (1984), the profile of a fold to be like a square 

function (folds going straight up and down), we have that the total surface of the cerebrum mesh 

should be: 

 . 

In the case of the hypothetical unfolded version of the mesh, the surface should be 

(because D=0). We then have that 

 . 

We used Mesh Geometry to split the left and right hemispheres, and the command line qhull (Barber 

et al 1996, http://www.qhull.org) to compute their convex hulls. The scripts necessary to compute all 

these measurements are available in the accompanying GitHub repository. 

Statistics and phylogenetic comparative analyses 

We downloaded phylogenetic tree data for our 34 primate species from the 10k trees website (Arnold 

et al 2010, https://10ktrees.nunn-lab.org/Primates/downloadTrees.php). This website provides a 

Bayesian inference of primate phylogeny based on 17 genes. We obtained the consensus tree as well 

as a sample of 100 trees in proportion to their posterior probabilities. 

We used R 3.5.0 (R Core Team 2018, http://www.R-project.org) for our statistical analysis. 

Measurements of surface area, volume, folding length and folding number varied over several orders 

of magnitude and were log-transformed before analysis. Phylogenetic independent contrasts (PICs, 

Felsenstein 1985) were computed using the packages ape (Paradis 2012) and phytools (Revell 2011), 

with multiple observations per species. 

We fitted different evolutionary models (Brownian Motion, Ornstein-Uhlenbeck with a single alpha, 

with one alpha per phenotype, with a full multivariate matrix of alpha values, and the Early Burst 

model) using the package Rphylopars (Goolsby et al. 2016), which allows the analysis of multivariate 

phenotypes with multiple observations per species. 

The Brownian Motion (BM) model supposes that phenotypes diffuse randomly through the branches 

of the phylogenetic tree with intensity controlled by the parameter σ (σ
2
 is the variance of the 

Brownian process). Under the BM model, phenotypes of species that have diverged recently should 

then be more similar than those of species that have diverged earlier. The Ornstein-Uhlenbeck (OU) 

model supposes that phenotypic variation is not only random, but is also attracted to an evolutionarily 

advantageous value, with a strength controlled by the parametre alpha (when alpha=0, the OU model 

is equivalent to the BM model). Finally, the Early Burst (EB, Harmon et al 2010) model supposes that 

the speed of phenotypic change can be faster at some point (when a new adaptive zone is invested) 

and slow-down after. When the rate parametre r in the EB model is r=0, the model reduces to the BM 

model, and negative values indicate rates of change that decrease through time. 

We used the Akaike Information Criterion (AIC) values for the fit of each of these models to select 

among them (a smaller value indicates a better fit). Following the criteria of Burnham and Anderson 

(2004), we considered that an AIC difference between 4 to 7 suggests considerable less support for 

http://www.qhull.org/
https://10ktrees.nunn-lab.org/Primates/downloadTrees.php
http://www.r-project.org/
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the model with larger AIC value, and a difference larger than 10 suggests essentially no support for 

the model with larger AIC value. 

Results 

Data collected 

We obtained cerebrum surface reconstructions for 65 individuals from 34 different primate species 

(we excluded only 1 specimen from the original 66 datasets collected, a red howler monkey, due to 

extensive tissue damage. The MRI is nevertheless available in the BrainBox project as well as in 

Supplemental Table S1). Table 1 displays the complete list of species included, the number of 

individuals per species, and information on provenance. Figure 3 shows dorsal views of our 

reconstructions conserving a homogeneous scale (only one individual per species). The amount of 

neocortical folding was strongly related to cerebral volume: small Strepsirrhini primates had a 

basically unfolded neocortex, as well as several of the Platyrrhini primates (New World monkeys) in 

our sample. When folds appeared, their pattern was strongly left-right symmetric in small cerebra and 

became progressively more asymmetric in the larger Papionini and Hominoidea brains. 

Name Binomial Name (GenBank) N In vivo Extracted Provenance 

Lemuriformes 

    Aye-aye Daubentonia madagascariensis 1 No No MNHN 

    Black-and-white ruffed lemur Varecia variegata variegata 1 No No MNHN 

    Coquerel's mouse lemur Mirza coquereli 1 No No MNHN 

    Grey mouse lemur Microcebus murinus 1 No No MNHN 

    Mongoose lemur Eulemur mongoz 1 No No MNHN 

    Red-tailed sportive lemur Lepilemur ruficaudatus 1 No No MNHN 

    Ring-tailed lemur Lemur catta 1 No Yes MNHN 

Loridae 

    Red slender loris Loris tardigradus 1 No Yes MNHN 

Galagonidae 

    Demidoff's galago Galago demidoff 1 No No MNHN 

Cebidae 

    Black-pencilled marmoset Callithrix penicillata 1 No Yes MNHN 

    Cotton-top tamarin Saguinus oedipus 1 No Yes MNHN 

    Douroucouli Aotus trivirgatus 1 No No MNHN 

    Squirrel monkey Saimiri sciureus 2 No Yes MNHN 

    Tufted capuchin Cebus apella 1 No No MNHN 

    White-faced sapajou Cebus capucinus 1 No Yes MNHN 

Atelidae 

    Black spider monkey Ateles paniscus 2 No No MNHN 

    Woolly monkey Lagothrix lagotricha 1 No Yes MNHN 

Cercopithecini 

    Green monkey Chlorocebus sabaeus 1 No Yes MNHN 

    Moustached guenon Cercopithecus cephus cephus 1 No Yes MNHN 
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Papionini 

    Crab-eating macaque Macaca fascicularis 8 No, Yes, Yes Yes, No, No BC, PL, PDE 

    Grey-cheeked mangabey Lophocebus albigena 1 No Yes MNHN 

    Hamadryas baboon Papio hamadryas 1 No Yes MNHN 

    Rhesus monkey Macaca mulatta 6 No, Yes, Yes Yes, No, No MNHN, PL, PDE 

    Sooty mangabey Cercocebus atys 1 No Yes MNHN 

Colobinae 

    Hanuman langur Semnopithecus entellus 1 No Yes MNHN 

    Indochinese lutung Trachypithecus germaini 1 No No MNHN 

    King colobus Colobus polykomos 1 No Yes MNHN 

Hominoidea 

    Bonobo Pan paniscus 1 Yes No NCBR 

    Chimpanzee Pan troglodytes troglodytes 9 Yes No NCBR 

    Gibbon Hylobates lar 1 Yes No NCBR 

    Gorilla Gorilla beringei 1 No Yes BC 

    Gorilla Gorilla gorilla 1 Yes No NCBR 

    Human Homo sapiens 10 Yes No ABIDE 1 

    Orangutan Pongo pygmaeus 1 No No MNHN 

Table 1. List of species included. ABIDE 1: Autism Brain Imaging Data Exchange 1. BC: Brain Catalogue. 

MNHN: Muséum Nationale d’Histoire Naturelle de Paris. NCBR: National Chimpanzee Brain Resource. PL: 

Pruszynski Lab. PDE: PRIMate Data Exchange (PRIME-DE).  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

10 

Figure 3. Dorsal view of the reconstructed cerebral hemispheres of 34 different primate species. Colours 

represent the different clades, and brains are represented from largest on top to smallest at the bottom. The scale 

is the same for all brains. High-res version: https://doi.org/10.5281/zenodo.2538751 

https://doi.org/10.5281/zenodo.2538751
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Neuroanatomical measurements 

The relationships among all our neuroanatomical measurements are illustrated in Figure 4. Surface 

area and volume correlated strongly (R
2
=0.99, p≪1) with a positive allometric scaling coefficient 

beta=0.82. There was also a strong positive correlation with our absolute gyrification index (AbsGI), 

total folding length, and folding number count. Our estimations of average fold wavelength and 

average fold depth exhibited an interesting, non-linear relationship with cerebral volume. Despite a > 

3-fold variation in volume between humans and chimpanzees, and a  

> 20-fold variation in volume between humans and the crab-eating macaque, the average fold

wavelength changed only from about 11 mm in the human sample, 12 mm in the chimpanzee sample

and the bonobo (less than 1.1-fold), to 14 mm in the crab-eating macaque sample (less than 1.3-fold).

In the group of primates with small cerebra, the estimation of average fold wavelength is to be

interpreted cautiously. It was often the case that a few folds would develop in a largely smooth

cerebrum, rendering the notion of wavelength difficult. This can be observed in Figure 5a, which

shows the relationship between cerebral volume and average fold wavelength. What could be

interpreted as very wide folds in the smaller cerebra may reflect indeed the presence of a single fold

within an essentially lissencephalic cerebrum. Interestingly, as cerebral volume increases and the

notion of wavelength becomes more relevant, we observe a progressive stabilisation of the fold

wavelength. A similar but opposite trend can be observed for our estimation of the average fold depth

(Figure 5b). For small, lissencephalic cerebra, the value is close to 0 (as expected), increases rapidly

with cerebral volume up to 6 mm, and tends to stabilise and increase slowly up to 10 mm in humans

(8 mm in the chimpanzees and the bonobo, 6 mm in the crab-eating macaque, Figure 5b).

Phylogenetic comparative neuroanatomical analyses 

Figure 6 shows the consensus phylogenetic tree used in our analyses. The branch length represents an 

estimation of time since split from a common ancestor. The number of specimens per species is 

indicated in parenthesis, and we provide a grouping of different  

Model AIC 

Brownian Motion (Pagel’s λ=1) -956.31

Ornstein-Uhlenbeck, single alpha -948.97

Early Burst -947.10

Star (Pagel’s λ=0) -923.41

Ornstein-Uhlenbeck, diagonal alpha matrix -909.79

Ornstein-Uhlenbeck, full alpha matrix -698.53

Table 2. Phylogenetic model selection. Different models of phenotypic evolution were fitted to the data and 

ranked by their AIC (smaller values indicate a better fit). 
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Figure 4. Scatterplots of neuroanatomical measurements. The scatterplots show the correlation between all pairs 

of measurements used in this study. A Log10 transformation was used on measurements that varied over several 

orders of magnitude, such as surface area or volume. The red curve is a locally estimated scatterplot smoothing 

(LOESS). 

species (tips of the tree) in families and clades. The best fit for the variation of neuroanatomical 

phenotypes along the phylogenetic tree was obtained for the BM model: a random change in 

phenotypes with variability depending on phylogenetic distance. The differences in model fit (AIC 

values) suggest considerably less support for the 2
nd

 and 3
rd

 best models – the OU model with a single 

alpha value, and the EB model – and essentially no support for all the other models (see Table 2). Our 

following analyses focus therefore on the results obtained assuming the BM model. 

The analyses of phenotypic relationships including phylogenetic information (Figure 7) agree in 

essence with the previous analyses of the raw data (Figure 4). The role of phylogeny is, however, 

strong and statistically significant. Pagel (1999) suggested a strategy to test for the importance of the 

phylogenetic signal which relies on a modification of the branch lengths (and therefore of the 

phylogenetic variance-covariance matrix). The out-of-diagonal elements of the variance-covariance 

matrix are multiplied by a value λ, 0≤λ≤1. When λ=1, the results are equivalent to those of the BM 
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model. When λ=0, all species are supposed to be independent (producing a phylogenetic tree with a 

“star” shape). The log-likelihood of the λ=1 model was strongly significantly larger than that of the 

λ=0 model (534.3 versus 517.7, χ
2
=33.1, p-value≪1). 

The estimation of ancestral neuroanatomical phenotypes based on the BM model suggests a general 

increase in cerebral volume and neocortical surface in the Catarrhini branch, progressing along the 

Hominoidea branch and reaching its maximum among Homininis (Figure 8). Interestingly, within the 

Platyrrhini branch, both within the Cebidae family (the tufted capuchin) and the Atelidae family, 

some species exhibit an increase in cerebral volume, which corresponds with an increase in the 

number of folds and the emergence of neocortical folding asymmetries. The phenograms (Figure 9) 

show a different perspective on the same data, where the vertical axis represents time, the horizontal 

axis represents phenotype, and the phylogenetic relationships are represented by a branching pattern 

linking the phenotypes of extant species with those predicted for their common ancestors. We can 

observe a continuous evolutionary increase in cerebral volume, surface area, folding length, etc., from 

the common ancestor of all primates to humans (highlighted in red), but more complex patterns of 

increases and decreases for other species. Interestingly, we can also see that for the largest part of 

species with a highly folded neocortex, the average folding wavelength clusters in a small range 

between 11 to 14 mm (highlighted in blue). 

Figure 5. Relationship between cerebral volume, fold wavelength and fold depth. (a) Fold wavelength versus 

cerebral volume. Fold wavelength was conserved among almost ⅔ of species with relatively large brains. 

Among the remaining species with small, lissencephalic, brains the estimation of fold wavelength is not well 

defined and provides values which roughly correspond to the size of the brain. (b) Fold depth versus cerebral 

volume. The relationship between fold depth and cerebral volume also shows an inflexion point separating 

species with small and large brains. It increases steeply when brains have only a few folds (which become deep 

rapidly) and more softly when brains have profuse folding. The colours of the data points correspond to their 

clades, and several representative species are annotated to facilitate comparison. 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

14 

Figure 6. Phylogenetic tree. The phylogenetic tree represents a Bayesian inference of primate phylogeny based 

on genotyping data of 17 genes. The time of split of tree branches is provided in a scale of millions of years ago 

(Mya). The colour bar as well as the colours of the brains represent their clades (as in Fig. 3). The number of 

MRIs used for each species is provided in parenthesis besides each species’ name. 

Discussion 

The study of the evolution of the primate brain should allow us to better understand the origin of our 

own cognition. It should also provide information on the sources of normal and pathological 

variability of human neuroanatomy — a major challenge for neuroscience today (Zilles and Amunts 

2013). In a similar way as the analyses of genomes for multiple species allow us to detect highly 

conserved or rapidly evolving regions, an analysis of neuroanatomical evolution and conservation 

should allow us to detect the traces of evolution in different brain systems and regions. It should also 

allow us to evaluate the degree of phenotypic conservation across species, providing a framework to 

better understand natural variability, and to distinguish it from pathological variability. 

It is difficult, however, to access and to analyse comparative primate brain data, by contrast to 

genetics where large open access databases such as GenBank (Benson et al 2017) provide information 
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on thousands of different species. The series of reports by Stephan and Frahm (Stephan et al 1981, 

1991, Frahm et al 1982) on regional brain volumes have been an important reference for the field, and 

their data tables have been used by many comparative brain analyses through the years. Primate brain 

MRI data is on the contrary only available for a few selected species. Two important resources are the 

PRIMate Data Exchange Initiative (PRIME-DE, Milham et al 2018, 

http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html) and the National Chimpanzee Brain 

Resource (http://www.chimpanzeebrain.org). PRIME-DE shares open MRI data mostly for rhesus and 

crab-eating macaques, and NCBR shares open MRI data for several chimpanzee brains plus 9 other 

primate species (squirrel monkey, capuchin monkey,  

 

 

 

Figure 7. Phylogenetic comparisons of the neuroanatomical phenotypes. Scatterplots comparing each pair of 

neuroanatomical measurements, taking into account the phylogenetic relationships. The consensus phylogenetic 

tree was used to obtain phylogenetic independent contrasts (PIC), which were then used in the comparisons. 

Measurements varying over several orders of magnitude were Log10 converted. 

rhesus macaque, sooty mangabey, baboon, gibbon, orangutan, gorilla, and bonobo. Access to 

additional chimpanzee MRI data is available upon request). Another notable open data resource is the 

Macaque Neurodevelopmental Data project (Young et al 2017) which shares open longitudinal MRI 

data for 32 rhesus macaques. Although large MRI data samples have been acquired for other species 

http://fcon_1000.projects.nitrc.org/indi/indiPRIME.html
http://www.chimpanzeebrain.org/
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by several groups (for example, Phillips and Sherwood 2008, Fears et al 2011, Love et al 2016), their 

access policy is less clear. 

 

Here, we provide open access to a collection of 66 brain MRI datasets from 34 different primate 

species. These MRIs can be directly visualised and annotated in BrainBox using just a Web browser. 

In addition to indexing some of the data already online, we have scanned and made available 31 

primate brain MRIs from 29 different species (23 species not previously available online), most of 

them with an isotropic resolution of 300 microns. We used Zenodo 

(https://zenodo.org) for storing the data. By using Zenodo each dataset is assigned a persistent 

identifier (digital object identifier, DOI), which facilitates data citation, tracking authorship and 

provenance. Other researchers willing to share their MRI data could similarly store it in Zenodo and 

index the URL in BrainBox. This would enable the decentralised creation of a 

community-curated collection of primate MRI data (the complete process of uploading the data and 

indexing it in BrainBox should not take more than 15 minutes). Using BrainBox, we were able to 

manually segment our MRI data, and to create topologically correct 3D surface reconstructions. The 

scripts necessary to programmatically download all our data and reproduce our statistical analyses are 

available on GitHub (https://github.com/neuroanatomy/34primates). Our aim is to make the data 

easily accessible to facilitate collaborative projects, reproducibility, and to encourage neuroscientists 

and citizen scientists to participate in advancing our understanding of primate brain diversity and 

evolution. 

 

We have used this collection to study the variation and evolution of neocortical folding in primates. 

Previous comparative analyses of primate brain folding (for example, Prothero and Sundsten 1984, 

Zilles et al 1988, Rilling and Insel 1999, Semendeferi et al 2002, Lewitus et al 2014) have relied on 2-

D measurements of gyrification indices. Using 3D meshes enables an extended set of neuroanatomical 

analyses to be performed, such as shape analyses, spectral analyses, surface-based alignment, among 

others. Here, we used surface-based maps of mean curvature to measure total folding length. Folding 

length varied from less than 4 cm in the grey-mouse lemur to up to 16 m in humans. We derived 

approximations of the average fold wavelength and fold depth. A well-known problem of the classical 

gyrification index (GI, Zilles et al 1988, 1989) is its difficulty to distinguish a brain with a few deep 

folds from one with a profusion of shallow folds. Zilles’s GI is computed for a coronal brain slice as 

the ratio between the pial contour and the contour of a hypothetical lissencephalic version of the brain. 

In 3D, Zilles’s GI is often approximated as the ratio between the neocortical surface and the surface of 

its convex hull, which exhibits again the same issue. Spectral analyses of brain folding offer a solution 

to the problem, however, their interpretation is not often trivial or intuitive. Our fold wavelength and 

fold depth estimations combine the measurement of cerebral surface area with the measurement of 

folding length to provide an intuitive decomposition of brain folding, free from the problem of GI-like 

estimations. Given two cerebra with the same surface area, similar convex hull (i.e., similar GI), but 

different number of folds, the one with the largest number of folds will also have a larger folding 

length, and in consequence a smaller fold wavelength and fold depth than the other. 

https://zenodo.org/
https://github.com/neuroanatomy/33primates
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Figure 8. Estimated ancestral neuroanatomical phenotypes. The ancestral estimations of each phenotype were 

obtained using a Brownian Motion model of phenotypic evolution. Their values are represented in colour over 

the consensus phylogenetic tree. The species at the tip of the tree are indicated in the lower-right tree. 

 

 

We observed an interesting, non-linear relationship between fold wavelength and fold depth with 

cerebral volume. The fold wavelength and fold depth estimations were conceived with highly folded 

brains in mind (such as those of humans or other Hominoidea). In smaller, smoother brains, such as 

those of some Strepsirrhini and Platyrrhini primates, there are only 1 or 2 folds within each 

hemisphere, and it is not clear sometimes what a “gyrus” would be. In these cases, our fold 

wavelength estimations give estimates of about 3 cm, which corresponds more or less to the size of a 

complete hemisphere (as if the complete hemisphere were a single  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

 

18 

 
 

Figure 9. Phenograms of estimated ancestral neuroanatomical phenotypes. Phenograms provide an alternative 

visualisation of ancestral phenotype estimations. The value of each phenotype is represented in the x-axis 

against time in the y-axis. The tree nodes and tips are displaced to their estimated phenotype versus time 

positions. The estimation of phenotypic evolution along the branch leading from the common ancestor to 

humans is highlighted in red. The light-blue region in the phenogram for fold wavelength highlights the group 

of large-brain primate species whose fold wavelength ranges between 11 and 14 mm. 

 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

 

 

19 

 

Figure 9 (continuation) 

 

 

fold). As soon as the number of sulci increased, we observed that fold wavelength decreased and 

stabilised at a value of about 12 mm (± 20%) across different primate groups, and despite cerebral 

volumes ranging from ~50cm
3
 (crab-eating macaque) to 1000 cm

3
 (humans) – a 20-fold variation. 

This stability in fold wavelength is in agreement with mechanical theories of neocortical folding 

(Toro and Burnod 2005, Toro 2012, Tallinen et al 2014, 2016, Foubet et al. 2018, Heuer and Toro 

2019) which predict that fold wavelength should depend on the bending stiffness of the neocortex, 

strongly determined by cortical thickness. Indeed, the thickness of the neocortex changes very little 

across mammalian species (Mota and Herculano-Houzel 2015). In our sample, the cortical thickness 
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of the small Demidoff’s galago was ~1.5 mm (similar to that of a mouse), and ~2.5 mm in humans 

(see also Fischl and Dale 2000). Cortical thickness, and consequently cortical bending stiffness should 

be relatively stable across primate species, leading to the stable fold wavelength that we observed in 

our data. The fast initial decrease in fold wavelength should be due to the emergence of new folds as 

the neocortex expands. Once neocortices are fully folded, the following slow decrease in fold 

wavelength could be related to frequency doubling – the formation of folds within folds – as observed 

in swelling gel experiments (Mora and Boudaoud, 2006). Neocortical mechanics could lead to the 

formation of stable neuroanatomical modules – the folds – which could then become the basis for the 

adaptation and selection of advantageous cytoarchitectonic, connective and functional organisations, a 

kind of mechanical canalisation process (Waddington 1942, Müller 2007, Foubet et al 2018, Heuer 

and Toro 2019). A future analysis of fold wavelength and thickness, potentially local instead of only 

global, should allow us to better understand this relationship across and within species. 

 

Our phylogenetic comparative analyses suggested that random phenotypic change may be an 

important driving force in the evolution of primate neocortical folding. After fitting several alternative 

evolutionary models, the Brownian Motion (BM) model captured better the variability in the data than 

the Ornstein-Uhlenbeck (OU) and Early-Burst (EB) models ( 2
nd

 and 3
rd

 best ones). The difference in 

fitting quality was not enough, however, to outrule the OU and EB models. Future analyses with 

larger samples should allow us to progress further in this respect. While the BM model supposes that 

phenotypic variation along the phylogenetic tree is random, the OU and EB models suppose the 

presence of advantageous phenotypes which drive evolution. It is important to note that the BM 

model is not incompatible with adaptive evolution (Nunn 2011). The driver of the random changes 

can still be natural selection, but with changes in the selective regime independent of previous 

changes and more common along longer branches (probably due to rapidly changing environmental 

conditions). In all cases, the importance of phylogenetic relationships was strong and highly 

statistically significant: a star phylogenetic model – one where all species are considered to be 

independent – had a substantially less good fit to the data than the top 3 models. 

 

Based on the BM model, the common ancestor of all primates, 74 million years ago, may have had a 

cerebrum similar to that of a small lemur: with a surface area of 50 cm
2
, a volume of 12 cm

3
, an 

absolute gyrification index of 2, a folding length of 37 cm, and about 25 folds, of an average 

wavelength of 20 mm and with a depth of about 3 mm, that is, not very different from that of a 

mongoose lemur or an aye-aye. Our estimation of global gyrification (AbsGI = 2.1, 95% CI from 1.3 

to 2.8) is not much higher than that provided by the previous phylogenetic comparative analysis of 

Lewitus et al (2014), which gave a GI=1.41 for the common ancestor of primates (AbsGI is also 

expected to be higher than GI). The increase in volume and gyrification observed in the large 

Catarrhini (the group containing humans but also macaques) may have started about 40 million years 

ago, but probably only about 7 million years ago (about the time of the last common ancestor of 

humans and chimpanzees) in the branch leading to Cebidae, such as the white-faced sapajou or the 

tufted capuchin. Lissencephaly, as observed in Platyrrhini, such as the cotton-top tamarin and the 

black-pencilled marmoset, may have evolved from a gyrencephalic ancestor about 20 million years 

ago. 

 

Lewitus et al (2014) and more recently Lewitus et al (2016) have suggested that the process leading to 

gyrencephaly may have emerged at least twice during mammalian evolution. As an example of such 

process they cite the results of Reillo et al (2010) or more recently De Juan Romero et al (2015). 

These studies suggest that gyri are produced by local bulging due to a genetically programmed 
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increase in neurogenesis. Instead of explaining the evolutionary gain or loss of folding by a complex 

readjustment of the genetic patterning of the neocortex, it seems to us that mechanical theories 

provide a more parsimonious explanation for our data: neocortical folding would appear and 

disappear as soon as neocortical growth relative to the growth of the white matter substrate goes 

beyond or under the mechanical buckling threshold. The highly conserved fold wavelength that we 

observed would simply reflect a similar neocortical stiffness across species instead of a more complex 

genetic patterning process appearing and disappearing through the ages. Within the context of 

mechanically produced folding, genetics would have a more subtle role, providing a meta-level of 

regulation and selection of structures which appear by physical necessity instead of a detailed 

prescription of each fold. Some small insects are able to stand on top of the water in a pond, an ability 

that larger insects do not exhibit. It seems more parsimonious to explain this through the water’s 

surface tension than by a complex cascade of genetic processes leading to the ability of very different 

species of larger insects to sink. 
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