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Induced pluripotent stem cells as a tool
to study brain circuits in autism-related
disorders
Aline Vitrac1,2,3 and Isabelle Cloëz-Tayarani1,2,3*

Abstract

The mammalian brain is a very complex organ containing an estimated 200 billion cells in humans. Therefore,
studying human brain development has become very challenging given all the data that are available from
different approaches, notably genetic studies.
Recent pluripotent stem cell methods have given rise to the possibility of modeling neurodevelopmental diseases
associated with genetic defects. Fibroblasts from patients have been reprogrammed into pluripotent stem cells to
derive appropriate neuronal lineages. They specifically include different subtypes of cortical neurons that are at the
core of human-specific cognitive abilities. The use of neurons derived from induced pluripotent stem cells (iPSC)
has led to deciphering convergent and pleiotropic neuronal synaptic phenotypes found in neurodevelopmental
disorders such as autism spectrum disorders (ASD) and their associated syndromes. In addition to these initial
studies, remarkable progress has been made in the field of stem cells, with the major objective of reproducing the
in vivo maturation steps of human neurons. Recently, several studies have demonstrated the ability of human
progenitors to respond to guidance cues and signals in vivo that can direct neurons to their appropriate sites of
differentiation where they become fully mature neurons.
We provide a brief overview on research using human iPSC in ASD and associated syndromes and on the current
understanding of new theories using the re-implantation of neural precursors in mouse brain.
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Background
The use of induced pluripotent stem cells (iPSC) has pro-
vided new opportunities for analyzing brain development
and the consequences of its dysfunctions in neurodevelop-
mental disorders. The iPSC approach has been particu-
larly useful for neurodevelopmental diseases for which
major genes are considered responsible. One important
aspect resides in the fact that the reprogrammed iPSC
studied so far carry single genetic deficits which were ini-
tially identified in the genomes of patients. This is the case
for autism spectrum disorders (ASD) and their related dis-
orders, which include Rett syndrome, Timothy syndrome,
fragile X syndrome, and Phelan-McDermid syndrome

(PMS). Causative genes are mostly related to synaptic
functions. Among others, traditional approaches include
large-scale genomic data analysis and engineered animal
models [1–3]. The discovery of human iPSC has enabled
the analysis of neuronal phenotypes after the derivation of
patients’ somatic cells into neurons. One limitation of
such an in vitro approach is the inability to grow the cells
for periods long enough to reproduce the postnatal devel-
opment and maturation of human iPSC-derived neurons.
Alternative techniques are based on the use of neural pro-
genitors that are patterned after their re-implantation in
mouse brain to undergo differentiation via specific neural
pathways in vivo.
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In vitro use of human iPSC-derived neurons in
neurodevelopmental disorders: the case of
syndromic and non-syndromic forms of ASD
A common understanding of the pathogenesis of neuro-
developmental disorders, including ASD, has still not
been achieved. This remains an important issue, as it is
a prerequisite for the development of pharmacological
drugs for the treatment of the core symptoms of such
disorders. Reprogramming of iPSC from patients into
neuronal cell types was first used to further elucidate the
phenotypes related to pathologies such as Alzheimer’s
disease [4], Parkinson’s disease [5], epilepsy [6], and
schizophrenia [7, 8]. Peripheral neurodegenerative disor-
ders such as amyotrophic lateral sclerosis [9] have also
been investigated. For all these pathological conditions,
human iPSC have been reprogrammed into selective
neuronal cell types by considering the neuronal pheno-
types that are damaged as predicted by available animal
models and clinical investigations in patients. The iPSC
model has enabled further insights into the cellular and
molecular mechanisms that are affected during brain de-
velopment. This model was first developed in the case of
monogenic diseases such as Rett syndrome, fragile X
syndrome, Timothy syndrome, PMS, and various forms
of schizophrenia that display symptoms in common with
ASD. The common features between such monogenic
diseases and ASD include cognitive dysfunctions with
mental retardation and dysmorphia. Other features com-
prise epilepsy (atypical forms of Rett syndrome), cardiac
dysfunction (Timothy syndrome), motor coordination,
and sensorial hypersensitivity (fragile X syndrome).
Studies using iPSC technology have been focused both
on neural progenitors and on mature neurons derived
mostly from the fibroblasts (or less often from blood) of
patients. The identification of phenotypes in human
iPSC-derived neurons was first studied in four syndromic
forms of ASD with well-known identified causal genes.
Rett syndrome is a severe X-linked neurodevelopmen-

tal disorder. The main form of this disorder is character-
ized by defects in the MECP2 gene coding for the
transcriptional regulator methyl CpG binding protein 2,
which is expressed in a wide variety of tissues, including
the brain. The most extensive work using the iPSC
model has been devoted to Rett syndrome, with the
phenotypic characterization of these cell lines obtained
from patients’ fibroblasts. Decreased cell soma size and
neuritogenesis [10], reduced expression of the adhesion
molecule L1 [10], and synaptic alterations [11, 12] have
been observed by using this model, supporting the ex-
pected defects in neuronal connectivity.
Timothy syndrome is a very rare autosomal dominant

disorder which results from mutations in the CACNA1C
gene coding for the alpha-1 subunit of the L-type
voltage-gated calcium channel Cav1.2. To date, only a

few studies have analyzed the neuronal phenotypes of
human iPSC-derived neurons, which have shown spe-
cific alterations in calcium signaling [13] and dendritic
plasticity [14]. One of the initial studies reported a re-
duced number of cells expressing the DNA-binding pro-
tein SATB2 [15]. Satb2 regulates the fate of upper and
deeper layers of cortical neurons as shown in mouse
brain models [16]. It is therefore reasonable to suggest
the existence of deleterious effects on neural develop-
ment which are due to altered calcium signaling in par-
allel with the absence of SATB2 protein, and more
specifically on cortico-cortical connections. Neverthe-
less, it should be noted that in vitro developmental neur-
onal patterns differ from in vivo ones, especially when
the deleterious mutations target pleiotropic genes, such
as CACNA1C, that coordinate organ functions in a
non-independent manner.
PMS is a neurodevelopmental disorder strongly asso-

ciated with ASD that is caused by a deletion of the
SHANK3 gene at the 22q13 locus, identified as a 22q13
deletion syndrome. Shcheglovitov and colleagues [17]
used iPSC-derived cortical neurons from two patients
and observed significant deficits in the excitatory trans-
mission of reprogrammed neurons which were rescued
by IGF1 exposure.
Fragile X syndrome is considered as one of the most

common cause of syndromic ASD. This syndrome re-
sults from an expansion of a CGG repeat within the fra-
gile X mental retardation 1 (FMR1) gene on the X
chromosome. This gene is required for neuronal devel-
opment and a deficiency in its corresponding protein
leads to altered neuronal connectivity. It has been diffi-
cult so far to find a model to study this syndrome using
iPSC technology. The more recent study by Doers and
colleagues [18] clearly demonstrates reduced neurite
outgrowth in neurons from patients. Reduced neurite
outgrowth may alter axonal growth as well as the differ-
entiation of presynaptic and postsynaptic components,
and consequently may lead to alteration of short-range
and long-range neuronal connectivity.
ASD are neurodevelopmental disorders characterized

by deficits in social cognition, communication, and be-
havior as well as moderate to severe mental retardation.
ASD have a complex genetic basis, with hundreds of
identified candidate genes which cannot be individually
responsible for ASD clinical features and cellular pheno-
types. This complexity has led to considerable effort to
identify functional pathways that may reveal cellular
connections between the candidate genes. Among these,
the glutamatergic pathway includes genes that, once mu-
tated, are thought to be responsible for both syndromic
and non-syndromic ASD [19]. Indeed, ASD present with
alterations in the brain cortex and its development and
morphological organization and the brain’s short-range
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and long-range connectivity [20]. For example, an abnor-
mal connectivity between the cerebellum and the entire
cerebral cortex has recently been shown using fMRI
brain imaging [21]. The development and maintenance
of neuronal networks depend on differentiation of neu-
rons and axonal outgrowth as well as dendrite branch-
ing. We have shown that these processes are controlled
differently by cell-adhesion molecules such as contactin
4 (CNTN4), contactin 5 (CNTN5), and contactin 6
(CNTN6) proteins [22]. Among the genes which code
for CNTN4–6, we have demonstrated that CNTN6 is a
susceptibility gene for ASD [23]. Alterations in the for-
mation of neural networks that are controlled by
CNTN6 may underlie the cognitive, sensory, and motor
deficits that we observe in autistic patients carrying
CNTN6 coding variants [22].

Modeling shankopathies using human iPSC-derived
neurons
Among the mutated genes in ASD, the SHANK genes
offer one of the best possibilities to explore the core
symptoms of these disorders by analyzing the cellular
defects that are associated with mutations in them. The
major SHANK family genes involved in ASD include
SHANK1, SHANK2, and SHANK3. SHANK genes en-
code scaffolding proteins present at the postsynaptic
density of excitatory synapses. The first report on spe-
cific SHANK3 mutations was provided by our laboratory
[24]. Further investigations have clearly demonstrated
the role of all SHANK genes in ASD [1]. The involve-
ment of SHANK3 as a causal gene in ASD was observed
in 0.7% of patients in large cohorts, with different types
of mutations including microdeletions, point mutations,
and stop mutations [1]. SHANK3 is also associated with
behavioral phenotypes of the 22q13 deletion syndrome
[25, 26]. Human iPSC have been generated from patients
with heterozygous deletions of chromosome 22q13.3.
Derived neurons displayed reduced SHANK3 expression
and major defects in their excitatory but not inhibitory
synaptic transmission [17]. These findings strongly sug-
gest that a disruption of the excitatory/inhibitory balance
occurs in the brain of patients with PMS. Kathuria and
colleagues [27] differentiated iPSC from two patients
with ASD carrying microdeletions of SHANK3 into ei-
ther cortical or olfactory placodal neurons. These au-
thors showed that placodal neurons had a reduced
number of synapses compared with control neurons.
The young postmitotic neurons also had reduced cell
bodies with higher neuronal arborization. These two de-
velopmental phenotypes were specific to placodal neu-
rons and were not observed in iPSC-derived cortical
neurons. The morphogenetic deficits were rescued by
genome editing techniques [27]. The iPSC model has
also been used in patients with ASD presenting de novo

point truncating mutations in the SHANK3 gene; under the
experimental conditions, pyramidal excitatory neurons
accounted for more than 80% of cortical neurons [28]. In a
subsequent study and under similar experimental condi-
tions, these authors were able to evaluate and reverse the
neuronal dysfunctions in two individuals with de novo point
mutations in the SHANK3 gene [29], namely decreased
neurite length and branching and spontaneous calcium os-
cillations. In addition, the authors found that lithium as well
as valproic acid and fluoxetine increased the SHANK3
mRNA and protein levels in a concentration-dependent
manner [29]. SHANK3 is expressed at neuronal excitatory
synapses and forms protein complexes [30] which may con-
tribute to ASD phenotypes when they are broken up.
SHANK3 interactomes are expressed at single-spine level
[31], which also receive neuronal excitation inputs. For the
analysis of spine densities, most studies using animal
models have been performed in two dimensions, which
may not totally reflect the asymmetric morphology of di-
verse spine categories. Regarding ASD and human iPSC
models, none of the published data have so far described a
quantitative analysis of spinogenesis in patients with
SHANK3 mutations. Using the same protocol and human
iPSC lines described by Darville and colleagues [29], we
established a method which allows the quantification of
spine morphology in three dimensions [32]. The shape of
dendritic spines and volume vary according to the stage of
their maturation. Mature spines are usually characterized by
a larger head and a thin neck, whereas immature spines are
thinner with a poorly defined head with small postsyn-
aptic densities. We found the latter category to be pre-
dominant in human iPSC-derived pyramidal neurons
from individuals without ASD-related disorders (un-
published observations). We are undertaking an exten-
sive analysis of spinogenesis in a subset of patients
carrying different de novo SHANK3 point mutations to
evaluate the inter-individual variability. This aspect is
still lacking so far, since most studies have been con-
ducted using cells reprogrammed from a few patients
only.

Main pitfalls using human iPSC cells in vitro
iPSC culture systems can offer an almost unlimited
source of neurons for fundamental research on the first
stages of neural development and for pharmacological
screening. However, this model presents some limita-
tions. Indeed, reprogramming of somatic cells through
the expression of the four Yamanaka transcription fac-
tors, OCT4, KLF4, SOX2, and cMYC, has been shown to
be asynchronous and have low efficiency. The rate of cell
reprogramming also depends on donor cell types and
culture conditions [33]. Different models have been pro-
posed to analyze the reprogramming processes and the
roles of transcription factors and epigenetic regulators
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[34]. To circumvent these problems, various methods
have been developed in order to study reprogramming
dynamics under more unified frameworks [35]. Alterna-
tive reprogramming protocols have also been proposed
that are based on the use of synthetic capped mRNAs
containing modified nucleobases (mod-mRNA) [36].
However, these methods do not seem to be efficient
enough for the accurate reprogramming of human pri-
mary fibroblasts. A new, optimized method [37] which
combines mod-mRNA with reprogramming factors to-
gether with improved cell culture conditions is encour-
aging and seems to provide an alternative approach for
reprogramming of human fibroblasts in the case of ASD
and related syndromes. New protocols have also been
developed for improving the differentiation and matur-
ation of iPSC-derived neurons [38].
When analyzing data from human iPSC-derived neu-

rons in vitro, focusing on two-dimensional cell cultures
often derived from one single cell type at a time may
lead to an underestimation of cellular defects. For ex-
ample, recent findings using the human iPSC model
clearly indicate that astrocytes play important role in
synaptogenesis and neuronal morphology [39]. The low
efficiency of cell reprogramming observed so far has ren-
dered the simultaneous derivation of distinct isogenic
cell types from the same human iPSC much more diffi-
cult. The co-culture of several isogenic cell types, includ-
ing distinct neuronal and microglial cells, would
represent a significant improvement for studying ASD
and its related disorders.
Finally, in vitro systems do not allow the reproduction

of global cellular homeostasis and cell orientation and
projections within the distinct cortical layers. It is also not
clear to what extent the immature neurons that are pro-
duced in vitro recapitulate the diverse steps of neurogen-
esis. Interestingly, Imaizumi and colleagues [40] developed
specific culture systems to control the identity of derived
neuronal cells along the anteroposterior and dorsoventral
axes. New protocols including three-dimensional culture
systems [41] and brain organoids [42, 43] have been devel-
oped for iPSC models. Brain organoids consist of cellu-
lar aggregates derived from human embryonic stem
cells (ESC) and iPSC. They may represent new in
vitro systems with an oriented cell organization. De-
pending on the cell line and the number of passages,
however, the brain organoids can be variable. Conse-
quently, the development of brain organoids remains
a challenging process due to the complexity of neur-
onal phenotypes and circuitry. So far, no method can
provide a full reproduction of the phenotypic brain
environment in vivo and the exact characteristics of
developmental disorders due to the absence of a
wide variety of conditions, including vascularization,
nutrients, and specific developmental cues and

signals. Human brain organoids are reviewed else-
where in more detail [44, 45].

Reconstruction of brain circuitry using neural
transplants generated from iPSC
As discussed above, the main features of brain cortical de-
velopment cannot be reproduced using in vitro models.
Neurodevelopmental disorders are currently associated
with cognitive dysfunctions, with the neocortex underlying
high cognitive functions in humans. For this reason, cortical
neuronal subtypes such as pyramidal glutamatergic cells
have been predominantly used in vitro [15, 17, 28, 29, 46].
For neurodevelopmental disorders, including ASD, de-

fects in neuronal connectivity have been associated with
increased local and reduced long-range connectivity as
discussed above. One interesting aspect is the fact that
an early neurodevelopmental dysfunction in single sub-
cortical regions may modify the cerebral networks
underlying early sensory-motor impairments and social
deficits, including those observed in ASD [47]. The re-
construction of brain circuitry can be partially achieved
by transplantation of human neurons generated from
iPSC into mouse brain [48–52]. Since the early studies,
significant progress has been made. Espuny-Camacho
and colleagues [48] showed that ESC and iPSC can re-
capitulate corticogenesis and lead to sequential gener-
ation of functional pyramidal cells when grafted into
mouse brain in vivo. In addition, these authors have
demonstrated that, with regard to differentiation and
connectivity, transplanted cells extend their ramifica-
tions over several months and constitute functional
synapses with the host neuronal circuits [48]. Trans-
plantation of neural precursors in mouse brain can be
performed without a preliminary period of in vitro cul-
ture to allow cells to fully differentiate. Under such con-
ditions, a post-characterization of cell phenotypes is
necessary to clearly identify neurons from other
iPSC-derived cells, such as oligodendrocytes and astro-
cytes. One key aspect resides in the fact that cortical
pyramidal neurons derived from mouse or human iPSC
follow species-specific maturation processes after their
transplantation into mouse brain. Michelson and col-
leagues [49] also demonstrated that maturation of hu-
man ESC/iPSC takes 9 months post-transplantation and
maintains the chronology of developmental steps for a
given species. Using a similar approach, these authors
derived neurons from mouse ESC in vitro which could
be identified as those from visual cortex. The resulting
neurons were then transplanted successfully into le-
sioned adult mouse visual cortex [49]. A possible rescue
of the damaged pathways, including long-range and re-
ciprocal axonal projections with appropriate synapses,
was also observed [49]. Moreover, electrophysiological
recordings were used to show that grafted neurons were
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responsive to visual stimuli [49]. Such an approach has
not been tested with human iPSC. Nagashima and col-
leagues [50] developed a method consisting of an in
utero transplantation system of pluripotent ESC based
on a mild dissociation of adherens junctions in neuro-
epithelial tissue. Transplanted cells migrated from the
subventricular zone to the cortical plate and, after only
several days, presented the morphology of immature
pyramidal cells [50]. To our knowledge, this method has

not yet been used for the iPSC model. In their recent
study, Falkner and colleagues [51] used chronic in vivo
two-photon imaging to study the integration of mouse
transplanted neurons into existing circuits of the mouse
visual cortex [51]. After 2–3 months, the transplanted
neurons were fully integrated, with functional properties
indistinguishable from those of the pre-existing neuronal
networks [51]. Functional imaging of grafted neurons
into mouse brain represents an advantage compared to

Fig. 1 Main experimental designs for human iPSC models of monogenic neurodevelopmental disorders. a Patient’s specific iPSC are derived from
fibroblasts using the four Yamanaka’s factors. Genome engineering using the CRISPR/Cas9 method allows the reversion of phenotypic defects by
re-introducing the wild-type allele into the genome of iPSC lines. The CRISPR/Cas9 method also allows introduction of the mutation under study
directly into the genome of control iPSC lines in order to compare visually similar phenotypes to those seen in the iPSC from patients. Both non-
edited and isogenic iPSC are differentiated into the affected neuronal subtypes, mostly pyramidal cortical neurons in the case of cognitive
disorders. b Viable neurons can be maintained in culture up to 70 days after the differentiation of neural stem cells (NSC). The transduction of
neuronal cells with a green fluorescent protein (GFP)-lentivirus allows their visualization and phenotypic characterization using fluorescence
microscopy. A GFP-labeled pyramidal neuron 40-45 days after the differentiation of NSC. c Neuronal precursors or neurons fully differentiated in
vitro are transplanted into the brain of mouse neonates. The visualization of fluorescent neurons is done using fluorescent microscopy on brain
slices. A transplanted GFP-labeled pyramidal neuron is illustrated at 40–50 days post-injection (picture from our experiments). Mice are
maintained up to 9 months of age after grafting. d Comparative information and main therapeutics perspectives provided by the use of iPSC-
derived neurons in vitro vs in vivo
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anatomical methods. This approach has not yet been
used in the case of human neurons derived from pa-
tients with neurodevelopmental disorders. Figure 1 illus-
trates disease modeling using both in vitro and in vivo
human iPSC models, independently or in a complemen-
tary manner. Figure 1 also represents the possible intro-
duction of a genetic mutation by genome editing
techniques such as CRISPR/Cas9 [53, 54] and/or the re-
version of cellular phenotypic alterations found in mono-
genic disorders. The recent work by Wuttke and
colleagues [52] is promising. Using an optogenetics-based
electrophysiology approach, these authors demonstrated
that developmentally “primed” cortical neurons can main-
tain their precise pattern of differentiation and regional
connectivity after transplantation, with the develop-
ment of appropriate long-distance projections and
synapses. Reconstruction of the neonatal circuitry
may be possible by the micro-transplantation of
primed cortical neurons. Finally, methods for volume
imaging of optically transparent brain tissues should
offer new possibilities for the analysis of brain
circuits.
The recent work by Mansour and colleagues is quite

[54] promising. These authors have developed a method
which consists of grafting human brain organoids into
the adult mouse brain. They observed vascularized and
functional intra-graft neuronal networks as well as
graft-to-host synaptic connectivity. Together with on-
going technological improvements [45], grafting human
brain organoids into mouse brain should represent an
accurate alternative method to model a wide range of
neurodevelopmental disorders, including ASD.

Conclusions
The effective integration of transplanted cells that mature
into neuronal subtypes together with appropriate
long-range connectivity within critical regions such as
brain cortex should allow the functional reconstruction of
cortical circuitry over time. In addition, advances in gen-
ome editing technologies allow the genetic manipulation
of iPSC in a site-specific manner. Combined with a circuit
level analysis, such approaches should provide new plaus-
ible models to study human neurodevelopmental diseases
and additional opportunities for future drug development.
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