

Large Nationwide Outbreak of Invasive Listeriosis Associated with Blood Sausage, Germany, 2018–2019

Sven Halbedel, Hendrik Wilking, Alexandra Holzer, Sylvia Kleta, Martin A Fischer, Stefanie Lüth, Ariane Pietzka, Steliana Huhulescu, Raskit Lachmann, Amrei Krings, et al.

► To cite this version:

Sven Halbedel, Hendrik Wilking, Alexandra Holzer, Sylvia Kleta, Martin A Fischer, et al.. Large Nationwide Outbreak of Invasive Listeriosis Associated with Blood Sausage, Germany, 2018–2019. Emerging Infectious Diseases, 2020, 26 (7), pp.1456-1464. 10.3201/eid2607.200225. pasteur-02890239

HAL Id: pasteur-02890239 https://pasteur.hal.science/pasteur-02890239

Submitted on 6 Jul 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

1	RESEARCH
---	----------

sausage consumption, Germany 2018-2019

5	
6	Sven Halbedel ^{1,*,§} , Hendrik Wilking ^{2,*} , Alexandra Holzer ² , Sylvia Kleta ³ , Martin A.
7	Fischer ¹ , Stefanie Lüth ^{3,4} , Ariane Pietzka ⁵ , Steliana Huhulescu ⁵ , Raskit Lachmann ² , Amrei
8	Krings ^{2,6} , Werner Ruppitsch ⁵ , Alexandre Leclercq ⁷ , Rolf Kamphausen ⁸ , Maylin
9	Meincke ^{2,6,9} , Christiane Wagner-Wiening ⁹ , Matthias Contzen ¹⁰ , Iris Barbara Kraemer ¹¹ ,
10	Sascha Al Dahouk ^{3,12} , Franz Allerberger ⁵ , Klaus Stark ^{2,#} , and Antje Flieger ^{1,#,§}
11	
12	¹ Robert Koch Institute, Wernigerode, Germany;
13	² Robert Koch Institute, Berlin, Germany;
14	³ German Federal Institute for Risk Assessment, Berlin, Germany;
15	⁴ Freie Universität Berlin, Berlin, Germany;
16	⁵ Austrian Agency for Health and Food Safety, Vienna, Austria;
17	⁶ European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden;
18	⁷ Institut Pasteur, Paris, France;
19	⁸ Ministry for Environment, Agriculture, Conservation and Consumer Protection of the State of
20	North Rhine-Westphalia, Düsseldorf, Germany;
21	⁹ State Health Office Baden-Wuerttemberg, Stuttgart, Germany;

Exceptionally large and country-wide outbreak of invasive listeriosis associated with blood

- ¹⁰ Chemical and Veterinary Investigations Office, Fellbach, Germany;
- ¹¹ Bavarian Health and Food Safety Authority, Oberschleißheim, Germany;
- 24 ¹² RWTH Aachen, Aachen, Germany

25

²⁶ * These two authors contributed equally to this work.

[#] These two authors contributed equally to this work

28

29 [§] Corresponding authors:

30

31 <u>Sven Halbedel</u>, e-mail: <u>halbedels@rki.de</u>, phone: +49-(0)30-18754-4323, fax: +49-(0)30-18754-

32 4207, address: FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch

33 Institute, Burgstrasse 37, 38855 Wernigerode, Germany;

34 Antje Flieger, e-mail: fliegera@rki.de, phone: +49-(0)30-18754-2522, fax: +49-(0)30-18754-

35 4207, address: FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch

36 Institute, Burgstrasse 37, 38855 Wernigerode, Germany;

37

38 Article Summary Line: Whole genome sequencing based pathogen surveillance detected one of

the largest listeriosis outbreaks documented in Europe in 25 years.

40 **Running title:** Large listeriosis outbreak in Germany

41 Keywords: Listeriosis, outbreak, public health, molecular surveillance, whole genome

42 sequencing

- 43
- 44 Abstract: 150 words

45

46 **Text:** 3151 words

48 ABSTRACT

49

50 Invasive listeriosis is a severe food-born infection in humans with increasing incidence world-51 wide. The disease is difficult to control from the public health perspective, but molecular surveillance programs have been implemented by different countries for improving recognition 52 and management of listeriosis outbreaks. Routine whole genome sequencing (WGS), core 53 54 genome multi locus sequence typing (cgMLST) and single nucleotide polymorphism (SNP) calling were used for subtyping of L. monocytogenes isolates from listeriosis cases and suspected 55 56 foods in Germany. This identified an unusually large cluster of L. monocytogenes isolates with 57 134 highly clonal, benzalkonium-resistant ST6 isolates collected in 2018-2019 and allocated to 58 112 notified listeriosis cases. Epidemiological investigations identified blood sausage as the 59 outbreak vehicle, which was contaminated with isolates highly related to the clinical isolates. Withdrawal of the product from the market ended the outbreak. This cluster represents one of the 60 61 largest European outbreaks of invasive listeriosis in the last 25 years.

62 INTRODUCTION

64	Listeriosis is a severe, mainly foodborne human infection associated with high case fatalities and
65	hospitalization rates when compared to other bacterial gastrointestinal pathogens (1). The
66	causative agent, Listeria monocytogenes, occurs ubiquitously in the environment and
67	disseminates into the food production chain. Patients develop either self-limiting non-invasive
68	gastroenteritis (2, 3) or invasive listeriosis. Listeriosis affects mainly elderly,
69	immunocompromised patients and pregnant women, causing a severe invasive form of the
70	disease leading to sepsis, meningitis, and encephalitis or neonatal infections, and miscarriage (4).
71	Case fatality rates of invasive listeriosis are around 30% for neurolisteriosis and even higher in
72	septic patients (5). In Europe and North America, invasive listeriosis affects 0.3-0.6 patients per
73	100,000 inhabitants per year (6, 7).
74	L. monocytogenes forms hard-to-remove biofilms in food-processing plants, can acquire
75	tolerance to sanitizers and multiplies even at refrigeration temperatures (8). These properties
76	complicate efficient prevention of L. monocytogenes contaminations in different types of ready-
77	to-eat products: dairy, meat and fish as well as in fruits and vegetables, all of which have caused
78	listeriosis outbreaks in the past (9-12).
79	Outbreaks of listeriosis are difficult to control for several reasons: First, case numbers are low,
80	impairing the generation of valid hypotheses on possible food sources through patient interviews.
81	Second, incubation time can be lengthy (1-67 days) (13), and patients are often seriously ill,
82	further complicating patient interviews. Third, the large variety of possible food sources makes
83	pinpointing through patient interviews and the follow-up tracing of food difficult. Moreover,
84	listeriosis outbreaks can be geographically widespread due to long-distance food trade
85	connections, e-commerce, and traveling, thus hampering outbreak recognition by local authorities

86 (10, 14, 15). Finally, listeriosis outbreaks can be protracted and may last for several years (16),
87 making it difficult to identify affected patient groups correctly and to allocate the common source
88 of infection.

89 Nationwide systematic collection of L. monocytogenes isolates from human listeriosis cases and their subtyping using high-resolution WGS-based typing techniques allows for rapid and reliable 90 detection of outbreak clusters (3, 17-22), some of which were not detectable in the past. At the 91 same time, systematic and on-demand typing of food-associated L. monocytogenes isolates assists 92 93 in detecting outbreak sources. In a recent French molecular surveillance study, one-third of all 94 isolates were grouped into WGS clusters and the majority of these clusters contained less than 5 isolates (20). Larger outbreaks of invasive listeriosis occur, although infrequently, and two of the 95 world's largest outbreaks in the recent past included 147 cases in a multi-state US outbreak 96 (2011) associated with cantaloupe melons (10) and 1,060 cases in a South African outbreak 97 (2017-2018) associated with French polony sausage (11). Since August 2019, Spain has been 98 99 experiencing another large listeriosis outbreak (23). However, the scientific evaluation of this 100 outbreak needs to be awaited.

Here we present an exceptionally large nation-wide outbreak with 134 laboratory-confirmed
isolates allocated to 112 patients with epidemiological investigations and complementary WGSbased typing of food isolates identifying the outbreak vehicle. This outbreak represents one of the
largest outbreaks of invasive listeriosis in Europe documented in the scientific literature during
the last 25 years.

106 M	ETHODS AND	MATERIALS
-------	------------	-----------

107

- 108 Bacterial strains and growth conditions.
- 109 All 184 L. monocytogenes isolates are listed in Table S1. L. monocytogenes strains were routinely
- 110 cultured at 37°C in brain heart infusion (BHI) broth, on BHI or sheep blood agar plates.

111

112 Isolation of food isolates

- 113 Detection and enumeration of *L. monocytogenes* from food samples was performed according to
- 114 EN ISO 11290 parts 1 and 2. The species was confirmed according to ISO standard 11290-

115 1:2017 or MALDI-TOF-MS, and a previously described multiplex PCR (24).

116

117 Determination of molecular serogroups

118 The GenElute Bacterial Genomic DNA Kit (Sigma) or the QIAamp DNA Mini Kit (Qiagen) was

119 used to isolate chromosomal DNA. Molecular serogroups were determined by multiplex PCR

120 (25).

121

122 Genome sequencing, multi locus sequence typing (MLST) and core genome MLST

123 (cgMLST)

124 DNA was quantified using the Qubit dsDNA BR (or HS) Assay kit and Qubit fluorometers

125 (Invitrogen). Libraries were prepared using the Nextera XT DNA Library Prep Kit (Illumina).

- 126 Isolates were sequenced on MiSeq, HiSeq, or NextSeq sequencers. Raw reads were trimmed and
- assembled in SeqSphere using the Velvet assembler. *In silico* serogroups, MLST sequence types
- 128 (STs) and 1,701 locus cgMLST complex types (CTs) were extracted using the Ridom SeqSphere
- 129 Software through automated allele submission to the *L. monocytogenes* cgMLST server

(http://www.cgmlst.org/ncs/schema/690488/) (26). Coverage ranged between 22- and 116-fold
(median 54-fold). cgMLST clusters were defined as groups of isolates with ≤10 different alleles
between neighboring isolates. UGPMA trees were calculated in SeqSphere in the "pairwise
ignore missing values" mode.

134

135 SNP-based alignments

136 Mapping of sequencing reads, generation of consensus sequences, alignment calculation, and

137 SNP filtering (exclusion distance = 300) were performed using in-house pipelines (17). The 10-

138 092876-0769 LM12 genome (NZ_CP019625, serogroup IVb, ST6, CT6304) was used as

reference. Generation of maximum likelihood trees was performed using the Geneious 9.1.3 Tree

140 builder (Biomatters Ltd.) and the RAxML plugin.

141

142 Virulome and resistome analysis

143 Virulence and resistance genes of *L. monocytogenes* were included as target loci in SeqSphere
144 task templates as previously described (17, 27). Targets were extracted from assembled contigs
145 using SeqSphere, and alleles were considered to be present when identity was >90% and at least
146 99% of the reference sequence aligned with the query sequence.

147

148 Antibiotic susceptibility testing

Antibiotic susceptibility testing was performed by a microdilution assay in a 96 well plate format
in accordance with EUCAST guidelines in Mueller Hinton Fastidious (MH-F) broth (28). The
overall plate design was adopted from a study by Noll et al. (29).

153 Determination of tolerance to disinfectants

154 *L. monocytogenes* isolates were spread on BHI agar plates. Cellulose discs (6 mm in diameter) 155 were loaded with 10 μ l of a 10 mg/ml aqueous benzalkonium chloride solution and placed on top 156 of the agar plate. Plates were incubated overnight at 37°C and growth inhibition zone diameters 157 were determined. Statistical significance was tested by Student's *t*-test.

158

159 Case-control study

160 Outbreak cases were defined as patients reported to public health authorities and transmitted to 161 the Robert Koch Institute with disease onset between August 2018 and June 2019, with isolation of L. monocytogenes from normally sterile body fluids or in birth settings and confirmation by 162 cgMLST and SNP-analysis. L. monocytogenes isolates were sent to the Robert Koch Institute and 163 notification and typing data were merged for investigation. After identification of the outbreak, 164 patients were interviewed using a standardized questionnaire on food consumption during the two 165 weeks before the onset of illness, general eating habits, and food purchasing behaviors. Based on 166 167 these data, 40 food items were included in the case-control study. Controls were contacted and interviewed by a survey institute. The controls were frequency matched to the case patients for 168 age, gender and place of residence (federal state). Food items with p-value ≤0.05 that were 169 consumed by more than 50% of the subjects were considered for multivariable analysis. The 170 171 stepwise-backward approach for model formation was that food items, which were no longer significantly associated, were consecutively excluded from the multivariable model until only 172 173 significantly associated foods and their confounders remained. Risk measures (odds ratios, univariable and multivariable) were determined in the statistical analysis. 174

175

176 Data availability

- 177 Genome sequences are available at the European nucleotide archive (https://www.ebi.ac.uk/ena).
- 178 Accession numbers are listed in Table S1.

180 **Results**

181

182 Detection of a large human listeriosis cluster by molecular surveillance

183 The binational German-Austrian Consultant Laboratory for L. monocytogenes collects isolates from approximately two-thirds of all mandatorily-notified German listeriosis cases (701 cases in 184 2018), and sequences their genomes. cgMLST identified a phylogenetically diverse cluster 185 (designated "Epsilon1") with 46 PCR serogroup IVb isolates belonging to MLST ST6 and 186 187 cgMLST complex types (CT) 90, 2981, 3803, 3805, 3806, 3921, 4083, 4465, 6236, 6331, 7353, 188 and 7451, all defining specific allelic profiles within a CT threshold of ≤ 10 different alleles (17, 26). This cluster included isolates from 2011-2019 collected from all over Germany without any 189 190 apparent geographical concentration. Allelic distances between these isolates varied from 0-25 (median: 11). In autumn 2018, a sudden increase of CT4465 and CT7353 isolates belonging to 191 the Epsilon1 cluster was detected. Furthermore, the numbers of listeriosis cases reported in 192 193 calendar weeks 34-43, 46, 48, and 50 exceeded the median of the five previous years (Fig. S1). 194 To identify the outbreak clone among all incoming PCR serogroup IVb isolates, a clone-specific PCR was developed (supplementary information). Altogether, 134 clinical CT4465 and CT7353 195 isolates were collected between August 2018 and April 2019. These isolates formed a remarkably 196 homogenous cluster with only 0-5 (median: 0) different cgMLST alleles (Fig. 1). In contrast, two 197 198 earlier CT4465 isolates collected in June 2018 and July 2017 differed in 9-15 alleles (Fig. 1). Raw sequencing reads of all Epsilon1 strains were mapped against the 10-092876-0769 LM12 199 200 genome as the most closely related, completed genome available. SNP calling separated the Epsilon1 cluster into several sub-clusters, but all CT4465 and CT7353 isolates collected from 201 August 2018 onwards formed a single cluster (Fig. S2). This sub-cluster was named Epsilon1a, 202 and SNP distances within this cluster ranged between 0-3 SNPs (median: 0). The two earlier 203

CT4465 isolates were separated from the Epsilon1a cluster with 6-10 SNPs difference (median:
8). Thus, SNP calling supports the detection of a cluster of closely related CT4465 and CT7353
strains. Interestingly, only 21-29 cgMLST alleles (median 26) and 8-12 SNPs (median 8) differed
between the Epsilon1a clone and the South African outbreak strain (CT5886, Fig. 1, Fig. S2).

208

209 Description of the patient collective

The 134 isolates could be allocated to 112 patients according to the case definition. Initial cases 210 211 were reported in August 2018, with the outbreak peaking in September 2018 (Fig. 2A). The last case was notified in April 2019 (as of 25th March 2020). Cases occurred in 11 of 16 federal states 212 in Germany with the majority of the cases occurring in Western and Southern Germany (Fig. 2B). 213 This outbreak and the assembled genome of one representative isolate (isolate ID: 18-04540) 214 were communicated via the European Epidemic Intelligence Information System (EPIS) platform 215 on 23rd October 2018 (UI-516). France, as the only other country involved, reported an 216 Epsilon1a listeriosis patient who had travelled to Germany and purchased food there. Sequence 217 data of isolate 18-04540 was submitted to ENA (SAMEA5041142). The closest related isolate 218 219 available at the National Center for Biotechnology Information (NCBI) pathogen detection pipeline was a Dutch clinical isolate from 2016 with a SNP distance of 12, which was clearly 220 221 above the SNP distances observed within the Epsilon1a cluster. 222 There were 66 men (59%) among 111 non-pregnancy-associated outbreak patients. Seven patients died (6.3%), two of them with listeriosis as the primary cause. One Epsilon1a isolate 223 224 originated from a pregnant woman (0.9%). Gestational age and health outcome of the newborn were not reported. The remaining isolates came from adult patients aged 53-98 years (median 79 225 years). The age distribution was not noticeably different from other notified listeriosis cases. Of 226 the 134 Epsilon1a isolates, 99 were isolated from blood samples, 13 from cerebrospinal fluid, one 227

each from lymph nodes, ascites, sputum, pleura, joints, abscesses, or a superficial wound (TableS1). The type of isolation source for the remaining 15 isolates is not known.

230

231 **Properties of the outbreak clone**

Virulome analysis revealed the presence of Listeria pathogenicity island 1 (LIPI-1) in all 232 Epsilon1a outbreak isolates and detected the complete listeriolysin S-encoding pathogenicity 233 234 island LIPI-3 in 64% of them. In contrast, LIPI-4, encoding a putative phosphotransferase system 235 associated with neurolisteriosis (30), was not present (Fig. S3). The Epsilon1a clones carried the 236 same complement of internalin genes as other PCR serogroup IVb strains (Fig. S3). Susceptibility testing revealed sensitivity towards most clinically relevant antibiotics, however all tested isolates 237 were fully resistant to ceftriaxone and daptomycin (Tab. S2). This is consistent with the intrinsic 238 resistance of *L. monocytogenes* and the absence of additional resistance determinants, as 239 suggested by the resistome approach (Fig. 3A). Further resistome analysis demonstrated the 240 prevalence of the *emrC* gene associated with benzalkonium chloride tolerance (Fig. 3A). In full 241 242 agreement with this observation, increased tolerance of the Epsilon1a and Epsilon1 isolates to benzalkonium chloride was shown when compared to other ST6 or PCR serogroup IVb isolates 243 not belonging to the Epsilon1/1a clusters (Fig. 3B). 244

245

246 Investigations for identifying the outbreak vehicle

In our case-control study, 41 cases and 155 controls were included. A total of 40 out of 41 (98%) cases reported that they had purchased food in stores of one specific supermarket chain, in contrast to 99 out of 154 controls (odds ratio 22.5; p-value = 0.003, 95% CI: 2.9-174.9). Other supermarket chains were not associated with these cases. Thus, only cases and controls that had purchased food from this specific supermarket were included in further analyses. In the fourth calendar week of 2019, a strong association of cases with the consumption of minced meat (odds ratio of 42.4; p-value = 0.001, 95% CI: 4.3-415.4) and blood sausage (odds ratio of 23.1; p-value = <0.001, 95% CI: 4.3-123.5; Table 1) was detected. A total of 90% of the cases reported having consumed minced meat (45% of controls) and 80% of the cases blood sausage (23% of controls). There were no vegetarians among the cases.

257 In order to perform risk-oriented screening, food samples were collected in supermarkets and the households of some patients, according to the results of the epidemiological investigations. In one 258 259 case, L. monocytogenes could be detected in three open samples from a patient's refrigerator. 260 Among these, sliced blood sausage purchased at the incriminated supermarket chain showed the highest contamination (> $3x10^{6}$ CFU/g). This led to another round of intensified screening of 261 prepacked blood sausage. In calendar week 7 (2019), L. monocytogenes was found in an original 262 sealed package of sliced blood sausage (<10 CFU/g) and in a second blood sausage sample of the 263 same manufacturer. In total, five isolates from patients' households food items and from blood 264 sausage samples grouped with clinical Epsilon1a isolates after cgMLST (0-3 different alleles, 265 median=0) and SNP calling (0-2 SNPs, median=0) (Fig. 1, Fig. S2). The blood sausage was 266 produced by a big German meat and sausage manufacturer and sold in large parts of the country. 267 The product was withdrawn from the market on 12th February 2019, and the last clinical 268 Epsilon1a isolate was collected on 18th April 2019. In contrast, Epsilon1 isolates not belonging to 269 270 the Epsilon1a cluster caused disease even after the end of the Epsilon1a outbreak. The plant was cleaned and disinfected. Thereafter, L. monocytogenes was not detected in several hundred 271 272 official and ~2.500 own control samples taken from products or the production site.

273 **DISCUSSION**

274

The Epsilon1a outbreak is the largest outbreak of listeriosis ever identified in Germany and 275 276 represents one of the largest outbreaks of invasive listeriosis in Europe documented in more than 25 years. The last reported European outbreak of invasive listeriosis of the same order of 277 magnitude dates back to 1992-1993 when 247 patients were infected in France with a serotype 4b 278 clone that contaminated pork tongue in aspic (31). Cantaloupe melons were the vehicle in the 279 large US outbreak in 2011, which was caused by five different clones (10). In contrast, the single 280 281 clone causing the world's largest outbreak in South Africa showed strong clonality. The genomes of 326 isolates from this outbreak only differed in \leq 4 cgMLST alleles (11). Likewise, only a 282 283 single clone was associated with the Epsilon1a outbreak, and high clonality was observed among 284 its isolates. The mutation rate in the natural L. monocytogenes population is 2.6×10^{-7} substitutions/site/year (27) so that one SNP can be expected per year on average and genome for 285 L. monocytogenes strains under natural conditions. The high clonality could imply that the 286 287 outbreak clone may only have persisted in the production facility without rapid multiplication. Purchases in a particular supermarket chain and consumption of blood sausage were strongly 288 289 associated with listeriosis in the case-control study and the outbreak clone was identified in blood 290 sausage samples from a patient's household and from the incriminated supermarket chain. Blood 291 sausage is heat-treated during production, so contamination likely occurred post-production, possibly during slicing or packaging. The shelf-life of sliced blood sausage is short (several days 292 to few weeks) (32), and the amount of L. monocytogenes found in unopened blood sausage 293 samples was below the limit of 100 CFU/g. Storage beyond the anticipated shelf-life or 294 insufficient refrigeration might have allowed L. monocytogenes multiplication inside the vehicle; 295 296 this only could have been prevented by a zero tolerance policy. The type of the vehicle could also

explain the low number of pregnant women (1 out of 112) since typically pregnancy-related
listeriosis accounts for ~7% among all listeriosis cases (33): Pregnant women should be cautious
with sliced sausage according to official recommendations (34).

300 Analysis of the Epsilon1a genome has yielded some insights into the infectivity of this clone, as it belongs to sequence type ST6. L. monocytogenes ST6 clones were first isolated in 1990 (35), 301 caused various outbreaks in the past, including the large South African outbreak, and are 302 303 associated with an unfavorable outcome of meningitis (36). The Epsilon1a clone and the South-304 African outbreak strain are closely related. Thus, two descendants of the same historic L. 305 monocytogenes ancestor have spread globally and contaminated food production facilities on two different continents. The Epsilon1a clone carried the *emrC* gene, which is the presumable cause 306 of its increased benzalkonium chloride tolerance (37). Benzalkonium chloride was banned in the 307 EU as a disinfectant in 2016 (38), but its use in the past might have selected tolerant strains. 308 The identification of this outbreak and its vehicle resulted from an efficient collaboration between 309 public health and food safety authorities in Germany. Several requirements had to be met first for 310 311 successful outbreak clarification: (i) developing a mandatory notification system to facilitate systematic patient interviews with an efficient questionnaire to generate hypotheses on possible 312 food sources, (ii) implementing a WGS-based molecular surveillance program for reliable 313 314 identification of outbreak clusters by public health authorities, (iii) systematically collecting of 315 food isolates from internal controls and on-demand investigations and their subtyping using harmonized WGS-based methodology by food safety authorities, and (iv) continuously 316 317 exchanging information on outbreak clusters between the institutions involved. With these prerequisites at hand, the causative food vehicles for five out of the six biggest listeriosis clusters 318 that occurred in 2014-2019 in Germany have been identified, and it is questionable whether this 319 would have been possible in pre-WGS times. Nevertheless, routinely conducted interviews of 320

321	listeriosis cases regardless of outbreaks would probably have enabled a faster identification of the
322	outbreak vehicle. In our opinion the course of the Epsilon1a outbreak is a good example to
323	demonstrate how WGS-based pathogen surveillance combined with efficient interventions of the
324	involved stakeholders can improve management and prevention of foodborne infectious diseases
325	in general.
326	
327	Funding
328	
329	This project was supported by the intensified molecular surveillance initiative of the Robert Koch
330	Institute (2016-2018, to AF and KS, grant number: 832133) and grants of the German Ministry of
331	Health (to SH, grant number: ZMVI1-2518NIK703, and to AF and SK, grant number:
332	MolTypList). The funders had no role in study design, data collection and analysis, decision to
333	publish, or preparation of the manuscript.
334	
335	ACKNOWLEDGEMENTS
336	
337	We are grateful to Andrea Thürmer for sequencing support and would like to thank Birgitt Hahn
338	and Simone Dumschat for excellent technical assistance, and Yvonne Pfeiffer for help with some
339	experiments. We thank Karan Gautam Kaval for the critical reading of the manuscript.
340	
341	BIOGRAPHICAL SKETCH
342	
343	PD Dr. Sven Halbedel is a molecular microbiologist in the Division of Enteropathogenic bacteria
344	and Legionella at the Robert Koch Institute in Wernigerode and is the deputy head of the German

- 345 consultant laboratory for *Listeria*. His research focuses on physiology, virulence and
- 346 epidemiology of *L. monocytogenes*.

347 **References**

348

Werber D, Hille K, Frank C, Dehnert M, Altmann D, Müller-Nordhorn J, et al. Years of potential
 life lost for six major enteric pathogens, Germany, 2004-2008. Epidemiology and infection. 2013
 May;141(5):961-8.

2. Ooi ST, Lorber B. Gastroenteritis due to *Listeria monocytogenes*. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2005 May 1;40(9):1327-32.

3. Halbedel S, Prager R, Banerji S, Kleta S, Trost E, Nishanth G, et al. A *Listeria monocytogenes* ST2 355 clone lacking chitinase ChiB from an outbreak of non-invasive gastroenteritis. Emerging Microbes & 356 Infections. 2019 2019/01/01;8(1):17-28.

Allerberger F, Wagner M. Listeriosis: a resurgent foodborne infection. Clin Microbiol Infect. 2010
 Jan;16(1):16-23.

S. Charlier C, Perrodeau E, Leclercq A, Cazenave B, Pilmis B, Henry B, et al. Clinical features and
 prognostic factors of listeriosis: the MONALISA national prospective cohort study. Lancet Infect Dis. 2017
 May;17(5):510-9.

de Noordhout CM, Devleesschauwer B, Angulo FJ, Verbeke G, Haagsma J, Kirk M, et al. The
global burden of listeriosis: a systematic review and meta-analysis. Lancet Infect Dis. 2014
Nov;14(11):1073-82.

- 365 7. ECDC. Surveillance Atlas of Infectious Diseases. 2018 [cited 2020 16.03.2020]; Available from:
 366 <u>https://atlas.ecdc.europa.eu/public/index.aspx</u>.
- Ferreira V, Wiedmann M, Teixeira P, Stasiewicz MJ. *Listeria monocytogenes* persistence in food associated environments: epidemiology, strain characteristics, and implications for public health. J Food
 Prot. 2014 Jan;77(1):150-70.
- 370 9. Swaminathan B, Gerner-Smidt P. The epidemiology of human listeriosis. Microbes Infect. 2007
 371 Aug;9(10):1236-43.
- McCollum JT, Cronquist AB, Silk BJ, Jackson KA, O'Connor KA, Cosgrove S, et al. Multistate
 outbreak of listeriosis associated with cantaloupe. N Engl J Med. 2013 Sep 5;369(10):944-53.
- 11. Smith AM, Tau NP, Smouse SL, Allam M, Ismail A, Ramalwa NR, et al. Outbreak of *Listeria monocytogenes* in South Africa, 2017-2018: Laboratory Activities and Experiences Associated with Whole-Genome Sequencing Analysis of Isolates. Foodborne Pathog Dis. 2019 Jul;16(7):524-30.
- Stephana R, Althausa D, Kiefer S, Lehner A, Hatz C, Schmutz C, et al. Foodborne transmission of
 Listeria monocytogenes via ready-to-eat salad: A nationwide outbreak in Switzerland, 2013–2014. Food
 Control. 2015;57:14 7.
- 380 13. Goulet V, King LA, Vaillant V, de Valk H. What is the incubation period for listeriosis? BMC
 381 infectious diseases. 2013;13:11.
- 14. Heiman KE, Garalde VB, Gronostaj M, Jackson KA, Beam S, Joseph L, et al. Multistate outbreak of
- listeriosis caused by imported cheese and evidence of cross-contamination of other cheeses, USA, 2012.
 Epidemiology and infection. 2016 Oct;144(13):2698-708.
- 15. EFSA E. Multi-country outbreak of *Listeria monocytogenes* sequence type 8 infections linked to consumption of salmon products Stockholm and Parma: ECDC/EFSA, 2018 25.10.2018. Report No.
- 16. Ruppitsch W, Prager R, Halbedel S, Hyden P, Pietzka A, Huhulescu S, et al. Ongoing outbreak of invasive listeriosis, Germany, 2012 to 2015. Euro Surveill. 2015;20(50).
- Halbedel S, Prager R, Fuchs S, Trost E, Werner G, Flieger A. Whole-genome sequencing of recent
 Listeria monocytogenes isolates from Germany reveals population structure and disease clusters. Journal
 of Clinical Microbiology. 2018;56(6):e00119-18.

18. Kleta S, Hammerl JA, Dieckmann R, Malorny B, Borowiak M, Halbedel S, et al. Molecular Tracing
to Find Source of Protracted Invasive Listeriosis Outbreak, Southern Germany, 2012-2016. Emerging
infectious diseases. 2017 Oct;23(10):1680-3.

Jackson BR, Tarr C, Strain E, Jackson KA, Conrad A, Carleton H, et al. Implementation of
 Nationwide Real-time Whole-genome Sequencing to Enhance Listeriosis Outbreak Detection and
 Investigation. Clinical infectious diseases : an official publication of the Infectious Diseases Society of
 America. 2016 Aug 01;63(3):380-6.

Moura A, Tourdjman M, Leclercq A, Hamelin E, Laurent E, Fredriksen N, et al. Real-Time Whole Genome Sequencing for Surveillance of *Listeria monocytogenes*, France. Emerging infectious diseases.
 2017 Sep;23(9):1462-70.

402 21. Kwong JC, Mercoulia K, Tomita T, Easton M, Li HY, Bulach DM, et al. Prospective Whole-Genome
403 Sequencing Enhances National Surveillance of *Listeria monocytogenes*. J Clin Microbiol. 2016
404 Feb;54(2):333-42.

Chen Y, Gonzalez-Escalona N, Hammack TS, Allard MW, Strain EA, Brown EW. Core Genome
 Multilocus Sequence Typing for Identification of Globally Distributed Clonal Groups and Differentiation of
 Outbreak Strains of *Listeria monocytogenes*. Appl Environ Microbiol. 2016 Oct 15;82(20):6258-72.

WHO. Listeriosis - Spain, Disease outbreak news. WHO; 2019 [updated 16.09.2019; cited 2019
01.10.2019]; Available from: <u>https://www.who.int/csr/don/16-september-2019-listeriosis-spain/en/</u>.

410 24. Bubert A, Hein I, Rauch M, Lehner A, Yoon B, Goebel W, et al. Detection and differentiation of
411 *Listeria* spp. by a single reaction based on multiplex PCR. Appl Environ Microbiol. 1999 Oct;65(10):4688412 92.

413 25. Kerouanton A, Marault M, Petit L, Grout J, Dao TT, Brisabois A. Evaluation of a multiplex PCR
414 assay as an alternative method for *Listeria monocytogenes* serotyping. J Microbiol Methods. 2010
415 Feb;80(2):134-7.

416 26. Ruppitsch W, Pietzka A, Prior K, Bletz S, Fernandez HL, Allerberger F, et al. Defining and
417 Evaluating a Core Genome Multilocus Sequence Typing Scheme for Whole-Genome Sequence-Based
418 Typing of *Listeria monocytogenes*. J Clin Microbiol. 2015 Sep;53(9):2869-76.

419 27. Moura A, Criscuolo A, Pouseele H, Maury MM, Leclercq A, Tarr C, et al. Whole genome-based
420 population biology and epidemiological surveillance of *Listeria monocytogenes*. Nat Microbiol. 2016 Oct
421 10;2:16185.

422 28. EUCAST. Breakpoint tables for interpretation of MICs and zone diameters, Version 9.0 European
423 Committee on Antimicrobial Susceptibility Testing; 2019 [updated 01.01.2019; cited 2019 05.12.2019];
424 Available from:

425 <u>http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_9.0_Breakpoint_T</u>
 426 <u>ables.pdf</u>.

427 29. Noll M, Kleta S, Al Dahouk S. Antibiotic susceptibility of 259 *Listeria monocytogenes* strains
428 isolated from food, food-processing plants and human samples in Germany. J Infect Public Health. 2018
429 Jul - Aug;11(4):572-7.

430 30. Maury MM, Tsai YH, Charlier C, Touchon M, Chenal-Francisque V, Leclercq A, et al. Uncovering
 431 *Listeria monocytogenes* hypervirulence by harnessing its biodiversity. Nat Genet. 2016 Mar;48(3):308-13.

- 432 31. Jacquet C, Catimel B, Brosch R, Buchrieser C, Dehaumont P, Goulet V, et al. Investigations related
 433 to the epidemic strain involved in the French listeriosis outbreak in 1992. Appl Environ Microbiol. 1995
 434 Jun;61(6):2242-6.
- 435 32. Pereira JA, Silva P, Matos TJ, Patarata L. Shelf life determination of sliced Portuguese traditional
 436 blood sausage--Morcela de Arroz de Monchique through microbiological challenge and consumer test.
 437 Journal of food science. 2015 Mar;80(3):M642-8.

438 33. Allerberger F, Huhulescu S. Pregnancy related listeriosis: treatment and control. Expert Rev Anti
439 Infect Ther. 2015 Mar;13(3):395-403.

440 34. Bundesanstalt für Landwirtschaft und Ernährung. Listeriose und Toxoplasmose - Sicher essen in
441 der Schwangerschaft. 2017 [cited 2019 17.12.2019]; Available from: <u>https://www.ble-</u>
442 <u>medienservice.de/frontend/esddownload/index/id/513/on/0346 DL/act/dl</u>.

443 35. Cantinelli T, Chenal-Francisque V, Diancourt L, Frezal L, Leclercq A, Wirth T, et al. "Epidemic 444 clones" of *Listeria monocytogenes* are widespread and ancient clonal groups. J Clin Microbiol. 2013 445 Nov;51(11):3770-9.

Koopmans MM, Brouwer MC, Bijlsma MW, Bovenkerk S, Keijzers W, van der Ende A, et al. *Listeria monocytogenes* sequence type 6 and increased rate of unfavorable outcome in meningitis:
epidemiologic cohort study. Clinical infectious diseases : an official publication of the Infectious Diseases
Society of America. 2013 Jul;57(2):247-53.

450 37. Kremer PH, Lees JA, Koopmans MM, Ferwerda B, Arends AW, Feller MM, et al. Benzalkonium 451 tolerance genes and outcome in *Listeria monocytogenes* meningitis. Clin Microbiol Infect. 2017 452 Apr;23(4):265 e1- e7.

453 38. European Union. COMMISSION IMPLEMENTING DECISION (EU) 2016/1950 of 4 November 2016
454 on the non-approval of certain biocidal active substances pursuant to Regulation (EU) No 528/2012
455 of the European Parliament and of the Council. Official Journal of the European Union2016. p. 16-20.

456 39. Kropac AC, Eshwar AK, Stephan R, Tasara T. New Insights on the Role of the pLMST6 Plasmid in 457 *Listeria monocytogenes* Biocide Tolerance and Virulence. Frontiers in microbiology. 2019;10:1538.

458

459

460

462	FIGURE LEGENDS
-----	-----------------------

464	Figure 1: Identification of the Epsilon1a outbreak cluster by cgMLST.
465	UPGMA tree calculated using cgMLST data of Epsilon1 isolates (red) and the Epsilon1a sub-
466	cluster (green - clinical isolates, blue - food isolates). Two earlier CT4465 isolates (July 2017 and
467	June 2018) not belonging to Epsilon1a are shown in pink. Strain 10-092876-0769 LM12 (used as
468	reference genome for SNP calling) shown in Fig. S2 is included for comparison (black). South
469	African outbreak isolates (11) are shown in orange.
470	
471	Figure 2: Spatial and temporal distribution of outbreak cases.
472	(A) Diagram showing the number of Epsilon1a isolates received by the consultant laboratory per
473	week. CW - calendar week. (B) Geographical distribution of laboratory-confirmed Epsilon1a
474	cases within Germany.
475	
475 476	Figure 3: Tolerance of Epsilon1a isolates to benzalkonium chloride.
475 476 477	Figure 3: Tolerance of Epsilon1a isolates to benzalkonium chloride. (A) Resistome analysis of clinical <i>L. monocytogenes</i> Epsilon1 and Epsilon1a isolates. Assembled
475 476 477 478	Figure 3: Tolerance of Epsilon1a isolates to benzalkonium chloride. (A) Resistome analysis of clinical <i>L. monocytogenes</i> Epsilon1 and Epsilon1a isolates. Assembled genome sequences were searched for genes known to confer resistance to sanitizers, heavy
475 476 477 478 479	Figure 3: Tolerance of Epsilon1a isolates to benzalkonium chloride. (A) Resistome analysis of clinical <i>L. monocytogenes</i> Epsilon1 and Epsilon1a isolates. Assembled genome sequences were searched for genes known to confer resistance to sanitizers, heavy metals, and antibiotics using a SeqSphere task template. Genomes of strains EGD-e
475 476 477 478 479 480	Figure 3: Tolerance of Epsilon1a isolates to benzalkonium chloride. (A) Resistome analysis of clinical <i>L. monocytogenes</i> Epsilon1 and Epsilon1a isolates. Assembled genome sequences were searched for genes known to confer resistance to sanitizers, heavy metals, and antibiotics using a SeqSphere task template. Genomes of strains EGD-e (NC_003210.1), L2624 (NZ_CP007686) FORC_049 (NZ_CP016629), 6179 (NZ_HG813249),
475 476 477 478 479 480 481	Figure 3: Tolerance of Epsilon1a isolates to benzalkonium chloride. (A) Resistome analysis of clinical L. monocytogenes Epsilon1 and Epsilon1a isolates. Assembled genome sequences were searched for genes known to confer resistance to sanitizers, heavy metals, and antibiotics using a SeqSphere task template. Genomes of strains EGD-e (NC_003210.1), L2624 (NZ_CP007686) FORC_049 (NZ_CP016629), 6179 (NZ_HG813249), LM201 (AYPT0000000), 2012-0070 (MNCF0000000), NCTC 10887 (MWLR0000000), 10-
475 476 477 478 479 480 481 482	Figure 3: Tolerance of Epsilon1a isolates to benzalkonium chloride. (A) Resistome analysis of clinical L. monocytogenes Epsilon1 and Epsilon1a isolates. Assembled genome sequences were searched for genes known to confer resistance to sanitizers, heavy metals, and antibiotics using a SeqSphere task template. Genomes of strains EGD-e (NC_003210.1), L2624 (NZ_CP007686) FORC_049 (NZ_CP016629), 6179 (NZ_HG813249), LM201 (AYPT00000000), 2012-0070 (MNCF00000000), NCTC 10887 (MWLR00000000), 10- 092876-0731 LM5 (NZ_CP019618), and 12754_4#74 (ERR564017) + pLMST6
475 476 477 478 479 480 481 482 483	Figure 3: Tolerance of Epsilon1a isolates to benzalkonium chloride.(A) Resistome analysis of clinical L. monocytogenes Epsilon1 and Epsilon1a isolates. Assembledgenome sequences were searched for genes known to confer resistance to sanitizers, heavymetals, and antibiotics using a SeqSphere task template. Genomes of strains EGD-e(NC_003210.1), L2624 (NZ_CP007686) FORC_049 (NZ_CP016629), 6179 (NZ_HG813249),LM201 (AYPT0000000), 2012-0070 (MNCF0000000), NCTC 10887 (MWLR0000000), 10-092876-0731 LM5 (NZ_CP019618), and 12754_4#74 (ERR564017) + pLMST6(Hx2000053471) were included for comparison. Abbreviations: QACs - quaternary ammonium
475 476 477 478 479 480 481 482 483 483	Figure 3: Tolerance of Epsilon1a isolates to benzalkonium chloride.(A) Resistome analysis of clinical <i>L. monocytogenes</i> Epsilon1 and Epsilon1a isolates. Assembledgenome sequences were searched for genes known to confer resistance to sanitizers, heavymetals, and antibiotics using a SeqSphere task template. Genomes of strains EGD-e(NC_003210.1), L2624 (NZ_CP007686) FORC_049 (NZ_CP016629), 6179 (NZ_HG813249),LM201 (AYPT0000000), 2012-0070 (MNCF0000000), NCTC 10887 (MWLR0000000), 10-092876-0731 LM5 (NZ_CP019618), and 12754_4#74 (ERR564017) + pLMST6(Hx2000053471) were included for comparison. Abbreviations: QACs - quaternary ammoniumcompounds, sm – streptomycin, cap – chloramphenicol, erm – erythromycin, fos – fosfomycin,

486	emrC gene is located on plasmid pLMST6, which is present in certain ST6 strains (39). Its
487	location on a plasmid may explain why it was not detected throughout the entire Epsilon1a
488	population due to plasmid loss. (B) Increased resistance of Epsilon1a and Epsilon1 isolates to
489	benzalkonium chloride. Three representative isolates belonging to human listeriosis clusters
490	Epsilon1a, Epsilon1, and distinct listeriosis clusters Lambda2 (ST2, CT2402), Pi3 (ST217,
491	CT5744) or Theta3 (ST249, CT4449) were tested for resistance to benzalkonium chloride by disc
492	diffusion. Three representative ST6 isolates, not belonging to Epsilon1, were also included.
493	Results of three independent replicates for all three isolates per group are shown. The asterisk
494	indicates statistically significant differences to Epsilon1a ($P \leq 0.01$, <i>t</i> -test).

- 496 **Table 1:** Results of multivariable analysis of food consumption from a case-control study during
- the Epsilon1a listeriosis outbreak, Germany 2018-2019. Only 40/41 cases and 99/155 controls
- that confirmed shopping at the incriminated supermarket chain were included.

Food item	Odds Ratios (multivariable*)	95% Confidence intervall	p-value
Minced meat	42.4	4.3-415.1	0.001
Blood sausage	23.1	4.3-123.5	<0.001
Cold cuts (roast pork / Kassler)	15.4	2.9-82.1	0.001
Edamer cheese	7.3	1.6-32.8	0.009
smoked ham [#]	0.06	0.0-0.4	0.003
hard cheese [#]	0.2	0.0-0.9	0.038

499 * adjusted for age, gender, geography (north/south).

[#] smoked ham and hard cheese are confounders for cold cuts and Edamer cheese.

501

Figure S1: Weekly numbers of notified German listeriosis cases during the outbreak period in comparison to minimal, median and maximal case numbers reported per week in Germany during the reference period 2013-2017.

Figure S2: Confirmation of the Epsilon1a outbreak cluster by SNP calling.

Maximum likelihood tree illustrating phylogenetic relatedness of the same set of isolates as in Figure 1 after read mapping to the genome of the *L. monocytogenes* serogroup IVb strain 10-092876-0769 LM12 (39) as the reference and SNP filtering.

Figure S3: Virulome analysis of *L. monocytogenes* Epsilon1 and Epsilon1a isolates.

Assembled genome sequences were searched for genes belonging to pathogenicity islands LIPI-1, LIPI-3 or LIPI-4, encoding internalins, or important for adhesion (adh.), invasion, intracellular survival, chitin hydrolysis (chi), gene regulation, protein anchoring to the cell surface (anch.), peptidoglycan modification (PM), immunomodulation (i) or bile resistance. Genomes of strains EGD-e (NC_003210.1), F2365 (NC_002973.6) and CLIP80459 (NC_012488.1) were included for comparison. The variability in the presence/absence of chromosomally encoded virulence genes within the highly clonal Epsilon1a cluster is likely not real and instead results from acceptance bias due to cut-off values used during allele calling.

1	Supplementary material for
2	
3	Exceptionally large and country-wide outbreak of invasive listeriosis associated with blood
4	sausage consumption, Germany 2018-2019
5	by
6	Sven Halbedel, Hendrik Wilking, Alexandra Holzer, Sylvia Kleta, Martin A. Fischer, Stefanie
7	Lueth, Ariane Pietzka, Steliana Huhulescu, Raskit Lachmann, Amrei Krings, Werner Ruppitsch,
8	Alexandre Leclerq, Rolf Kamphausen, Maylin Meincke, Christiane Wagner-Wiening, Matthias
9	Contzen, Iris Barbara Kraemer, Sascha Al Dahouk, Franz Allerberger, Klaus Stark, Antje Flieger
10	
11	Supplementary Methods: A diagnostic PCR for identification of the outbreak clone
12	
13	Table S1: L. monocytogenes isolates included in this study.
14	Table S2: Antimicrobial susceptibility in the Epsilon1a outbreak cluster
15	

16 A diagnostic PCR for identification of the outbreak clone

The median turn-around time (time from arrival of a sample in the consultant laboratory until 17 genome sequencing results) was 34.5 days in the course of this investigation. Therefore, we 18 19 searched for DNA regions specific for Epsilon1a isolates in order to identify Epsilon1a clones by PCR and to prioritize samples for genome sequencing and to initiate patient interviews without 20 delay. For this purpose, the contigs of three Epsilon1a isolates (target) and of 50 non-Epsilon1a 21 isolates of PCR serogroup IVb (non-target) were analyzed by the RUCS 1.0 algorithm, designed 22 23 to identify primer pairs for unique core sequences present in a target genome dataset and absent 24 in a set of non-target genomes. (1) This approach identified a 262 bp fragment specific for the 25 chosen target genomes that could be amplified using the primers Eps-1-fw (AGTCGTCTTTAGTGCGCTGAA) and Eps-1-rev (TAGGTCTGTTGATGGCACCAC). The 26 applicability of this primer set was tested using 16 genome sequences of Epsilon1a and 12 of 27 non-Epsilon1a PCR serogroup IVb clones. Experimentally determined sensitivity of the PCR 28 system was 94%, while its specificity was 75%. The 262 bp fragment is part of an open reading 29 30 frame encoding a phage tail length tape measure protein, which was detected in 119 out of 134 Epsilon1a strains (89%) according to genomic data. In contrast, among 662 analyzed PCR 31 serogroup IVb genomes, this phage tail open reading frame was only found in 20 ST6 genomes 32 that did not belong to the Epsilon1a group (3%). Thus, the Eps1a PCR was used to identify 33 34 possible Epsilon1a isolates among the incoming PCR serogroup IVb isolates to prioritize them for WGS. Out of the 67 PCR serogroup IVb isolates that had been tested by the Eps1a PCR 35 during the outbreak, only 11 turned out to be false-positive (16%). 36

37

Thomsen MCF, Hasman H, Westh H, Kaya H, Lund O. RUCS: rapid identification of PCR primers
 for unique core sequences. Bioinformatics. 2017;33(24):3917-21.

Table S1: *L. monocytogenes* isolates included in this study

Isolate ID	Sample accession	Secondary accession	Study number	Source Type	Isolation source	Cluster	cgMLST complex type
11-04869	11-04869 SAMEA104485064 ERS2103006		PRJEB24496	human	blood	Epsilon1	90
16-00332	SAMEA104485223	ERS2103165	PRJEB24496	human	blood	Epsilon1	90
16-00478	SAMEA104485231	ERS2103173	PRJEB24496	human	blood	Epsilon1	90
16-00634	SAMEA104485236	ERS2103178	PRJEB24496	human	CSF	Epsilon1	90
16-00830	SAMEA5770458	ERS3574002	PRJEB33238	human	blood	Epsilon1	90
16-00831	SAMEA104485244	ERS2103186	PRJEB24496	human	uterus	Epsilon1	90
16-00955	SAMEA104485248	ERS2103190	PRJEB24496	human	blood	Epsilon1	90
16-01401	SAMEA104485262	ERS2103204	PRJEB24496	human	blood	Epsilon1	90
16-01909	SAMEA104485285	ERS2103227	PRJEB24496	human	blood	Epsilon1	90
16-01911	SAMEA104485286	ERS2103228	PRJEB24496	human	blood	Epsilon1	90
16-02052	SAMEA104485291	ERS2103233	PRJEB24496	human	unknown	Epsilon1	3803
16-02281	SAMEA104485298	ERS2103240	PRJEB24496	human	blood	Epsilon1	3805
16-02328	SAMEA104485301	ERS2103243	PRJEB24496	human	unknown	Epsilon1	3806
16-02495	SAMEA104485307	ERS2103249	PRJEB24496	human	unknown	Epsilon1	90
16-02497	SAMEA104485309	ERS2103251	PRJEB24496	human	blood	Epsilon1	2981
16-02650	SAMEA104485313	ERS2103255	PRJEB24496	human	blood	Epsilon1	3921
16-03183	SAMEA104485347	ERS2103289	PRJEB24496	human	CSF	Epsilon1	4083
16-04063	SAMEA5770459	ERS3574003	PRJEB33238	human	blood	Epsilon1	90
16-04236	SAMEA104485396	ERS2103338	PRJEB24496	human	blood	Epsilon1	90
16-04386	SAMEA5770460	ERS3574004	PRJEB33238	human	blood	Epsilon1	90
16-04399	SAMEA104485408	ERS2103350	PRJEB24496	human	blood	Epsilon1	90
16-04799	SAMEA104485422	ERS2103364	PRJEB24496	human	ascites	Epsilon1	90
16-04800	SAMEA104485423	ERS2103365	PRJEB24496	human	blood	Epsilon1	90
16-05014	SAMEA104485430	ERS2103372	PRJEB24496	human	ascites	Epsilon1	90
17-00454	SAMEA104485458	ERS2103400	PRJEB24496	human	blood	Epsilon1	4083
17-00659	SAMEA5769034	ERS3572580	PRJEB33238	human	blood	Epsilon1	2981
17-01077	SAMEA5769035	ERS3572581	PRJEB33238	human	blood	Epsilon1	90
17-03140	SAMEA5769036	ERS3572582	PRJEB33238	human	blood	Epsilon1	4465
17-05508	SAMEA5769037	ERS3572583	PRJEB33238	human	blood	Epsilon1	2981
17-06068	SAMEA5769038	ERS3572584	PRJEB33238	human	blood	Epsilon1	90
17-06319	SAMEA5769039	ERS3572585	PRJEB33238	human	CSF	Epsilon1	90
17-06904	SAMEA5769040	ERS3572586	PRJEB33238	human	blood	Epsilon1	90
18-00080	SAMEA5769102	ERS3572648	PRJEB33238	human	CSF	Epsilon1	90
18-00304	SAMEA5769041	ERS3572587	PRJEB33238	human	blood	Epsilon1	6236
18-00445	SAMEA5769103	ERS3572649	PRJEB33238	human	unknown	Epsilon1	6331
18-01855	SAMEA5769042	ERS3572588	PRJEB33238	human	blood	Epsilon1	90
18-02683	SAMEA5769104	ERS3572650	PRJEB33238	human	blood	Epsilon1	4465
18-02987	SAMEA5769105	ERS3572651	PRJEB33238	human	GS	Epsilon1	90
18-03576	SAMEA5769106	ERS3572652	PRJEB33238	human	unknown	Epsilon1	2981
18-03577	SAMEA5769107	ERS3572653	PRJEB33238	human	GS	Epsilon1	2981
18-04116	SAMEA5769108	ERS3572654	PRJEB33238	human	blood	Epsilon1a	4465
18-04317	SAMEA5769109	ERS3572655	PRJEB33238	human	CSF	Epsilon1a	7353
18-04364	SAMEA5769110	ERS3572656	PRJEB33238	human	blood	Epsilon1a	4465
18-04365	SAMEA5769043	ERS3572589	PRJEB33238	human	blood	Epsilon1a	4465
18-04414	SAMEA5769111	ERS3572657	PRJEB33238	human	CSF	Epsilon1a	7353
18-04434	SAMEA5769112	ERS3572658	PRJEB33238	human	blood	Epsilon1a	4465

Isolate ID	Sample accession	Secondary accession	Study number	Source Type	Isolation source	Cluster	cgN con typ
18-04472	SAMEA5769113	ERS3572659	PRJEB33238	human	blood	Epsilon1	633
18-04499	SAMEA5769114	ERS3572660	PRJEB33238	human	blood	Epsilon1a	446
18-04500	SAMEA5769115	ERS3572661	PRJEB33238	human	blood	Epsilon1a	446
18-04539	SAMEA5769116	ERS3572662	PRJEB33238	human	blood	Epsilon1a	446
18-04540	SAMEA5041142	ERS2852884	PRJEB29295	human	blood	Epsilon1a	446
18-04543	SAMEA5769044	ERS3572590	PRJEB33238	human	blood	Epsilon1a	446
18-04581	SAMEA5769045	ERS3572591	PRJEB33238	human	blood	Epsilon1a	440
18-04652	SAMEA5769046	ERS3572592	PRJEB33238	human	blood	Epsilon1a	440
18-04653	SAMEA5769047	ERS3572593	PRJEB33238	human	blood	Epsilon1a	73
18-04654	SAMEA5769048	ERS3572594	PRJEB33238	human	blood	Epsilon1a	440
18-04655	SAMEA5769049	ERS3572595	PRJEB33238	human	blood	Epsilon1a	440
18-04657	SAMEA5769050	ERS3572596	PRJEB33238	human	blood	Epsilon1a	73
18-04772	SAMEA5769051	ERS3572597	PRJEB33238	human	blood	Epsilon1a	440
18-04825	SAMEA5769052	ERS3572598	PRJEB33238	human	blood	Epsilon1a	73
18-04826	SAMEA5769053	ERS3572599	PRIEB33238	human	blood	Epsilon1a	446
18-04827	SAMEA5769117	ERS3572663	PRIEB33238	human	blood	Epsilon1a	73
18-04850	SAMEA5769118	ER\$3572664	PRIEB33238	human	blood	Epsilon1a	44
18-04852	SAMEA5769119	ER\$3572665	PRIEB33238	human	blood	Epsilon1a	446
18-04897	SAMEA5769120	ER\$3572666	PRIFB33238	human	blood	Epsilon1a	734
18-0/808	SAMEA5769120	ER\$3572667	PRIER33238	human	blood	Epsilon1a	13.
18-04054	SAMEA5769121	ER\$3572668	PRIEB33238	human	blood	Epsilon1a	11
18 0/055	SAMEA5769122	ERS3572660	DDIED33238	human	blood	Epsilon1a	11
18 05034	SAMEA5769125	ERS3572670	DDIED33238	human	blood	Epsilon1	74
18 05035	SAMEA5769124	ERS3572671	DDIED33238	human	blood	Epsilon1a	73
18-05035	SAMEA5760126	ER35572071	DDIED22228	humon	blood	Epsilon1a	13.
18 05084	SAMEA5769120	ERS3572072	PRJED33238	humon	blood	Epsilon1a	44
18 05142	SAMEA5769127	ERS3372073	PRJED33238	humon	unknown	Epsilon1a	44
18 05142	SAMEA5769128	ERS3372074	PRJED33238	humon	unknown	Epsilon1a	72
18 05143	SAMEA5769129	ERS3372073	PRJED33238	humon	blood	Epsilon1a	13.
18-05100	SAMEA5760121	ERS3372070	FRJED33230	humon	blood	Epsilon1a	44
10-05199	SAMEA5760122	ER35572679	PRJED33230	human	blood	Epsilon1a	44
18-05201	SAMEA5760122	EK55572670	PKJED33238	human	blood	Epsilon1a	44
18-05202	SAMEA5760124	EK55572690	PKJED33238	human	blood	Epsilon1a	44
18-05205	SAMEA5760125	EK55572681	PKJED33238	human	blood	Epsilon1a	44
18-05257	SAMEA5709155	EK55572081	PKJED33238	numan		Epsilon1a	44
18-05327	SAMEA5709150	EK55572082	PKJED33238	numan		Epsilon1a	44
18-05328	SAMEA5/6913/	ERS3572683	PRJEB33238	numan		Epsilon1a	44
18-05329	SAMEA5709138	EK55572684	PRJEB33238	numan	DIOOD	Epsilon1a	44
18-05393	SAMEA5769139	EK55572685	PRJEB33238	numan	CSF	Epsilon1a	44
18-05394	SAMEA5/69140	ERS35/2686	PRJEB33238	human	blood	Epsilon1a	44
18-05396	SAMEA5/69141	ERS35/268/	PRJEB33238	human	blood	Epsilon1a	13
18-05398	SAMEA5769054	ERS35/2600	PRJEB33238	human	blood	Epsilon1a	/3
18-05449	SAMEA5769142	ERS3572688	PRJEB33238	human	blood	Epsilon1a	44
18-05450	SAMEA5769143	EKS3572689	PKJEB33238	human	blood	Epsilonla	44
18-05496	SAMEA5769144	EKS3572690	PKJEB33238	human	blood	Epsilonla	44
18-05542	SAMEA5769145	ERS3572691	PRJEB33238	human	CSF	Epsilon1a	44
18-05544	SAMEA5769146	ERS3572692	PRJEB33238	human	blood	Epsilon1a	44
18-05558	SAMEA5769147	ERS3572693	PRJEB33238	human	blood	Epsilon1a	44
10 05655	SAMEA5769148	ERS3572694	PRJEB33238	human	blood	Epsilon1a	44

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Isolate ID	Sample accession	Secondary	Study	Source	Isolation	Cluster	cgMLST
18-05657 SAMEA5769149 ERS3572695 PRJEB33238 human CSF Epsilon1a 4465 18-05668 SAMEA5769150 ERS3572696 PRJEB33238 human blood Epsilon1a 4465 18-05714 SAMEA5769151 ERS3572696 PRJEB33238 human blood Epsilon1a 4465 18-05748 SAMEA5769154 ERS3572700 PRJEB33238 human blood Epsilon1a 4465 18-05767 SAMEA5769155 ERS3572702 PRJEB33238 human blood Epsilon1a 4465 18-05876 SAMEA5769155 ERS3572702 PRJEB33238 human blood Epsilon1a 7553 18-05805 SAMEA5769158 ERS3572002 PRJEB33238 human blood Epsilon1a 7465 18-06024 SAMEA5769057 ERS3572002 PRJEB33238 human blood Epsilon1a 4465 18-06121 SAMEA5769059 ERS3572002 PRJEB33238 human blood Epsilon1a 4465			accession	number	туре	source		type
18-0568 SAMEA5769150 ERS3572697 PRJEB3228 human blood Epsilon1a 4465 18-05760 SAMEA5769151 ERS3572698 PRJEB3228 human blood Epsilon1a 4465 18-0574 SAMEA5769153 ERS3572098 PRJEB3228 human blood Epsilon1a 4465 18-0574 SAMEA5769155 ERS357200 PRJEB3228 human blood Epsilon1a 4465 18-05767 SAMEA5769156 ERS3572702 PRJEB33228 human blood Epsilon1a 4465 18-0588 SAMEA5769157 ERS3572703 PRJEB33228 human blood Epsilon1a 4465 18-05970 SAMEA5769159 ERS3572005 PRJEB33238 human blood Epsilon1a 4465 18-06023 SAMEA5769057 ERS3572605 PRJEB33238 human blood Epsilon1a 4465 18-06125 SAMEA5769067 ERS3572605 PRJEB33238 human blood Epsilon1a 4465 <t< td=""><td>18-05657</td><td>SAMEA5769149</td><td>ERS3572695</td><td>PRJEB33238</td><td>human</td><td>CSF</td><td>Epsilon1a</td><td>4465</td></t<>	18-05657	SAMEA5769149	ERS3572695	PRJEB33238	human	CSF	Epsilon1a	4465
18-0560 SAMEA5769151 ERS3572697 PRJEB3228 human blood Epsilon1a 4465 18-0572 SAMEA5769152 ERS3572699 PRJEB3228 human blood Epsilon1a 4465 18-0576 SAMEA5769154 ERS3572699 PRJEB3228 human blood Epsilon1a 4465 18-05767 SAMEA5769156 ERS3572701 PRJEB3228 human blood Epsilon1a 4465 18-05837 SAMEA5769156 ERS3572601 PRJEB3228 human blood Epsilon1a 4465 18-05837 SAMEA5769055 ERS3572601 PRJEB3228 human blood Epsilon1a 7353 18-06024 SAMEA5769056 ERS3572604 PRJEB3228 human ascites Epsilon1a 4465 18-06123 SAMEA5769058 ERS3572607 PRJEB3228 human blood Epsilon1a 4465 18-06121 SAMEA5769058 ERS3572607 PRJEB3228 human blood Epsilon1a 4465 <td< td=""><td>18-05658</td><td>SAMEA5769150</td><td>ERS3572696</td><td>PRJEB33238</td><td>human</td><td>blood</td><td>Epsilon1a</td><td>4465</td></td<>	18-05658	SAMEA5769150	ERS3572696	PRJEB33238	human	blood	Epsilon1a	4465
18-05714 SAMEA5769152 ERS3572698 PRJEB33238 human blood Epsilon1a 4465 18-05726 SAMEA5769153 ERS3572700 PRJEB33238 human blood Epsilon1a 4465 18-05748 SAMEA5769155 ERS3572700 PRJEB33238 human blood Epsilon1a 4465 18-05863 SAMEA5769156 ERS3572703 PRJEB3238 human uknown Epsilon1a 4465 18-05836 SAMEA5769157 ERS3572703 PRJEB3238 human blood Epsilon1a 4465 18-05970 SAMEA5769159 ERS3572705 PRJEB33238 human uknown Epsilon1a 4465 18-06023 SAMEA5769058 ERS3572605 PRJEB33238 human blood Epsilon1a 4465 18-06126 SAMEA5769061 ERS3572607 PRJEB33238 human blood Epsilon1a 4465 18-06126 SAMEA5769061 ERS3572607 PRJEB33238 human blood Epsilon1a 4465	18-05660	SAMEA5769151	ERS3572697	PRJEB33238	human	blood	Epsilon1a	4465
18-05726 SAMEA5769153 ERS3572699 PRJEB33238 human blood Epsilon1a 7353 18-05748 SAMEA5769154 ERS3572701 PRJEB33238 human blood Epsilon1a 4465 18-05767 SAMEA5769155 ERS3572701 PRJEB33238 human uknown Epsilon1a 7453 18-05873 SAMEA5769155 ERS3572705 PRJEB3238 human uknown Epsilon1a 7353 18-05893 SAMEA5769155 ERS3572705 PRJEB3238 human blood Epsilon1a 7453 18-06023 SAMEA5769056 ERS3572604 PRJEB3238 human uknown Epsilon1a 4465 18-06024 SAMEA5769057 ERS3572604 PRJEB32238 human blood Epsilon1a 4465 18-06121 SAMEA5769061 ERS3572607 PRJEB32238 human blood Epsilon1a 4465 18-06121 SAMEA5769061 ERS3572607 PRJEB32238 human blood Epsilon1a 4465	18-05714	SAMEA5769152	ERS3572698	PRJEB33238	human	blood	Epsilon1a	4465
18-05748 SAMEA5769154 ERS3572700 PRJEB33238 human blood Epsilon1a 4465 18-05767 SAMEA5769155 ERS3572700 PRJEB33238 human blood Epsilon1a 4465 18-05768 SAMEA5769157 ERS3572700 PRJEB33238 human blood Epsilon1a 7353 18-0581 SAMEA5769157 ERS3572700 PRJEB33238 human blood Epsilon1a 4465 18-05970 SAMEA5769158 ERS3572700 PRJEB33238 human unknown Epsilon1a 4465 18-06023 SAMEA5769056 ERS3572600 PRJEB33238 human unkown Epsilon1a 4465 18-06012 SAMEA5769059 ERS3572600 PRJEB33238 human blood Epsilon1a 4465 18-06126 SAMEA5769060 ERS3572600 PRJEB33238 human blood Epsilon1a 4465 18-06128 SAMEA5769063 ERS3572600 PRJEB33238 human blood Epsilon1a 4465	18-05726	SAMEA5769153	ERS3572699	PRJEB33238	human	blood	Epsilon1a	7353
18-05767 SAMEA5769155 ERS3572701 PRJEB33238 human blood Epsilon1a 4465 18-05768 SAMEA5769157 ERS3572703 PRJEB33238 human CSF Epsilon1a 4465 18-05837 SAMEA5769055 ERS357200 PRJEB33238 human blood Epsilon1a 4465 18-05951 SAMEA5769056 ERS357200 PRJEB33238 human blood Epsilon1a 4465 18-06023 SAMEA5769056 ERS3572602 PRJEB33238 human unknown Epsilon1a 4465 18-06024 SAMEA5769058 ERS3572600 PRJEB33238 human blood Epsilon1a 4465 18-06121 SAMEA5769060 ERS3572600 PRJEB33238 human blood Epsilon1a 4465 18-06122 SAMEA5769061 ERS3572600 PRJEB33238 human blood Epsilon1a 4465 18-06127 SAMEA5769061 ERS3572610 PRJEB3328 human blood Epsilon1a 4465	18-05748	SAMEA5769154	ERS3572700	PRJEB33238	human	blood	Epsilon1a	4465
18-05768 SAMEA5769156 ERS3572702 PRJEB33238 human CSF Epsilon1a 4465 18-05836 SAMEA5769157 ERS3572700 PRJEB33238 human blood Epsilon1a 7353 18-05837 SAMEA5769158 ERS3572704 PRJEB33238 human blood Epsilon1a 4465 18-05970 SAMEA5769056 ERS3572607 PRJEB33238 human csc Epsilon1a 4465 18-06024 SAMEA5769057 ERS3572607 PRJEB33238 human blood Epsilon1a 4465 18-06025 SAMEA5769059 ERS3572606 PRJEB33238 human blood Epsilon1a 4465 18-06126 SAMEA5769060 ERS3572600 PRJEB33238 human blood Epsilon1a 4465 18-06126 SAMEA5769062 ERS3572600 PRJEB33238 human blood Epsilon1a 4465 18-06130 SAMEA5769064 ERS3572610 PRJEB3328 human blood Epsilon1a 4465	18-05767	SAMEA5769155	ERS3572701	PRJEB33238	human	blood	Epsilon1a	4465
18-05836 SAMEA5769157 ERS3572703 PRJEB33238 human unknown Epsilon1a 7353 18-05837 SAMEA5769055 ERS3572704 PRJEB33238 human blood Epsilon1a 4465 18-05951 SAMEA5769159 ERS3572705 PRJEB33238 human unknown Epsilon1a 4465 18-06023 SAMEA5769057 ERS3572602 PRJEB33238 human unknown Epsilon1a 4465 18-06023 SAMEA5769057 ERS3572604 PRJEB33238 human blood Epsilon1a 4465 18-06126 SAMEA5769060 ERS3572607 PRJEB33238 human blood Epsilon1a 4465 18-06126 SAMEA5769061 ERS3572607 PRJEB33238 human blood Epsilon1a 4465 18-06127 SAMEA5769063 ERS3572600 PRJEB33238 human blood Epsilon1a 4465 18-06130 SAMEA5769066 ERS3572700 PRJEB33238 human blood Epsilon1a 4465	18-05768	SAMEA5769156	ERS3572702	PRJEB33238	human	CSF	Epsilon1a	4465
18-05837 SAMEA5769055 ERS3572601 PRJEB33238 human blood Epsilon1a 7353 18-05951 SAMEA5769159 ERS3572704 PRJEB33238 human CSF Epsilon1a 4465 18-06023 SAMEA5769056 ERS3572602 PRJEB33238 human cSF Epsilon1a 4465 18-06024 SAMEA5769057 ERS3572603 PRJEB33238 human ascites Epsilon1a 4465 18-06035 SAMEA5769059 ERS3572606 PRJEB33238 human blood Epsilon1a 4465 18-06126 SAMEA5769061 ERS3572607 PRJEB33238 human blood Epsilon1a 4465 18-06127 SAMEA5769063 ERS3572601 PRJEB33238 human blood Epsilon1a 4465 18-06128 SAMEA5769064 ERS3572610 PRJEB33238 human blood Epsilon1a 4465 18-06131 SAMEA5769066 ERS3572612 PRJEB33238 human blood Epsilon1a 4465	18-05836	SAMEA5769157	ERS3572703	PRJEB33238	human	unknown	Epsilon1a	7353
18-05951 SAMEA5769158 ERS3572704 PRJEB33238 human blood Epsilon 1a 4465 18-05970 SAMEA5769056 ERS3572705 PRJEB33238 human axinown Epsilon 1a 4465 18-06024 SAMEA5769057 ERS3572602 PRJEB33238 human axinown Epsilon 1a 4465 18-06024 SAMEA5769058 ERS3572604 PRJEB33238 human blood Epsilon 1a 4465 18-06126 SAMEA5769050 ERS3572607 PRJEB33238 human blood Epsilon 1a 4465 18-06127 SAMEA5769061 ERS3572607 PRJEB33238 human blood Epsilon 1a 4465 18-06127 SAMEA5769062 ERS3572610 PRJEB33238 human blood Epsilon 1a 4465 18-06130 SAMEA5769066 ERS3572610 PRJEB33238 human blood Epsilon 1a 4465 18-06130 SAMEA5769167 ERS3572706 PRJEB33238 human blood Epsilon 1a 4465 <td>18-05837</td> <td>SAMEA5769055</td> <td>ERS3572601</td> <td>PRJEB33238</td> <td>human</td> <td>blood</td> <td>Epsilon1a</td> <td>7353</td>	18-05837	SAMEA5769055	ERS3572601	PRJEB33238	human	blood	Epsilon1a	7353
18-05970 SAMEA5769159 ERS3572705 PRJEB33238 human CSF Epsilon1a 4465 18-06023 SAMEA5769056 ERS3572602 PRJEB33238 human ascites Epsilon1a 7353 18-06035 SAMEA5769059 ERS3572604 PRJEB33238 human ascites Epsilon1a 4465 18-06036 SAMEA5769059 ERS3572605 PRJEB33238 human blood Epsilon1a 4465 18-06126 SAMEA5769060 ERS3572606 PRJEB33238 human blood Epsilon1a 4465 18-06127 SAMEA5769061 ERS3572609 PRJEB33238 human blood Epsilon1a 4465 18-06128 SAMEA5769064 ERS3572611 PRJEB33238 human blood Epsilon1a 4465 18-06130 SAMEA5769067 ERS3572612 PRJEB33238 human blood Epsilon1a 4465 18-06130 SAMEA5769160 ERS3572707 PRJEB33238 human uknown Epsilon1a 4465 <tr< td=""><td>18-05951</td><td>SAMEA5769158</td><td>ERS3572704</td><td>PRJEB33238</td><td>human</td><td>blood</td><td>Epsilon1a</td><td>4465</td></tr<>	18-05951	SAMEA5769158	ERS3572704	PRJEB33238	human	blood	Epsilon1a	4465
18-06023 SAMEA5769056 ERS3572602 PRJEB33238 human unknown Epsilon1a 7353 18-06024 SAMEA5769057 ERS3572603 PRJEB33238 human ascites Epsilon1a 4465 18-06035 SAMEA5769059 ERS3572604 PRJEB33238 human blood Epsilon1a 4465 18-06136 SAMEA5769059 ERS3572606 PRJEB33238 human blood Epsilon1a 4465 18-06126 SAMEA5769061 ERS3572607 PRJEB33238 human CSF Epsilon1a 4465 18-06127 SAMEA5769063 ERS3572610 PRJEB33238 human blood Epsilon1a 4465 18-06131 SAMEA5769066 ERS3572611 PRJEB33238 human blood Epsilon1a 4465 18-06130 SAMEA5769066 ERS3572706 PRJEB33238 human blood Epsilon1a 4465 18-06131 SAMEA5769160 ERS3572706 PRJEB33238 human blood Epsilon1a 4465	18-05970	SAMEA5769159	ERS3572705	PRJEB33238	human	CSF	Epsilon1a	4465
18-06024 SAMEA5769057 ERS3572603 PRJEB33238 human ascites Epsilon1a 4465 18-06035 SAMEA5769059 ERS3572604 PRJEB33238 human blood Epsilon1a 4465 18-06121 SAMEA5769060 ERS3572605 PRJEB33238 human blood Epsilon1a 4465 18-06126 SAMEA5769061 ERS3572607 PRJEB33238 human blood Epsilon1a 4465 18-06127 SAMEA5769062 ERS3572609 PRJEB33238 human blood Epsilon1a 4465 18-06128 SAMEA5769064 ERS3572610 PRJEB33238 human blood Epsilon1a 4465 18-06130 SAMEA5769067 ERS3572612 PRJEB33238 human blood Epsilon1a 4465 18-06130 SAMEA5769067 ERS3572707 PRJEB33238 human blood Epsilon1a 4465 18-06263 SAMEA5769161 ERS3572707 PRJEB3238 human blood Epsilon1a 4465 1	18-06023	SAMEA5769056	ERS3572602	PRJEB33238	human	unknown	Epsilon1a	7353
18-06035 SAMEA5769058 ERS3572604 PRJEB33238 human blood Epsilon1a 4465 18-06036 SAMEA5769059 ERS3572605 PRJEB33238 human blood Epsilon1a 4465 18-06121 SAMEA5769060 ERS3572607 PRJEB33238 human blood Epsilon1a 4465 18-06126 SAMEA5769061 ERS3572607 PRJEB33238 human blood Epsilon1a 4465 18-06127 SAMEA5769063 ERS3572610 PRJEB3238 human blood Epsilon1a 4465 18-06130 SAMEA5769066 ERS3572610 PRJEB3238 human blood Epsilon1a 4465 18-06138 SAMEA5769166 ERS3572706 PRJEB3238 human blood Epsilon1a 4465 18-06138 SAMEA5769161 ERS3572706 PRJEB3238 human blood Epsilon1a 4465 18-06263 SAMEA5769161 ERS3572706 PRJEB3238 human blood Epsilon1a 4465	18-06024	SAMEA5769057	ERS3572603	PRJEB33238	human	ascites	Epsilon1a	4465
18-06036 SAMEA5769059 ERS3572605 PRJEB32238 human blood Epsilon1a 4465 18-06121 SAMEA5769060 ERS3572606 PRJEB32338 human blood Epsilon1a 4465 18-06126 SAMEA5769061 ERS3572607 PRJEB32338 human blood Epsilon1a 4465 18-06127 SAMEA5769063 ERS3572609 PRJEB3238 human blood Epsilon1a 4465 18-06128 SAMEA5769064 ERS3572610 PRJEB3238 human blood Epsilon1a 4465 18-06130 SAMEA5769066 ERS3572612 PRJEB33238 human blood Epsilon1a 4465 18-06130 SAMEA5769160 ERS3572706 PRJEB33238 human blood Epsilon1a 4465 18-06170 SAMEA5769161 ERS3572707 PRJEB33238 human blood Epsilon1a 4465 18-06540 SAMEA5769163 ERS3572708 PRJEB33238 human blood Epsilon1a 4465	18-06035	SAMEA5769058	ER\$3572604	PRIEB33238	human	blood	Epsilon1a	4465
18-06121 SAMEA5769060 ERS3572606 PRJEB3233 human blood Epsilon1a 4465 18-06126 SAMEA5769061 ERS3572607 PRJEB3233 human blood Epsilon1a 4465 18-06127 SAMEA5769062 ERS3572609 PRJEB3233 human blood Epsilon1a 4465 18-06128 SAMEA5769064 ERS3572609 PRJEB3233 human blood Epsilon1a 4465 18-06130 SAMEA5769065 ERS3572610 PRJEB3238 human blood Epsilon1a 4465 18-06130 SAMEA5769066 ERS3572612 PRJEB3238 human blood Epsilon1a 4465 18-06130 SAMEA5769160 ERS3572706 PRJEB3238 human uhood Epsilon1a 4465 18-06263 SAMEA5769161 ERS3572708 PRJEB3238 human blood Epsilon1a 4465 18-06540 SAMEA5769163 ERS3572710 PRJEB3238 human blood Epsilon1a 4465 <t< td=""><td>18-06036</td><td>SAMEA5769059</td><td>ER\$3572605</td><td>PRIEB33238</td><td>human</td><td>blood</td><td>Epsilon1a</td><td>4465</td></t<>	18-06036	SAMEA5769059	ER\$3572605	PRIEB33238	human	blood	Epsilon1a	4465
18-06126 SAMEA5769061 ER3572607 PRJEB33238 human blood Epsilon1a 4465 18-06127 SAMEA5769062 ERS3572609 PRJEB33238 human blood Epsilon1a 4465 18-06128 SAMEA5769063 ERS3572610 PRJEB33238 human blood Epsilon1a 4465 18-06129 SAMEA5769064 ERS3572611 PRJEB33238 human blood Epsilon1a 4465 18-06130 SAMEA5769066 ERS3572612 PRJEB32238 human blood Epsilon1a 4465 18-06131 SAMEA5769066 ERS3572612 PRJEB32238 human blood Epsilon1a 4465 18-06131 SAMEA5769160 ERS3572707 PRJEB32238 human blood Epsilon1a 4465 18-06438 SAMEA5769162 ERS3572709 PRJEB32328 human blood Epsilon1a 4465 18-06438 SAMEA5769164 ERS3572710 PRJEB3238 human blood Epsilon1a 4465 18-06445 SAMEA5769166 ERS3572710 PRJEB3238 human CSF	18-06121	SAMEA5769060	ER\$3572606	PRIEB33238	human	blood	Epsilon1a	4465
18-06127 SAMEA5769062 ER3572608 PRJEB33238 human CSF Epsilon1a 4465 18-06128 SAMEA5769063 ER3572609 PRJEB33238 human blood Epsilon1a 4465 18-06129 SAMEA5769064 ER3572610 PRJEB33238 human blood Epsilon1a 4465 18-06131 SAMEA5769065 ER3572612 PRJEB33238 human CSF Epsilon1a 4465 18-06131 SAMEA5769067 ERS3572613 PRJEB3238 human Lood Epsilon1a 4465 18-06170 SAMEA5769160 ERS3572706 PRJEB3238 human uknown Epsilon1a 4465 18-06263 SAMEA5769161 ERS3572708 PRJEB3238 human uknown Epsilon1a 4465 18-06438 SAMEA5769163 ERS3572710 PRJEB3238 human uknown Epsilon1a 4465 18-06540 SAMEA5769165 ERS3572711 PRJEB3238 human blood Epsilon1a 4465	18-06126	SAMEA5769061	ER\$3572607	PRIEB33238	human	blood	Epsilon1a	4465
18-0612 SAMEA5769063 ER3572609 PBJEB32238 human blood Epsilon1a 4465 18-06129 SAMEA5769064 ER3572610 PRJEB32238 human blood Epsilon1a 7353 18-06130 SAMEA5769065 ER33572612 PRJEB32238 human blood Epsilon1a 7465 18-06131 SAMEA5769066 ER3572612 PRJEB32238 human blood Epsilon1a 4465 18-06138 SAMEA5769160 ER3572706 PRJEB32238 human unknown Epsilon1a 4465 18-06263 SAMEA5769161 ER3572709 PRJEB32238 human blood Epsilon1a 4465 18-06438 SAMEA5769162 ER3572709 PRJEB3238 human blood Epsilon1a 4465 18-06443 SAMEA5769165 ER3572710 PRJEB3238 human blood Epsilon1a 4465 18-06540 SAMEA5769165 ER3572711 PRJEB3238 human blood Epsilon1a 4465 <td< td=""><td>18-06127</td><td>SAMEA5769062</td><td>ER\$3572608</td><td>PRIEB33238</td><td>human</td><td>CSE</td><td>Epsilon1a</td><td>4465</td></td<>	18-06127	SAMEA5769062	ER\$3572608	PRIEB33238	human	CSE	Epsilon1a	4465
18-06120 SAMEA5769064 ERS3572610 PRJEB32238 human blood Epsilon1a 4465 18-06130 SAMEA5769065 ERS3572611 PRJEB32238 human blood Epsilon1a 4465 18-06131 SAMEA5769066 ERS3572612 PRJEB32238 human blood Epsilon1a 4465 18-06138 SAMEA5769066 ERS3572706 PRJEB32238 human blood Epsilon1a 4465 18-06263 SAMEA5769160 ERS3572706 PRJEB32238 human blood Epsilon1a 4465 18-06263 SAMEA5769162 ERS3572709 PRJEB32238 human blood Epsilon1a 4465 18-06438 SAMEA5769163 ERS3572710 PRJEB32238 human blood Epsilon1a 4465 18-0644 SAMEA5769166 ERS3572710 PRJEB3238 human blood Epsilon1a 4465 18-0644 SAMEA5769166 ERS3572711 PRJEB3238 human CSF Epsilon1a 4465 18-0646 SAMEA5769167 ERS3572714 PRJEB32328 human blood </td <td>18-06128</td> <td>SAMEA5769063</td> <td>ER\$3572609</td> <td>PRIEB33238</td> <td>human</td> <td>blood</td> <td>Epsilon1a</td> <td>4465</td>	18-06128	SAMEA5769063	ER\$3572609	PRIEB33238	human	blood	Epsilon1a	4465
18-06120 SAMEA5769065 ERS3572611 PRJEB33238 human blood Epsilon1a 7353 18-06131 SAMEA5769066 ERS3572612 PRJEB33238 human blood Epsilon1a 4465 18-06131 SAMEA5769067 ERS3572613 PRJEB33238 human blood Epsilon1a 4465 18-06170 SAMEA5769160 ERS3572706 PRJEB33238 human blood Epsilon1a 4465 18-06263 SAMEA5769161 ERS3572708 PRJEB33238 human blood Epsilon1a 4465 18-06438 SAMEA5769162 ERS3572710 PRJEB33238 human blood Epsilon1a 4465 18-06540 SAMEA5769165 ERS3572710 PRJEB33238 human CSF Epsilon1a 4465 18-06646 SAMEA5769166 ERS3572711 PRJEB33238 human CSF Epsilon1a 4465 18-06640 SAMEA5769167 ERS3572713 PRJEB33238 human blood Epsilon1a 4465 18-06640 SAMEA5769168 ERS3572714 PRJEB33238 human bloo	18-06129	SAMEA5769064	ER\$3572610	PRIEB33238	human	blood	Epsilon1a	4465
18 06130 SAMEA5769065 ERS3572612 PRJEB33238 human CSF Epsilon1a 4465 18 06131 SAMEA5769067 ERS3572613 PRJEB33238 human UK Epsilon1a 4465 18 06131 SAMEA5769160 ERS3572706 PRJEB33238 human blood Epsilon1a 4465 18 06263 SAMEA5769161 ERS3572707 PRJEB33238 human blood Epsilon1a 4465 18 06331 SAMEA5769162 ERS3572709 PRJEB33238 human blood Epsilon1a 4465 18 06540 SAMEA5769162 ERS3572710 PRJEB33238 human uknown Epsilon1a 4465 18 06541 SAMEA5769165 ERS3572710 PRJEB33238 human CSF Epsilon1a 4465 18 06646 SAMEA5769166 ERS3572711 PRJEB33238 human blood Epsilon1a 4465 18 06680 SAMEA5769167 ERS3572714 PRJEB33238 human blood Epsilon1a 7465 18 06916 SAMEA5769168 ERS3572715 PRJEB33238 human blood<	18-06130	SAMEA5769065	ERS3572611	PRIFB33238	human	blood	Epsilon1a	7353
Isobiti FRUENS/2000 <	18-06131	SAMEA 5769066	ERS3572612	PRIEB33238	human	CSE	Epsilon1a	4465
Isobio SIMEAS769160 ERS3572706 PRJEB3228 human unknown Epsilon1a 4465 18-06170 SAMEA5769161 ERS3572707 PRJEB33238 human blood Epsilon1a 4465 18-06263 SAMEA5769162 ERS3572709 PRJEB33238 human blood Epsilon1a 4465 18-06438 SAMEA5769163 ERS3572709 PRJEB33238 human unknown Epsilon1a 4465 18-06540 SAMEA5769164 ERS3572710 PRJEB33238 human Unknown Epsilon1a 4465 18-06646 SAMEA5769166 ERS3572711 PRJEB33238 human CSF Epsilon1a 4465 18-06640 SAMEA5769166 ERS3572715 PRJEB33238 human blood Epsilon1a 4465 18-06776 SAMEA5769169 ERS3572716 PRJEB33238 human blood Epsilon1a 7353 18-06916 SAMEA5769169 ERS3572615 PRJEB33238 human blood Epsilon1a 4465 1	18-06138	SAMEA5769067	ERS3572613	PRIEB33238	human	blood	Epsilon1a	4465
18.00263 SAMEA5769161 ERS3572707 PRJEB3228 human blood Epsilon1a 4465 18-06263 SAMEA5769162 ERS3572708 PRJEB33238 human blood Epsilon1a 4465 18-06331 SAMEA5769162 ERS3572709 PRJEB33238 human unknown Epsilon1a 4465 18-06438 SAMEA5769163 ERS3572709 PRJEB33238 human unknown Epsilon1a 4465 18-06540 SAMEA5769164 ERS3572710 PRJEB33238 human blood Epsilon1a 4465 18-06646 SAMEA5769165 ERS3572712 PRJEB33238 human blood Epsilon1a 4465 18-06640 SAMEA5769166 ERS3572714 PRJEB32238 human blood Epsilon1a 4465 18-06676 SAMEA5769169 ERS3572714 PRJEB32238 human unknown Epsilon1a 4465 18-06916 SAMEA5769169 ERS3572716 PRJEB32238 human blood Epsilon1a 4465 18-06955 SAMEA5769070 ERS3572615 PRJEB32238 human	18-06170	SAMEA5769160	ER\$3572706	PRIEB33238	human	unknown	Epsilon1a	4465
18:00205 b) MILLA5769162 ERS3572708 PRJEB33238 human b) ood Epsilon1a 4465 18:06331 SAMEA5769162 ERS3572709 PRJEB33238 human b) ood Epsilon1a 4465 18:06438 SAMEA5769164 ERS3572709 PRJEB33238 human unknown Epsilon1a 4465 18:06540 SAMEA5769164 ERS3572710 PRJEB33238 human blood Epsilon1a 4465 18:06541 SAMEA5769165 ERS3572712 PRJEB33238 human CSF Epsilon1a 4465 18:06646 SAMEA5769166 ERS3572712 PRJEB33238 human blood Epsilon1a 4465 18:06680 SAMEA5769167 ERS3572714 PRJEB33238 human blood Epsilon1a 4465 18:06820 SAMEA5769168 ERS3572716 PRJEB33238 human blood Epsilon1a 7353 18:06916 SAMEA5769068 ERS3572614 PRJEB33238 human blood Epsilon1a 4465 18:07037 SAMEA5769070 ERS3572615 PRJEB33238 human	18-06263	SAMEA5769161	ER\$3572707	PRIEB33238	human	blood	Epsilon1a	4465
18:06351 DAMEA5769163 ERS3572709 PRJEB32238 human unknown Epsilon1a 4465 18:06540 SAMEA5769164 ERS3572710 PRJEB33238 human unknown Epsilon1a 4465 18:06540 SAMEA5769164 ERS3572710 PRJEB33238 human blood Epsilon1a 4465 18:06540 SAMEA5769165 ERS3572711 PRJEB33238 human CSF Epsilon1a 4465 18:06646 SAMEA5769166 ERS3572712 PRJEB33238 human blood Epsilon1a 4465 18:06680 SAMEA5769167 ERS3572713 PRJEB33238 human blood Epsilon1a 4465 18:06676 SAMEA5769169 ERS3572715 PRJEB33238 human blood Epsilon1a 7353 18:06916 SAMEA5769170 ERS3572614 PRJEB33238 human blood Epsilon1a 7353 18:06955 SAMEA5769070 ERS3572615 PRJEB33238 human blood Epsilon1a 7353 18:07037 SAMEA5769071 ERS3572616 PRJEB33238 human <t< td=""><td>18-06331</td><td>SAMEA5769162</td><td>ER\$3572708</td><td>PRIEB33238</td><td>human</td><td>blood</td><td>Epsilon1a</td><td>4465</td></t<>	18-06331	SAMEA5769162	ER\$3572708	PRIEB33238	human	blood	Epsilon1a	4465
18-06540 SAMEA5769164 ERS3572710 PRJEB32238 human blood Epsilon1a 4465 18-06541 SAMEA5769165 ERS3572711 PRJEB32238 human blood Epsilon1a 4465 18-06646 SAMEA5769166 ERS3572712 PRJEB33238 human CSF Epsilon1a 4465 18-06646 SAMEA5769167 ERS3572712 PRJEB33238 human blood Epsilon1a 4465 18-06640 SAMEA5769167 ERS3572712 PRJEB33238 human blood Epsilon1a 4465 18-06776 SAMEA5769169 ERS3572715 PRJEB33238 human blood Epsilon1a 4465 18-06916 SAMEA5769170 ERS3572716 PRJEB33238 human blood Epsilon1a 4465 18-06954 SAMEA5769068 ERS3572614 PRJEB33238 human blood Epsilon1a 4465 18-07018 SAMEA5769070 ERS3572615 PRJEB33238 human blood Epsilon1a 4465 18-07037 SAMEA5769071 ERS3572616 PRJEB33238 human bl	18-06438	SAMEA5769163	ER\$3572709	PRIEB33238	human	unknown	Epsilon1a	4465
18:00510 DRMLA/05/101 DRSD/2110 PRJED/32238 human OBOC Deprind 1 1405 18:00541 SAMEA5769165 ERS3572711 PRJEB33238 human CSF Epsilon1a 4465 18:00646 SAMEA5769167 ERS3572712 PRJEB33238 human CSF Epsilon1a 4465 18:00680 SAMEA5769167 ERS3572713 PRJEB33238 human blood Epsilon1a 4465 18:0680 SAMEA5769167 ERS3572715 PRJEB33238 human blood Epsilon1a 4465 18:06916 SAMEA5769169 ERS3572716 PRJEB33238 human blood Epsilon1a 4465 18:06954 SAMEA5769068 ERS3572614 PRJEB33238 human blood Epsilon1a 7353 18:06955 SAMEA5769069 ERS3572615 PRJEB33238 human blood Epsilon1a 4465 18:07037 SAMEA5769070 ERS3572616 PRJEB33238 human blood Epsilon1a 4465 18:07037 SAMEA5769073 ERS3572617 PRJEB33238 human blood<	18-06540	SAMEA5769164	ER\$3572709	PRIEB33238	human	blood	Epsilon1a	4465
18-06011 BARBASTOPTIC PRJEB3223 human CSF Epsilon1a 4465 18-06646 SAMEA5769166 ERS3572712 PRJEB33238 human CSF Epsilon1a 4465 18-06680 SAMEA5769167 ERS3572713 PRJEB33238 human blood Epsilon1a 4465 18-06820 SAMEA5769168 ERS3572714 PRJEB33238 human blood Epsilon1a 4465 18-06916 SAMEA5769169 ERS3572716 PRJEB33238 human blood Epsilon1a 7353 18-06916 SAMEA5769068 ERS357216 PRJEB33238 human blood Epsilon1a 7353 18-06955 SAMEA5769068 ERS3572614 PRJEB33238 human blood Epsilon1a 7353 18-06955 SAMEA5769070 ERS3572616 PRJEB33238 human blood Epsilon1a 4465 18-07037 SAMEA5769072 ERS3572617 PRJEB33238 human blood Epsilon1a 4465 18-07092 SAMEA5769073 ERS3572619 PRJEB33238 human blood Epsilon1a </td <td>18-06541</td> <td>SAMEA5769165</td> <td>ERS3572711</td> <td>PRIEB33238</td> <td>human</td> <td>CSE</td> <td>Epsilon1a</td> <td>4465</td>	18-06541	SAMEA5769165	ERS3572711	PRIEB33238	human	CSE	Epsilon1a	4465
18:00040 SAMEA5769167 ERS3572712 PRJEB33238 human blood Epsilon1a 4465 18:06680 SAMEA5769167 ERS3572713 PRJEB33238 human blood Epsilon1a 4465 18:06776 SAMEA5769168 ERS3572714 PRJEB33238 human blood Epsilon1a 4465 18:06820 SAMEA5769169 ERS3572715 PRJEB33238 human uknown Epsilon1a 4465 18:06916 SAMEA5769169 ERS3572716 PRJEB33238 human blood Epsilon1a 4465 18:06954 SAMEA5769068 ERS3572614 PRJEB33238 human blood Epsilon1a 4465 18:06955 SAMEA5769070 ERS3572615 PRJEB33238 human blood Epsilon1a 4465 18:07018 SAMEA5769070 ERS3572616 PRJEB33238 human blood Epsilon1a 4465 18:07092 SAMEA5769073 ERS3572617 PRJEB33238 human blood Epsilon1a 4465 18:07092 SAMEA5769073 ERS3572619 PRJEB33238 human <td< td=""><td>18-06646</td><td>SAMEA5769166</td><td>ER\$3572712</td><td>PRIFB33238</td><td>human</td><td>CSF</td><td>Epsilon1a</td><td>4465</td></td<>	18-06646	SAMEA5769166	ER\$3572712	PRIFB33238	human	CSF	Epsilon1a	4465
18 00000SAMEA5769163ERS3572713PRJEB32238humanbloodEpsilon1a446518-06776SAMEA5769168ERS3572714PRJEB33238humanbloodEpsilon1a446518-06820SAMEA5769169ERS3572715PRJEB33238humanunknownEpsilon1a735318-06916SAMEA5769170ERS3572716PRJEB33238humanbloodEpsilon1a735318-06954SAMEA5769068ERS3572614PRJEB33238humanbloodEpsilon1a735318-06955SAMEA5769069ERS3572615PRJEB33238humanbloodEpsilon1a446518-07018SAMEA5769070ERS3572616PRJEB33238humanbloodEpsilon1a446518-07027SAMEA5769071ERS3572617PRJEB33238humanbloodEpsilon1a446518-07092SAMEA5769072ERS3572619PRJEB33238humanbloodEpsilon1a446518-07157SAMEA5769073ERS3572619PRJEB33238humanbloodEpsilon1a446518-07267SAMEA5769074ERS3572717PRJEB33238humanbloodEpsilon1a446518-07300SAMEA5769172ERS3572718PRJEB33238humanbloodEpsilon1a446518-07300SAMEA5769173ERS3572719PRJEB33238humanbloodEpsilon1a446519-00080SAMEA5769174ERS3572720PRJEB33238humanbloodEpsilon1a446519-00149 <td>18-06680</td> <td>SAMEA5769167</td> <td>ERS3572712</td> <td>PRIFB33238</td> <td>human</td> <td>blood</td> <td>Epsilon1a</td> <td>4465</td>	18-06680	SAMEA5769167	ERS3572712	PRIFB33238	human	blood	Epsilon1a	4465
18 00770SAMEA5769169ERS3572714PRJEB32230InfinitianGroupEpsilon1a745518-06820SAMEA5769169ERS3572715PRJEB33238humanunknownEpsilon1a735318-06916SAMEA5769170ERS3572716PRJEB33238humanbloodEpsilon1a735318-06954SAMEA5769068ERS3572614PRJEB33238humanbloodEpsilon1a735318-06955SAMEA5769069ERS3572615PRJEB33238humanbloodEpsilon1a446518-07018SAMEA5769070ERS3572616PRJEB33238humanbloodEpsilon1a446518-07037SAMEA5769071ERS3572617PRJEB33238humanbloodEpsilon1a446518-07092SAMEA5769072ERS3572618PRJEB33238humanunknownEpsilon1a446518-07157SAMEA5769073ERS3572619PRJEB33238humanbloodEpsilon1a446518-07267SAMEA5769074ERS3572717PRJEB33238humanbloodEpsilon1a446518-07300SAMEA5769172ERS3572718PRJEB33238humanbloodEpsilon1a735319-00076SAMEA5769174ERS3572720PRJEB33238humanbloodEpsilon1a446519-00082SAMEA5769175ERS3572722PRJEB33238humanbloodEpsilon1a446519-00149SAMEA5769176ERS3572722PRJEB33238humanbloodEpsilon1a446519-00	18-06776	SAMEA5769168	ERS3572714	PRIFB33238	human	blood	Epsilon1a	4465
18 00020SAMEA5709170ERS3572716PRJEB32238humanbloodEpsilon1a446518-06916SAMEA5769068ERS3572614PRJEB33238humanbloodEpsilon1a446518-06954SAMEA5769068ERS3572615PRJEB33238humanbloodEpsilon1a446518-07018SAMEA5769070ERS3572616PRJEB33238humanbloodEpsilon1a446518-07037SAMEA5769070ERS3572617PRJEB33238humanbloodEpsilon1a446518-07092SAMEA5769071ERS3572618PRJEB33238humanuhknownEpsilon1a446518-07157SAMEA5769073ERS3572619PRJEB33238humanbloodEpsilon1a446518-07158SAMEA5769074ERS3572610PRJEB33238humanbloodEpsilon1a446518-07267SAMEA5769171ERS3572717PRJEB33238humanbloodEpsilon1a446518-07300SAMEA5769172ERS3572718PRJEB33238humanbloodEpsilon1a446519-00076SAMEA5769173ERS3572719PRJEB33238humanbloodEpsilon1a446519-00082SAMEA5769175ERS3572720PRJEB33238humanbloodEpsilon1a446519-00149SAMEA5769176ERS3572722PRJEB33238humanbloodEpsilon1a446519-00149SAMEA5769176ERS3572722PRJEB33238humanbloodEpsilon1a4465	18-06820	SAMEA5769169	ERS3572714	PRIFB33238	human	unknown	Epsilon1a	7353
18 000710DAMEA5769068ERS3572614PRJEB33238humanbloodEpsilon1a735318-06955SAMEA5769069ERS3572615PRJEB33238humanbloodEpsilon1a746518-07018SAMEA5769070ERS3572615PRJEB33238humanbloodEpsilon1a446518-07037SAMEA5769070ERS3572616PRJEB33238humanbloodEpsilon1a446518-07092SAMEA5769071ERS3572617PRJEB33238humanbloodEpsilon1a446518-07092SAMEA5769072ERS3572618PRJEB33238humanunknownEpsilon1a446518-07157SAMEA5769073ERS3572619PRJEB33238humanbloodEpsilon1a446518-07158SAMEA5769074ERS3572620PRJEB33238humanbloodEpsilon1a446518-07267SAMEA5769171ERS3572717PRJEB33238humanbloodEpsilon1a446518-07300SAMEA5769172ERS3572718PRJEB33238humanbloodEpsilon1a735319-00076SAMEA5769173ERS3572720PRJEB33238humanbloodEpsilon1a446519-00082SAMEA5769175ERS3572721PRJEB33238humanbloodEpsilon1a446519-00149SAMEA5769176ERS3572722PRJEB33238humanunknownEpsilon1a446519-00149SAMEA5769176ERS3572722PRJEB33238humanunknownEpsilon1a4465 <td>18-06916</td> <td>SAMEA5769170</td> <td>ERS3572716</td> <td>PRIFB33238</td> <td>human</td> <td>blood</td> <td>Epsilon1a</td> <td>4465</td>	18-06916	SAMEA5769170	ERS3572716	PRIFB33238	human	blood	Epsilon1a	4465
18 0000451AMEL15700000ER80572014FR6EB53230frammbloodEpsilon1a446518-06955SAMEA5769070ERS3572615PRJEB33238humanbloodEpsilon1a446518-07018SAMEA5769070ERS3572616PRJEB33238humanbloodEpsilon1a446518-07037SAMEA5769071ERS3572617PRJEB33238humanbloodEpsilon1a446518-07092SAMEA5769072ERS3572618PRJEB33238humanunknownEpsilon1a446518-07157SAMEA5769073ERS3572619PRJEB33238humanbloodEpsilon1a446518-07158SAMEA5769074ERS3572620PRJEB33238humanbloodEpsilon1a446518-07267SAMEA5769171ERS3572717PRJEB33238humanbloodEpsilon1a446518-07300SAMEA5769172ERS3572718PRJEB33238humanunknownEpsilon1a735319-00076SAMEA5769173ERS3572719PRJEB33238humanbloodEpsilon1a446519-00080SAMEA5769174ERS3572720PRJEB33238humanbloodEpsilon1a446519-00082SAMEA5769175ERS3572721PRJEB33238humanunknownEpsilon1a446519-00149SAMEA5769176ERS3572722PRJEB33238humanunknownEpsilon1a4465	18-06954	SAMEA5769068	ERS3572710	PRIFB33238	human	blood	Epsilon1a	7353
16-00000SAMEA5700000ERS3572010FRSED00000Epsilon111Free18-07018SAMEA5769070ERS3572616PRJEB33238humanbloodEpsilon111446518-07037SAMEA5769071ERS3572617PRJEB33238humanbloodEpsilon111446518-07092SAMEA5769072ERS3572618PRJEB33238humanunknownEpsilon111446518-07157SAMEA5769073ERS3572619PRJEB33238humanbloodEpsilon111446518-07158SAMEA5769074ERS3572620PRJEB33238humanbloodEpsilon111446518-07267SAMEA5769171ERS3572717PRJEB33238humanbloodEpsilon111446518-07300SAMEA5769172ERS3572718PRJEB33238humanunknownEpsilon111735319-00076SAMEA5769173ERS3572719PRJEB33238humanbloodEpsilon111735319-00080SAMEA5769174ERS3572720PRJEB33238humanbloodEpsilon1119019-00082SAMEA5769175ERS3572721PRJEB33238humanunknownEpsilon111446519-00149SAMEA5769176ERS3572722PRJEB33238humanunknownEpsilon1114465	18-06955	SAMEA5769069	ER\$3572615	PRIEB33238	human	blood	Epsilon1a	1355
16-07016SAMEA5705070ERS5572010FRSE55230HumanbloodEpsilon1a440518-07037SAMEA5769071ERS3572617PRJEB33238humanbloodEpsilon1a446518-07092SAMEA5769072ERS3572618PRJEB33238humanunknownEpsilon1a446518-07157SAMEA5769073ERS3572619PRJEB33238humanbloodEpsilon1a446518-07158SAMEA5769074ERS3572620PRJEB33238humanbloodEpsilon1a446518-07267SAMEA5769171ERS3572717PRJEB33238humanbloodEpsilon1a446518-07300SAMEA5769172ERS3572718PRJEB33238humanunknownEpsilon1a735319-00076SAMEA5769173ERS3572719PRJEB33238humanbloodEpsilon1a446519-00080SAMEA5769174ERS3572720PRJEB33238humanbloodEpsilon1a446519-00082SAMEA5769175ERS3572721PRJEB33238humanbloodEpsilon1a446519-00149SAMEA5769176ERS3572722PRJEB33238humanunknownEpsilon1a4465	18-07018	SAMEA5769070	ER\$3572616	PRIEB33238	human	blood	Epsilon1a	4465
18-07057SAMEA5705071ERS3572017FRSEB35238HumanbloodEpsilon1a440518-07092SAMEA5769072ERS3572618PRJEB33238humanunknownEpsilon1a446518-07157SAMEA5769073ERS3572619PRJEB33238humanbloodEpsilon1a446518-07158SAMEA5769074ERS3572620PRJEB33238humanbloodEpsilon1a446518-07267SAMEA5769171ERS3572717PRJEB33238humanbloodEpsilon1a446518-07300SAMEA5769172ERS3572718PRJEB33238humanunknownEpsilon1a735319-00076SAMEA5769173ERS3572719PRJEB33238humanbloodEpsilon1a446519-00080SAMEA5769174ERS3572720PRJEB33238humanbloodEpsilon1a446519-00082SAMEA5769175ERS3572721PRJEB33238humanunknownEpsilon1a446519-00149SAMEA5769176ERS3572722PRJEB33238humanunknownEpsilon1a4465	18 07037	SAMEA5769071	ER\$3572617	DRIEB33238	human	blood	Epsilon1a	4465
18-07092SAMEA5709072ERS3572013FRSEB35238HumanUnknownEpsilon1a440318-07157SAMEA5769073ERS3572619PRJEB33238humanbloodEpsilon1a446518-07158SAMEA5769074ERS3572620PRJEB33238humanbloodEpsilon1a446518-07267SAMEA5769171ERS3572717PRJEB33238humanbloodEpsilon1a446518-07300SAMEA5769172ERS3572718PRJEB33238humanunknownEpsilon1a735319-00076SAMEA5769173ERS3572719PRJEB33238humanbloodEpsilon1a446519-00080SAMEA5769174ERS3572720PRJEB33238humanbloodEpsilon1a446519-00082SAMEA5769175ERS3572721PRJEB33238humanunknownEpsilon1a446519-00149SAMEA5769176ERS3572722PRJEB33238humanunknownEpsilon1a4465	18 07092	SAMEA5769071	ERS3572618	DRIEB33238	human	unknown	Epsilon1a	4405
18-07157SAMEA5709073ERS3572019FRSEB35238HumanbloodEpsilon1a440318-07158SAMEA5769074ERS3572620PRJEB33238humanbloodEpsilon1a446518-07267SAMEA5769171ERS3572717PRJEB33238humanbloodEpsilon1a446518-07300SAMEA5769172ERS3572718PRJEB33238humanunknownEpsilon1a735319-00076SAMEA5769173ERS3572719PRJEB33238humanbloodEpsilon1a446519-00080SAMEA5769174ERS3572720PRJEB33238humanbloodEpsilon1a446519-00082SAMEA5769175ERS3572721PRJEB33238humanunknownEpsilon1a446519-00149SAMEA5769176ERS3572722PRJEB33238humanCSFEpsilon1a4465	18-07092	SAMEA5769072	ERS3572610	DRIEB33238	human	blood	Epsilon1a	4405
18-07156SAMEA5709074ERS3572020FRSEB55236HumanbloodEpsilon1a440518-07267SAMEA5769171ERS3572717PRJEB33238humanbloodEpsilon1a446518-07300SAMEA5769172ERS3572718PRJEB33238humanunknownEpsilon1a735319-00076SAMEA5769173ERS3572719PRJEB33238humanbloodEpsilon1a446519-00080SAMEA5769174ERS3572720PRJEB33238humanbloodEpsilon1a446519-00082SAMEA5769175ERS3572721PRJEB33238humanunknownEpsilon1a446519-00149SAMEA5769176ERS3572722PRJEB33238humanCSFEpsilon1a4465	18 07158	SAMEA5769073	ERS3572619	DRIEB33238	human	blood	Epsilon1a	4405
18-07207 SAMEA5709171 ERS3572717 FRSEB35238 human blood Epsilon1a 4405 18-07300 SAMEA5769172 ERS3572718 PRJEB33238 human unknown Epsilon1a 7353 19-00076 SAMEA5769173 ERS3572719 PRJEB33238 human blood Epsilon1a 4465 19-00080 SAMEA5769174 ERS3572720 PRJEB33238 human blood Epsilon1a 4465 19-00082 SAMEA5769175 ERS3572721 PRJEB33238 human unknown Epsilon1a 4465 19-00149 SAMEA5769176 ERS3572722 PRJEB33238 human CSF Epsilon1a 4465	18 07267	SAMEA5760171	ERS3572020	DRIEB33238	human	blood	Epsilon1a	4405
19-00076SAMEA5769173ERS3572719PRJEB33238humanbloodEpsilon1a446519-00080SAMEA5769174ERS3572720PRJEB33238humanbloodEpsilon19019-00082SAMEA5769175ERS3572721PRJEB33238humanunknownEpsilon1a446519-00149SAMEA5769176ERS3572722PRJEB33238humanunknownEpsilon1a4465	18-07207	SAMEA5760179	ER\$3572719	PRIFR333230	human	unknown	Epsilon1a	7353
19-00080 SAMEA5769174 ERS3572720 PRJEB33238 human blood Epsilon1a 4465 19-00082 SAMEA5769175 ERS3572721 PRJEB33238 human blood Epsilon1a 4465 19-00149 SAMEA5769176 ERS3572722 PRJEB33238 human CSF Epsilon1a 4465	10-07500	SAMEA5760172	ER\$3572710	PRIFR333230	human	blood	Epsilon1a	4465
19-00082SAMEA5769175ERS3572721PRJEB33238humanunknownEpsilon1a446519-00149SAMEA5769176ERS3572722PRJEB33238humanCSFEpsilon1a4465	19_00070	SAMEA5760174	FR\$3577770	PRIFR333230	human	blood	Epsilon1	90 90
19-00149 SAMEA5769176 ERS3572722 PRJEB33238 human CSF Epsilon1a 4465	10_00080	SAMEA5760175	FR\$3577771	PRIFR333230	human	unknown	Epsilon1a	4465
17 00147 SAMERSTO7170 EKS5572722 FRJEB55256 hullian CSF Epsholifa 4405	19_001/0	SAMEA5760176	FR\$3572721	PRIFR33738	human	CSF	Epsilon12	4465
	17-00147	5AWILAJ/071/0	LINGJJ12122	1 NJLDJJ230	nunnan	COI	прыюща	UJ

Isolate ID	Sample accession	Secondary	Study	Source	Isolation	Cluster	cgMLST
	•	accession	number	Туре	source		complex
							type
19-00151	SAMEA5769177	ERS3572723	PRJEB33238	human	blood	Epsilon1a	4465
19-00179	SAMEA5769178	ERS3572724	PRJEB33238	human	unknown	Epsilon1a	4465
19-00191	SAMEA5769179	ERS3572725	PRJEB33238	human	blood	Epsilon1a	4465
19-00240	SAMEA5769180	ERS3572726	PRJEB33238	human	unknown	Epsilon1a	4465
19-00278	SAMEA5769181	ERS3572727	PRJEB33238	human	blood	Epsilon1a	4465
19-00281	SAMEA5769182	ERS3572728	PRJEB33238	human	blood	Epsilon1a	7353
19-00312	SAMEA5769075	ERS3572621	PRJEB33238	human	blood	Epsilon1a	7353
19-00347	SAMEA5769076	ERS3572622	PRJEB33238	human	blood	Epsilon1a	4465
19-00419	SAMEA5769077	ERS3572623	PRJEB33238	human	blood	Epsilon1a	4465
19-00444	SAMEA5769078	ERS3572624	PRJEB33238	human	blood	Epsilon1a	4465
19-00499	SAMEA5769079	ERS3572625	PRJEB33238	human	blood	Epsilon1a	4465
19-00500	SAMEA5769080	ERS3572626	PRJEB33238	human	blood	Epsilon1a	4465
19-00520	SAMEA5769081	ERS3572627	PRJEB33238	human	blood	Epsilon1a	4465
19-00549	SAMEA5769082	ERS3572628	PRJEB33238	human	blood	Epsilon1a	4465
19-00582	SAMEA5769083	ERS3572629	PRJEB33238	human	blood	Epsilon1a	7353
19-00609	SAMEA5769084	ERS3572630	PRJEB33238	human	unknown	Epsilon1a	7353
19-00973	SAMEA5769183	ERS3572729	PRJEB33238	human	unknown	Epsilon1a	4465
19-00974	SAMEA5769184	ERS3572730	PRJEB33238	human	blood	Epsilon1a	7353
19-00998	SAMEA5769185	ERS3572731	PRJEB33238	human	blood	Epsilon1a	4465
19-01023	SAMEA5769186	ERS3572732	PRJEB33238	human	blood	Epsilon1a	4465
19-01108	SAMEA5769187	ERS3572733	PRJEB33238	human	blood	Epsilon1a	4465
19-01166	SAMEA5769188	ERS3572734	PRJEB33238	human	placenta	Epsilon1	90
19-01173	SAMEA5769189	ERS3572735	PRJEB33238	human	blood	Epsilon1	90
19-01197	SAMEA5769190	ERS3572736	PRJEB33238	human	blood	Epsilon1a	4465
19-01319	SAMEA5769191	ERS3572737	PRJEB33238	human	synovia	Epsilon1a	4465
19-01387	SAMEA5769192	ERS3572738	PRJEB33238	human	PF	Epsilon1a	4465
19-01604	SAMEA5769193	ERS3572739	PRJEB33238	human	wound	Epsilon1a	4465
19-01607	SAMEA5769194	ERS3572740	PRJEB33238	human	BA	Epsilon1a	4465
19-01930	SAMEA5769195	ERS3572741	PRJEB33238	human	blood	Epsilon1a	4465
19-01961	SAMEA5769196	ERS3572742	PRJEB33238	human	blood	Epsilon1	90
19-02578	SAMEA5769085	ERS3572631	PRJEB33238	human	blood	Epsilon1a	7353
19-02579	SAMEA5769086	ERS3572632	PRJEB33238	human	blood	Epsilon1a	7353
19-02581	SAMEA5769087	ERS3572633	PRJEB33238	human	blood	Epsilon1a	4465
19-02587	SAMEA5769088	ERS3572634	PRJEB33238	human	blood	Epsilon1a	7353
19-02590	SAMEA5769089	ERS3572635	PRJEB33238	human	CSF	Epsilon1a	4465
19-02598	SAMEA5769090	ERS3572636	PRJEB33238	human	CSF	Epsilon1a	4465
19-02600	SAMEA5769091	ERS3572637	PRJEB33238	human	blood	Epsilon1a	4465
19-LI00135-	-0 SAMEA5769092	ERS3572638	PRJEB33238	food		Epsilon1a	4465
19-LI00136-	-0 SAMEA5769093	ERS3572639	PRJEB33238	food		Epsilon1a	4465
19-LI00137-	-0 SAMEA5769094	ERS3572640	PRJEB33238	food		Epsilon1a	4465
19-LI00138-	-0 SAMEA5769095	ERS3572641	PRJEB33238	food		Epsilon1a	4465
19-LI00175	-0 SAMEA5769096	ERS3572642	PRJEB33238	food		Epsilon1a	4465

42 Abbreviations: CSF - cerebrospinal fluid, GS - gynaecological swab, PF - pleural fluid, BA -

43 brain abscess. Please not that isolates from non-sterile materials were not included in the outbreak

44 description.

Table S2: Antimicrobial susceptibility in the Epsilon1a outbreak cluster (n= 79).

All 79 strains were tested against 14 antibiotics. <u>Underlined</u> values indicate no observable growth
at the lowest tested concentration. Concentrations in grey areas were not tested. Vertical lines
indicate resistance breakpoints as defined by EUCAST for *Listeria monocytogenes*, *Streptococcus pneumoniae* (1) or *Staphylococcus aureus* (2). Intermediate concentration values
between resistant and susceptible organisms are hatched.

Abbreviations: AMP - ampicillin, PEN - benzylpenicillin, CRO - ceftriaxone, CIP ciprofloxacin, DAP - daptomycin, ERY - erythromycin, GEN - gentamicin, LIN - linezolid, MER
- meropenem, RAM - rifampicin, TET - tetracycline, TGC - tigecycline, CTX - cotrimoxazole
(trimethoprim/ sulfamethoxazole), VAN - vancomycin.