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ORIGINAL ARTICLE
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Abstract

Objectives. T follicular helper (Tfh) cells are the principal T helper
cell subset that provides help to B cells for potent antibody
responses against various pathogens. In this study, we took
advantage of the live-attenuated yellow fever virus (YFV) vaccine
strain, YF-17D, as a model system for studying human antiviral
immune responses in vivo following exposure to an acute primary
virus challenge under safe and highly controlled conditions, to
comprehensively analyse the dynamics of circulating Tfh (cTfh)
cells. Methods. We tracked and analysed the response of cTfh and
other T and B cell subsets in peripheral blood of healthy
volunteers by flow cytometry over the course of 4 weeks after YF-
17D vaccination. Results. Using surface staining of cell activation
markers to track YFV-specific T cells, we found increasing cTfh cell
frequencies starting at day 3 and peaking around 2 weeks after
YF-17D vaccination. This kinetic was confirmed in a subgroup of
donors using MHC multimer staining for four known MHC class II
epitopes of YF-17D. The subset composition of cTfh cells changed
dynamically during the course of the immune response and was
dominated by the cTfh1-polarised subpopulation. Importantly,
frequencies of cTfh1 cells correlated with the strength of the
neutralising antibody response, whereas frequencies of cTfh17
cells were inversely correlated. Conclusion. In summary, we
describe detailed cTfh kinetics during YF-17D vaccination. Our
results suggest that cTfh expansion and polarisation can serve as a
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prognostic marker for vaccine success. These insights may be
leveraged in the future to improve current vaccine design and
strategies.

Keywords: neutralising antibodies, T follicular helper (Tfh) cells,
vaccination, viral infection, yellow fever, YF-17D

INTRODUCTION

Emerging new viral infections and re-emerging
known viral pathogens are posing an ever-growing
threat, especially if preventive measures in form of
vaccinations are not available or limited. Recent
outbreaks of Zika, Ebola and yellow fever virus
(YFV) in the tropics1 as well as measles and yearly
influenza waves in Europe and the United States,
and the current worldwide spread of the new
coronavirus SARS-CoV-2 that causes COVID-19,
serve as a reminder to the public and health
authorities that prevention and treatment of viral
diseases remain one of the biggest medical
challenges. Thus, a solid understanding of the
cellular immune response to viral infection is of
immense importance for the development of new
vaccines and antiviral treatments.

One of the most potent and successful vaccines in
current use is the vaccination against YFV. The live-
attenuated YFV strain 17D has been developed and
used since the 1930s,2 leading to livelong immunity
in over 98% of vaccinees after a single shot.3 This
efficiency relies on the generation of neutralising
antibodies as well as on the formation of CD4+ T cell
memory.4-6 Neutralising antibodies are detected
starting 10 days post-vaccination and can persist for
decades after immunisation.7 Adverse events of the
vaccination are extremely rare, which makes the
vaccination with YF-17D a safe and beneficial
intervention that can be used to model an acute
viral infection to study innate and adaptive antiviral
immune responses in human subjects.

Production of high and long-lasting titres of
neutralising antibodies suggests involvement of
germinal centres (GCs). During a GC reaction, B
cells undergo class-switching and affinity
maturation and rely on help from a specific subset
of CD4+ T cells, the so-called T follicular helper
(Tfh) cells.8-10 The GC reaction is generally difficult
to study in humans as it occurs in secondary
lymphoid organs (such as lymph nodes), which are
difficult to sample. However, CD4+ T cells
expressing the Tfh subset-defining chemokine
receptor CXCR5 can also be found in peripheral

blood and have therefore been named circulating
T follicular helper (cTfh) cells.11 cTfh cells represent
the circulating memory compartment of human
Tfh cells that are clonally related to GC Tfh cells.12-
14 cTfh cells can perform classical Tfh tasks such as
promoting class-switching in B cells and antibody
production and they have been described to
promote vaccine-induced immunity.15,16 Similar to
classical T helper cell subsets, cTfh cells can be
divided into subsets (cTfh1, cTfh2, cTfh17, cTfh-1-
17) according to the expression of the chemokine
receptors CXCR3 and CCR6.11

Circulating T follicular helper cells are therefore
considered a promising target to improve
vaccination strategies.17 While the CD8+ T cell
response to YFV has been described in detail
previously,18-20 the CD4+ T cell response has only
recently drawn attention.21 Importantly, cTfh cells
have not been investigated to date in detail in the
immune response following YF-17D vaccination.
The extraordinary neutralising antibody response
induced by YF-17D is not yet fully understood, but
in experiments performed in animal models, it was
shown that the co-transfer of immune sera and
CD4+ T cells provided complete protection,
whereas transfer of CD4+ T cells or immune sera
alone only lead to partial protection.4 These data
suggest that coordinated cellular and humoral
immune responses are critical for mounting
protective immune responses. In this study we used
the YF-17D vaccination model to assess and
carefully characterise the frequencies and
phenotypic changes of cTfh cells in healthy
individuals after an acute viral infection.

RESULTS

Activated circulating T follicular helper cells
accumulate in the blood following YF-17D
vaccination

Here, we used the YF-17D vaccination model to
study adaptive immune cell dynamics during an
acute viral infection in healthy individuals, with a
particular focus on Tfh cells using flow cytometry
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(see Supplementary figure 1 for gating strategies
and definition of lymphocyte subpopulations).
YF-17D vaccination lead to a characteristic
transient decrease in the absolute cell numbers of
CD8+ cells on day 3 and day 7 after vaccination
and a significant increase in the frequency of
CD38-expressing activated CD8+ T cells from day 3
on, peaking on day 14 (Supplementary figure 2a
and b), which is in line with previous reports.21,22

We also observed a small but non-significant
drop of total CD4+ T cell numbers and no change
in the overall frequency of CD45RO+ memory
CD4+ T cells (Supplementary figure 3a and b).
While the frequency of total CXCR5+ cTfh cells
did not change significantly during the immune
response to the YFV over the time course of
28 days after vaccination, the absolute number of
cTfh cells was slightly decreased on day 3 and
day 7 (Figure 1a, Supplementary figure 3c). In
contrast, we observed an increase in the
frequency of activated CD38+ cTfh cells from day
3 post-vaccination on and a further increase until
day 7 and day 14, followed by a contraction
thereafter, however, without completely reaching
pre-vaccination levels by day 28 (Figure 1b).
Besides CD38, ICOS and PD-1 have also been
previously described as activation markers
expressed by antigen-specific cTfh cells.14,23-25

Frequencies of cTfh cells co-expressing either
combination of these three markers were also
increased significantly from day 7 on through day
28 (Figure 1c).

The cTfh response to YF-17D vaccination is
dominated by the cTfh1 subset

The peak of activation on day 14 was
accompanied by a change in the polarisation of
cTfh cells compared to the pre-vaccination state,
which can be analysed by assessment of different
cTfh cell subsets defined by their CXCR3 and
CCR6 expression (gating strategy in
Supplementary figure 1a).11 CXCR3+CCR6� cTfh1
cells were increased in frequency on day 14 and
day 28, whereas frequencies of CXCR3�CCR6+

cTfh17 cells were decreased on those days
(Figure 2a). This polarisation was even more
pronounced amongst activated cTfh cells
(Figure 2b, Supplementary figure 3h–j).
Compared to day 0, the frequency of the cTfh1
cells was strongly increased by day 14 and day 28
of the immune response to YF-17D, whereas the
frequency of cTfh17 cells and also CXCR3�CCR6�

cTfh2 cells were decreased within the activated
CD38+ compartment of circulating T follicular
helper cells (Figure 2b). Similarly, the frequency
of the cTfh1 cells within ICOS+CD38+, ICOS+PD-1+

and PD-1+CD38+ cTfh cells was strongly increased
on day 14 and day 28 after vaccination with YF-
17D (Supplementary figure 3h–j). To gain further
insight into the functionality of the activated
cTfh cell subsets, we performed intracellular
cytokine staining of peripheral blood
mononuclear cells (PBMCs) that had been
restimulated with PMA and ionomycin
(Figure 2c). Activated cTfh cells on day 14 post-
vaccination showed high frequencies of IFNc-
producing cTfh1 cells and lower frequencies of
IFNc-producing cTfh1-17 and cTfh2 cells after
non-specific re-stimulation (Figure 2c). IL-4+ cells
were found in the cTfh1 and cTfh2 cell subsets
while IL-17 was produced by cTfh1-17 and cTfh17
cells (Figure 2c). IL-21+ and IL-2+ cells were
detected in all four subsets, although IL-21- as
well as IL-2-producing cells were particularly
enriched in the cTfh1 cell population (Figure 2c).

Kinetics of circulating CXCR5� T memory
cells following YF-17D vaccination

To further analyse the kinetics of the CD4+ T cell
response after YF vaccination, we also assessed
the frequencies of circulating CXCR5� cells
amongst CD4+CD45RO+ memory T cells (CXCR5�

cTmem; gating strategy in Supplementary figure
1a). Although there were no significant changes
in the absolute number of CD4+ T cells, nor in the
frequency of memory CD4+ T cells, nor in the
frequency of CXCR5� cTmem cells amongst CD4+ T
cells in the blood of YF vaccinees at the
investigated time points after vaccination
(Supplementary figure 3a, b and e, Figure 3a), the
absolute number of CXCR5� cTmem cells was
slightly decreased on day 3 and slightly increased
on day 14 and day 28 (Supplementary figure 3d).
While the frequencies of total CXCR5� cTmem
cells did not change significantly after YF
vaccination, there was a strong transient increase
in the frequency of activated CD38+CXCR5�

cTmem cells (Figure 3b, Supplementary figure 3f).
The frequency of CD38+CXCR5� cTmem cells was
already increased on day 3 post-vaccination,
reaching its peak by day 14 and then declining to
frequencies of activated cells comparable to pre-
vaccination levels by day 28 (Figure 3b).
Coinciding with the peak of activation on day 14,
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polarisation of the CXCR5� cTmem cells was also
altered (Figure 3c, Supplementary figure 3g). The
frequency of circulating CXCR3+CCR6� Th1 cells
was increased on day 14 and day 28 following YF
vaccination (Figure 3c). This was at the expense of
CXCR3�CCR6+ Th17 cells, which were
underrepresented on day 14 and day 28 compared
to pre-vaccination frequencies (Figure 3c). This
tendency was also observed when CXCR5� cTmem
cells were pre-gated on CD38+ activated CXCR5�

cTmem cells (Figure 3d). Activated CXCR5� cTmem
cells were strongly polarised towards the cTh1
subtype on day 14, and this polarisation persisted
until at least day 28 (Figure 3d). Along with the

highest frequency of activated cTh1 cells on day
14, CXCR3�CCR6� Th2 cells were decreased in
frequency on day 14, and cTh17 cells were
decreased in frequency on day 14 and to a lesser
extent on day 28 after vaccination compared to
day 0 (Figure 3d). Intracellular cytokine staining
after non-specific re-stimulation revealed that
IFNc was mostly produced by the Th1 and the
CXCR3+CCR6+ Th1-17 subset (Figure 3e). IL-4 was
produced by Th2 cells, but also by a fraction of
Th1 cells. IL-17-producing cells were found
within the Th1-17 and Th17 subsets. While IL-21-
and IL-2-producing cells were detected amongst
all four subsets, the Th1 compartment contained
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the highest frequency of IL-2-producing cells.
Compared to CXCR5+ cTfh cells (Figure 2c),
the frequencies of IL-21+ and IL-2+ cells were
lower in the activated CXCR5� cTmem cell
compartment.

Circulating Treg cell frequencies are
increased early after YF-17D vaccination

Following the assessment of the kinetics of cTfh
cells (Figures 1 and 2) and CXCR5� cTmem cells
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(Figure 3), we next investigated circulating
regulatory T cells after YF vaccination. Regulatory
T cells were subdivided into CXCR5� regulatory T

(Treg) cells and CXCR5+ T follicular regulatory (Tfr)
cells (see Supplementary figure 1a for gating
strategy). Absolute numbers of blood CXCR5�
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Treg cells were increased on day 14
(Supplementary figure 4a), whereas the frequency
of CXCR5� Treg cells amongst all CD4+ T cells was
significantly increased early on day 3 and day 7
post-vaccination (Figure 4a). Along with the
increase in absolute numbers, the frequency of
CD38+ activated cTreg was strongly increased on
day 14 post-vaccination but not yet on day 7
(Figure 4b). Therefore, an increase in the
frequency of activated CXCR5� cTmem and cTfh
cells preceded the increase in the frequency of
activated cTreg cells (Figures 1b, 3b and 4b).
Absolute numbers of cTfr cells were slightly
increased on day 28 after vaccination
(Supplementary figure 4b) and frequencies did
not change significantly during the immune
response to YF-17D (Figure 4a). In contrast to
CXCR5� Treg cells, the frequency of CD38-
expressing cTfr cells was similar at all time points
investigated and did not increase in response to
yellow fever vaccination (Figure 4c).

Tracking of YFV-specific T helper cells by
MHC class II tetramer staining reveals
epitope-specific qualitative differences
within cTfh and CXCR5� Tmem cell subsets

We took advantage of a previously published list
of YFV-specific tetramers to directly investigate
YF-17D antigen-specific CD4+ T cells ex vivo. Two
HLA types (HLA-DRB1*03:01 and DRB1*01:01)
frequently represented in our cohort were chosen
for generation of tetramers in combination with
two pre-validated YFV peptides for each HLA
type. Antigen-specific cells were determined by
co-staining with a BV421- and an APC-labelled
tetramer to prevent inclusion of unspecifically
bound cells in the analysis. YFV-specific CD4+ T
cells reactive to peptides derived from the viral
proteins Cap, NS3, Env and NS1 were detectable
in the blood of vaccinees on day 14 after
vaccination while almost no cells specific to the
antigens tested could be seen on day 7 yet
(Figure 5a). This is in accordance with previous
publications that detected YFV-specific cells by
CD40L or tetramer staining 2 weeks after
vaccination.21,26 On day 28, the frequency of
antigen-specific cells decreased and only few of
the cells could still be detected in peripheral
blood (Figure 5a). Antigen-specific CD4+ T cells
were mostly CXCR5� cTmem cells with up to 20%
CXCR5+ cTfh cells depending on the antigen
investigated (Figure 5b). The vast majority of

antigen-specific CXCR5� cTmem and cTfh cells was
activated and expressed CD38 on day 14
(Figure 5c). Analysis of the subset composition of
antigen-specific cells showed that Cap-, Env- and
NS1-specific CD4+ T cells were largely of the cTh1
and cTfh1 subset, highlighting the role of these
subsets in the antiviral immune response
(Figure 5d and e). In contrast, NS3-specific CXCR5�

cTmem cells were also polarised into cTh2 cells
(Figure 5d) and NS3-specific cTfh cells were also
polarised into cTfh2 and cTfh17 subsets
(Figure 5e).

The frequency of antibody-secreting cells in
the blood is increased following YF-17D
vaccination

As Tfh and B cells orchestrate the antibody
response, we set out to analyse B cell
subpopulations following YF vaccination. CD19+

cells were gated on IgD, CD27, CD38, CD138 and
IgM to differentiate B cell subsets (see
Supplementary figure 1c for gating strategy).
Similar to CD8+ T cells, the total number of CD19+

B cells was decreased on day 3 and day 7 after
yellow fever vaccination in the blood
(Supplementary figure 5a). While there were no
major changes observed in the frequency of CD27+

memory B cells, na€ıve B cells (IgD+CD27�CD38�)
and transitional B cells (IgD+CD27�CD38+;
Supplementary figure 5b–d), the frequency of
antibody-secreting cells (ASCs), which include
plasmablasts and plasma cells (IgD�CD27+CD138+),
was substantially increased on day 7 and peaked
on day 14 after vaccination (Figure 6a), which
confirmed previous publications.21 CD27+ memory
B cells were further subdivided into memory B cell
subsets. Non-class-switched memory B cells
(IgD+CD27+) were decreased in their frequency
amongst CD19+ cells on day 7 (Figure 6b), whereas
IgM+ memory B cells (IgD�IgM+CD27+CD138�)
were decreased in their frequency on day 7 and
day 28 (Figure 6c). The frequency of class-switched
memory B cells (IgD�IgM�CD27+CD138�) amongst
CD19+ cells did not change significantly after
vaccination with YF-17D compared to pre-
vaccination levels (Figure 6d).

Distinct subsets of cTfh cells correlate with
neutralising antibody titres

Long-lasting immunity against YF virus following
vaccination requires both cellular and humoral
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immunity. Even though more than 95% of
vaccinated people develop long-lasting protective
neutralising antibody titres as early as 10 days
after vaccination, the titres amongst individuals
vary.7,21 In order to determine prognostic markers
for the titre of neutralising antibodies present on

day 28 after vaccination, we correlated the
neutralising antibody titre with several Tfh cell
populations on day 3, day 7, day 14 and day 28
after vaccination. The titre was determined as the
dilution of sera which showed a 50% reduction of
the focus count in a focus reduction neutralisation
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test (FRNT). While none of the frequencies of
CXCR5� cTmem cells as well as none of the pre-
vaccination (0 dpv) frequencies of cTfh cell
parameters correlated with the neutralising
antibody titre (data not shown), we found that

the frequencies of cTfh1 and cTfh17 cells
correlated with the neutralising activity measured
in the serum of vaccines (Figure 7a and b). cTfh1
cell frequencies on day 14 and day 28 correlated
positively with the measured neutralising activity
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[higher effective dose (ED) of neutralising
antibodies in the serum; Figure 7a]. This meant
that in patients with higher frequencies of cTfh1
cells sera had to be diluted more, in order to
decrease neutralising activity to 50% (ED50) and
therefore contained higher levels of neutralising
antibody in the serum. In contrast, cTfh17 cell
frequencies on day 14 and day 28 were negatively
correlated with the measured neutralising activity
(Figure 7b). These findings could also be
confirmed by correlations of activated CD38+,
ICOS+CD38+, ICOS+PD-1+ and PD-1+CD38+ cTfh1
and cTfh17 cells with the level of neutralising
activity (Figure 7c–f).

DISCUSSION

In this study, we provided detailed analyses of
lymphocyte dynamics after yellow fever
vaccination, with a focus on Tfh cells. Tfh cells
have to our knowledge not been investigated in

this setting before. We showed that activation
and polarisation of CXCR5+ Tfh cells and CXCR5�

memory T helper cells change in response to
vaccination with the live-attenuated yellow fever
vaccine YF-17D and that the frequencies of cTfh1-
polarised cells is predictive for the level of
neutralising activity in the serum of vaccinees.
Alterations in cTfh and cTmem frequencies
followed similar patterns, mirrored the changes
seen in regulatory T cells and CD8+ T cells after YF
vaccination and were accompanied by an increase
in the frequency of ASCs. The peak of activation
was detected on day 14 for most lymphocyte
subsets investigated. These kinetics are in
accordance with previous publications that used
various activation markers and their combinations,
including CD38, Ki67 and HLA-DR18,20,21,27 or TCR
repertoire sequencing, to track the YF-17D
response of CD8+ and CD4+ T cells.28,29

In our study, the activation peak at day 14 post-
vaccination was preceded by a drop in the
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absolute numbers of CXCR5� cTmem, cTfh, CD8+ T
cells and B cells on day 3 and day 7, which most
likely reflects their recruitment to secondary
lymphoid organs and has also been observed
before.21 The drop in the number of CXCR5�

cTmem and cTfh cells leads to an increased
proportion of cTreg cells amongst CD4+ T cells on
day 3 and day 7 post-vaccination, but in addition
to this passive shift early on, the frequency of
activated cTreg cells was increased 2 weeks after
vaccination as described previously.27 Interestingly,
an increase in the frequency of activated CD38-
expressing CXCR5� cTmem, cTfh and CD8+ T cells
was evident on day 7 post-vaccination and
persisted until day 28 for cTfh and CD8+ T cells. In
contrast, Treg cells, which inhibit and control
ongoing immune reactions, were activated and
expanded in the blood with a delay compared to
activated CD4+ and CD8+ T cells.

Along with the activation of CD4+ T cells upon
YF vaccination, we found a strong polarisation of
CXCR5� cTmem and cTfh cells and especially
activated CXCR5� cTmem and cTfh cells towards
CXCR3-expressing, IFNc-secreting Th1 and Tfh1
cells. Interestingly, this Th1 and Tfh1 polarisation
was at the expense of cTh17 and cTfh17 cells. As
Th1 cells are the primary CD4+ T cell subset
involved in antiviral responses30,31 the dominance
of the cTfh1 subtype is not unexpected and had
been described previously in infections with HIV
and HCV and after influenza vaccination.25,32-36 In
line with these studies, we found a positive
correlation of the cTfh1 subset size with the
neutralising activity in the blood and an inverse
correlation with the cTfh17 subset. This
strengthens our interpretation that (c)Tfh1 cells
are the major B cell helper cell type in the anti
YF-17D immune response.

Although cTfh1 cells were originally described as
inferior B cell helpers in terms of antibody
production ex vivo when compared to cTfh2 and
cTfh17 cells,11 the type of infection and the selective
subclass and specificity required for protective
antibodies may eventually determine which cTfh
cell subtype is relevant and prognostic for the
outcome of an infection or the vaccination success,
respectively. This could also explain why a high
frequency of ASCs does not necessarily correlate
with a high titre of neutralising antibodies.

Tfh1 cells might not only influence the outcome
of the humoral immune response. It has been
shown in mouse studies that CD4+ T cells in
addition to their B cell helper capabilities are also

essential for conferring efficient and long-lasting
protection against wildtype YFV infection.4,37 Tfh1
cells have been implicated in the formation of
CD4+ T cell memory cells9 as well as contributing
effector functions which mostly rely on cytokine
expression.38

Cytokine expression profiles of CXCR5� cTmem
cells at the peak of the immune response to YF-
17D revealed that the highest fraction of IFNc-
producing cells was found in the Th1 cell subset.
Generally, we were able to confirm that activated
CXCR5� cTmem cell subsets expressed their subset-
determining cytokines on day 14 after yellow fever
vaccination. This was also confirmed for cTfh
subpopulations defined by the expression of the
chemokine receptors CXCR3 and CCR6. IFNc-
producing cells were mostly found in the cTfh1 cell
subset and to a lesser extent in the cTfh1-17 cell
subset, whereas IL-17-producing cells were mostly
found amongst cTfh17 and cTfh1-17 cells. IL-2 is
secreted upon antigen stimulation and thereby
induces proliferation.39 In our study, cTh1 and
cTfh1 cells had the highest fraction of IL-2
expressing cells. Interestingly, cTfh cells generally
showed higher fractions of IL-2-expressing cells
than CXCR5� cTmem cells, which is in line with a
previous report.11

Compared to activated cTfh cell subsets, CXCR5�

cTmem cells expressed slightly lower levels of IL-
21. It has been suggested, that cTfh1 cells lack B
cell helper abilities as they only secrete very low
levels of IL-21.25 We could show that cTfh1 cells in
response to YF vaccination secrete more IL-21
than cTfh2 and cTfh17 cell subsets, which have
been described as efficient B cell helpers
in vitro.11 Possible explanations for this finding
are that IL-21 secretion by cTfh1 is induced by YF-
17D or that resting cTfh1 cells were previously
used for assaying B cell helper abilities.15

Nevertheless, we saw a strong increase in
activation markers on cTfh1 and IL-21 might only
be produced upon activation by this subset. This
further argues that cTfh1 cells in vivo indeed have
the potential and relevant cytokine production to
foster the generation of neutralising antibodies
after YF vaccination.

The polarisation and activation kinetics of
circulating Tfh and CXCR5� Tmem cells after YF
vaccination was further confirmed in YF-17D-
specific CD4+ T cells defined by MHC II tetramer
staining. Tetramer-binding CXCR5� cTmem and
cTfh cells were detectable on day 14 post-
vaccination and expressed the activation marker
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CD38, validating that indeed, a high fraction of T
cells, which expressed the CD38-marker upon
vaccination, are specific for the YF virus.
Furthermore, tetramer-positive CD4+ T cells were
mostly of the Th1 and Tfh1 cell subtype, again
highlighting the role of those subsets in the
immune response to YF-17D. cTfh cells thereby
recognised the same peptide epitopes of the
capsid and envelop protein, as well as non-
structural protein 1 that had been described to
dominate the CXCR5� Th1 cell subset.26 CD4+ T
cells recognising the NS3 49–65 peptide epitope
did not show the clear Th1/Tfh1 polarisation
dominance seen in cells specific for the other three
antigens tested and comprised almost equal
numbers of Th1/Tfh1, Th2/Tfh2 and Th17/Tfh17
cells. This argues for an epitope-dependent
component like TCR-signalling strength
influencing the cTfh differentiation into their
subpopulations. The predominance of the cTfh1
differentiation by at least the most important YF-
17D antigens for neutralisation is reflected in the
positive correlation of the cTfh1 frequency with
the level of neutralising activity in the humoral YF-
17D-specific immune response.

In summary, the immune response to YF-17D is
Th1- and Tfh1-driven and the peak of activated
CD4+ T cells, CD8+ T cells and ASCs can be
detected 2 weeks after vaccination in the blood.
Our data provide a predictive connection between
the frequencies and polarisation of cTfh cells and
the humoral immune response to live-attenuated
viral vaccines. These findings will aid the
understanding of T cell and B cell responses to
viral infections and might help to implement the
induction of a potent cTfh1 response in vaccine
development processes.

METHODS

Study participants and vaccination

The study protocol was approved by the Institutional
Review Board of the Medical Faculty of LMU Munich and
adhered to the most recent version of the declaration of
Helsinki. Participants were not previously immunised
against YF and had not been naturally exposed to the wild
type YFV. After giving informed consent, 34 individual
healthy donors (Supplementary table 1) aged 18–38
received a single vaccine shot of the live-attenuated 17D
yellow fever virus strain (0.5 mL of Stamaril; Sanofi Pasteur,
Lyon, France) subcutaneously at the Division of Infectious
Diseases & Tropical Medicine at LMU Munich. Blood
samples were collected directly prior to vaccination and on
days 3, 7, 14 and 28 after vaccination.

Human cell preparation

Absolute blood cell numbers in patient samples were
determined on a Sysmex XN 1000/9000 clinical diagnostics
system according to the manufacturer’s recommendations.
PBMCs were isolated from heparinised human whole blood
by Ficoll-Hypaque (Biochrom, Berlin, Germany) gradient in
SepMate tubes (STEMCELL, Vancouver, Canada) within 6 h
from blood draw. Cells were further analysed directly after
isolation. Sera were stored at �80°C until further use.

Phenotypic analyses of lymphocytes

Peripheral blood mononuclear cells were analysed by flow
cytometry as previously described.40 In Brief, PBMCs were
first incubated with Fc receptor blocking agent (Miltenyi,
Bergisch Gladbach, Germany) and then stained at 4°C with
a T cell and a B cell panel (antibodies used for the panels
with clone and manufacturer information can be found in
Supplementary table 2). Dead cells were excluded with the
fixable viability dye eFluor 780 (eBioscience/Thermo Fisher,
Waltham, MA, USA). PBMCs were washed and then fixed
with 1% paraformaldehyde prior to acquisition. Events
were recorded on a BD LSRFortessa (Becton Dickinson,
Franklin Lakes, NJ, USA), and data were analysed with
FlowJo software version 10 (FlowJo LLC, Ashland, OR, USA).

Stimulation of ex vivo isolated lymphocytes

In all, 3–5 million PBMCs were stained with antibodies
against CD4, CXCR5, CXCR3 and CCR6 (for clones and
manufacturer, see Supplementary table 2 ‘cytokine panel’)
after blocking of the Fc receptors and before stimulation
with PMA/ionomycin to reduce loss of chemokine receptor
signals during the stimulation. After washing the cells were
stimulated with 50 nmol L�1 phorbol 12-myristate 13-
acetate (PMA) and 1 µmol L�1 ionomycin (both Sigma-
Aldrich, St. Louis, MO, USA) at 37°C in complete RPMI
(cRPMI; 10% foetal calf serum, 10 mM HEPES, 2 mM L-
glutamine, 1 mM sodium pyruvate, 19 non-essential amino
acids, 50 µM b-mercaptoethanol, 100 U penicillin–
streptomycin). After 2.5 h, 5 µg mL�1 brefeldin A (Sigma-
Aldrich) was added for additional 2.5 h. The stimulated
cells were first incubated with antibodies against CD45RO
CD3, CD19, CD8a, CD56, CD14 and CD38 (for clones and
manufacturer, see Supplementary table 2 ‘cytokine panel’).
Dead cells were excluded with the fixable viability dye
eFluor 780 (eBioscience/Thermo Fisher). After fixation and
permeabilisation with the Fixation/Permeabilization
Solution Kit (‘Cytofix/Cytoperm’; Becton Dickinson)
according to the manufacturer’s protocol, the cells were
stained intracellularly with antibodies against different
cytokines (see Supplementary table 2 ‘cytokine panel’).

HLA typing

Human leukocyte antigen (HLA) typing was performed using
DNA isolated from buffy coats obtained directly prior to
vaccination and either Sanger or next-generation sequencing
(NGS). Typing results were reported in a 2-field resolution
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(Sanger on 3130xl Genetic Analyzer; Applied Biosystems,
Foster City, CA, USA) or a 3-field resolution (NGS Ion Chef
System and Ion personal genome machine, Life
Technologies/Thermo Fisher, Waltham, MA, USA). Sanger
sequencing was realised by a home-made PCR amplification
strategy of class II (exons 2–4). Sequence raw data were
processed either by uType (Thermo Fisher, Waltham, MA,
USA) software (Sanger) or by NGSengine (NGS; GenDx,
Utrecht, the Netherlands) for HLA type creation.

Determination of ex vivo frequency of YFV-
specific CD4+ T cells using MHC multimer
staining

In all, 3–10 million PBMCs were incubated with 20 µg mL�1

APC- and 20 µg mL�1 BV421-labelled MHC class II tetramers
(NIH Tetramer Core Facility, Atlanta, GA, USA) in 100 µL
cRPMI at RT simultaneously. The peptides (JPT Peptide
Technologies, Berlin, Germany) used for HLA-DRB1 tetramer
generation have been published26: Cap 49-65
(FFFLFNILTGKKITAHL, HLADRB1*01:01 tetramer), NS3 49-65
(HTMWHVTRGAFLVRNGK, HLADRB1*01:01 tetramer), Env
43-59 (ISLETVAIDRPAEVRKV, HLADRB1*03:01 tetramer) and
NS1 85-101 (DISVVVQDPKNVYQRGT, HLADRB1*03:01
tetramer). Cells were washed and then stained with the
antibodies listed in Supplementary table 2 ‘tetramer panel’.
Dead cells were excluded with the fixable viability dye
eFluor 780 (eBioscience/Thermo Fisher). PBMCs were washed
and then fixed with 1% paraformaldehyde prior to
acquisition. Events were recorded on a BD LSRFortessa, and
data were analysed with FlowJo software version 10.

Determination of YF-17D-neutralising
antibodies

For determination of neutralising antibody titre, blood was
collected in serum collection tubes (S-Monovette Z-Gel;
Sarstedt, Nuembrecht, Germany), centrifuged and frozen at
�80°C until further use. The neutralising antibody titre was
determined by the focus reduction neutralisation test
(FRNT) as previously described.41 Briefly, about 100 focus-
forming units from a YF-17D virus stock were incubated
with equal amounts of inactivated and serially diluted
donor sera for 1 h at 37°C. The mixture was then added to
Vero cells (25 000 cells per well in a 96-well plate) and foci
were left to develop under a layer of 1.5% methylcellulose
(Sigma M0512, 4000 cP viscosity; Sigma-Aldrich) for 2 days
at 37°C. After fixation of the cells with 5% formaldehyde
and blocking with 50 mM NH4Cl, the foci were stained with
the Flavivirus anti-E 4G2 antibody (CG 0042; Clonegene,
Atlanta, GA, USA) and an anti-mouse horseradish
peroxidase (HRP)-conjugated secondary antibody (7076S;
Cell Signaling, Danvers, MA, USA). The foci were developed
with 3,30-diaminobenzidine (DAB; D5905; Sigma-Aldrich)
and counted using the EliSpot Reader ELR04 SR (AID
Autoimmun Diagnostika GmbH, Strassberg, Germany). To
control for unspecific serum effects, we took advantage of
our longitudinal study design and used the serum taken
directly prior to vaccination for each donor as a donor-
specific negative control that was diluted in the same way
as the tested serum samples from day 28. The number of

foci present in the pre-vaccination serum was then set as
100% and the % of reduction was calculated for each
dilution step as 1 � (number of foci in serum from day 28/
number of foci in the pre-vaccination serum). Neutralisation
curves were fitted by nonlinear regression analysis using
Prism 8 (GraphPad, La Jolla, CA, USA) software and 50%
FRNT values (designated ED50) values were interpolated
from the curves. 28 of the 32 titres were clustered over a
10-fold ED50 range, but the two highest and two lowest
ED50 data points were more than threefold higher or lower
than this range and were thus classified as outliers and
excluded from the correlation analysis shown in Figure 7.

Statistics

Appropriate statistical analyses were performed with Prism
8 software (GraphPad) and are specified in each
corresponding figure caption.
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